Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses

Tomasz Jakubczyk,§,† Valentin Delmonte,§,∥ Sarah Fischbach,§ Daniel Wigger,*‖ Doris E. Reiter,‖ Quentin Mermillod,§,∥ Peter Schnauber,§ Arsenty Kaganskiy,‡ Jan-Hindrik Schulze,§ André Strittmatter,§ Sven Rodt,§ Wolfgang Langbein,∥ Tilmann Kuhn,‖ Stephan Reitzenstein,*§ and Jacek Kasprzak,*†,‡,*

1Univ. Grenoble Alpes, F-38000 Grenoble, France
2*Nanophysics et Semiconducteurs* Group, CNRS, Institut Néel, F-38000 Grenoble, France
3Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
4Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany
5Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom

ABSTRACT: Optimized light–matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs), achieving their efficient coupling to the external light field. This enables performing four-wave mixing micro-spectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the line shape of the phonon-assisted PL using realistic quantum dot geometries.

KEYWORDS: excitons, phonons, quantum dots, coherent nonlinear spectroscopy, four-wave mixing, electron beam lithography

Owing to the technological progress in semiconductor growth, self-assembled quantum dots (QDs) offer nowadays optimal quality of the residing exciton transitions with near unity emission efficiency and close to ideal quantum optical properties. Forthcoming applications emerging from combining QDs and nanophotonics, such as quantum light sources in on-chip photonic networks, call for scalability and deterministic QD positioning. In this regard, in situ electron beam lithography (EBL) has evolved into a suited technique for the deterministic fabrication of quantum light sources. When combined with low-temperature cathodoluminescence imaging, EBL permits sculpturing microlenses above individual QDs, enhancing collection efficiency over a broad spectral range.

Here, using four-wave mixing (FWM) micro-spectroscopy we reveal coherences of single QDs, deterministically embedded in microlenses realized by in situ EBL. The resulting optical signals in these nanophotonic structures exhibit an enhanced signal-to-noise ratio. This enables us to infer the impact of acoustic phonons on the coherence dynamics of individual QDs. In particular, we report on the exciton zero phonon line (ZPL) dephasing close to the radiative limit in a single QD at 5 K, distinguishing it from its spectral wandering. Phonons are known to play a crucial role in the optical control of QDs. With increasing temperature, we observe an increasing impact of phonon-induced dephasing owing to the polaron formation and wave packet emission and a broadening of the homogeneous width, attributed to a quadratic coupling between carriers and acoustic phonons. Single QD microspectroscopy permits associating the measured dephasing during the polaron formation with the spectral shape of phonon-assisted transitions, here accessed via photoluminescence (PL). We thus go beyond the FWM experiments performed on QD ensembles, and we consistently explain the initial FWM decay, the ZPL fraction, and the line shape of the phonon-assisted PL using realistic QD geometry.

Received: September 20, 2016
Published: November 8, 2016

DOI: 10.1021/acsphotonics.6b00707
ACS Photonics 2016, 3, 2461−2466
naturally overcome in a single QD spectroscopy carried out here.

When performing FWM on single emitters on a simple planar structure, one is confronted with a huge ratio between the resonant background (typically 10^6-10^8 in the field and 10^4 when assisted by high-quality antireflection coatings) and the induced FWM. We have recently shown that, using suitable photonic nanostructures, one can boost the experimental sensitivity by bringing a large amount of the field amplitude to the vicinity of a QD. This enhances its interaction with the excitonic dipole, and hence reduces the required external power constituting the background. Furthermore, using nanophotonic devices, the FWM is efficiently collected by the detection optics, avoiding the total internal reflection affecting planar structures: assuming the gain in the collection efficiency η and an n-time enhancement of the local excitation intensity, the FWM amplitude is increased by $\sqrt{|\eta|^n}$, while maintaining the external power of exciting laser pulses E_{exc}.

In contrast to the previous work, the in situ EBL technique overcomes the issue of a low yield of optimally functioning devices, when patterning the sample containing randomly distributed QDs. Micro lenses processed with in situ EBL can be defined deterministically, spatially matched to QDs with about 30 nm alignment accuracy, and combined with frequency matching guaranteed by their broadband extraction enhancement spanning across a bandwidth of about 50 nm.

Micro lenses with a height of 0.35 and 2 μm diameter have been etched, as described in detail in ref 9 so as to create the etch backs of the excitonic dipole, and hence reduces the required external power constituting the background. Furthermore, using nanophotonic devices, the FWM is efficiently collected by the detection optics, avoiding the total internal reflection affecting planar structures: assuming the gain in the collection efficiency η and an n-time enhancement of the local excitation intensity, the FWM amplitude is increased by $\sqrt{|\eta|^n}$, while maintaining the external power of exciting laser pulses E_{exc}.

In the following, we study the dominating transition at 1360.4 meV labeled as \star in Figure 1a. This is to minimize the time required to perform the following FWM sequences and thus to avoid drifts. We observe no FWM at $\tau_{23} < 0$, showing that it stems from a charged exciton (trion) transition G_{X}^\star. To illustrate the enhanced in-coupling of $E_{1,2,3}$ offered by the micro lenses, in Figure 1b we present the FWM amplitude as a function of the pulse area $\theta_i \propto \sqrt{P_i}$, where P_i represents the intensity of E_{ij}, while P_f is fixed to 1.5 μW. The FWM amplitude displays a Rabi rotation following the expected $|\sin(\theta_i/2)|$ dependence with the first maximum at $\sqrt{P_i} = 0.75 \mu W^{1/2}$, corresponding to a pulse area of $\theta_i = \pi/2$. For higher intensities the FWM signal deviates from this behavior.

To measure the exciton density lifetime T_i, we employed the three-pulse FWM, where the signal is detected at $\Omega_2 + \Omega_3 = \Omega_1$, as a function of the second delay τ_{23}, displayed in Figure 2. From its exponential decay we determine the lifetime, $T_i = 347 \pm 12$ ps at $T = 5$ K. Such a rather short lifetime, compared to about 1 ns typically observed in these structures, is attributed to the selectivity of the FWM technique favoring particularly bright QDs with a high dipole moment and thus displaying fast population decay dynamics (less intense transitions in Figure 1a are expected to exhibit longer T_i). Additionally, the radiative lifetime is slightly shortened due to a Purcell effect of the micro lenses.

We now turn to the coherence dynamics as a function of temperature, to determine the impact of the phonon interaction on the exciton dephasing. The FWM transient, generated in our time-averaged and multipulse heterodyne experiment, is emitted after the arrival of E_{ij}. It is expected to exhibit a Gaussian echo, owing to a Gaussian spectral wandering of standard deviation σ, with the maximum at $t = \tau_{12}$ and temporal full width at half-maximum (fwhm) of $h \sqrt{8 \ln(2)/\sigma}$. To retrieve σ, we apply the pulse sequence depicted in Figure 3a; namely, we keep $\tau_{12} = 110$ ps fixed, while scanning the delay τ_{23}.
between E_2 and E_R. As such, the temporal sensitivity of the experiment $S(t)$ (green curve centered around E_R), originating from the finite spectral resolution of the spectrometer, is scanned through a broad FWM transient. A measurement of $S(t)$ is given in the Supporting Information Figure S1. The FWM integrated overlap between $S(t)$ and the echo plotted against t_{12} in Figure 3a indeed reproduces a Gaussian form, with the expected maximum at $t_{12} = 110$ ps and $\sigma = 8.2$ meV.

The measured inhomogeneous broadening (fwhm) $\sqrt{8 \ln(2)} \sigma$ is plotted versus temperature in the inset, where we find that it varies only marginally within the investigated temperature range.

To extract the ZPL dephasing rate $\gamma = 1/T_\phi$, we measure the time-integrated FWM amplitude as a function of t_{12}. For a fixed t_{2B}, the echo moves through $S(t)$ when varying t_{12}. This has previously been compensated by correcting the signal in the time domain by $S(t)$. However, for sufficiently large t_{12}, the echo is generated at times not accessible via $S(t)$, such that the signal cannot be retrieved via spectral interference. Here, this issue is overcome by simultaneously increasing t_{2B} toward positive times when increasing t_{12}, such that $S(t)$ probes the same time portion of the echo for every t_{12}, as depicted in Figure 3b. We initially set $t_{2B} = -70$ ps to ensure the time ordering between E_R and FWM, as required to perform spectral interferometry. The resulting FWM amplitude for several temperatures is presented in Figure 3b.

After the echo has developed for $t_{12} > 150$ ps, the decay of the signal is given by a single exponential, yielding the dephasing time T_ϕ. At low temperature the latter reaches $T_\phi \approx 1.3 T_{ph}$ close to the radiative limit ($T_\phi \approx 2 T_{ph}$), in spite of the significant inhomogeneous broadening. As shown in the inset, with increasing temperature, T_ϕ shortens rapidly consistently with previous measurements on ensembles and more recent complementary approaches employing photon-correlation techniques. The dominant term in the electron–phonon coupling in semiconductors is linear in the lattice displacement; that is, it is linear in the phonon creation and annihilation operators. For the present case of a QD excited at the lowest exciton transition, which represents a two-level system, this reduces to the independent boson model. This model, for the 3D acoustic phonon density of states, provides a band of phonon-assisted transitions and an unbroadened ZPL. The finite width of the ZPL and its temperature dependence are explained by phonon processes, which are of second order in the phonon operators that may originate from virtual transitions to higher excitonic states or phonon anharmonicities, which are not included in our model.

Figure 3b also reveals a pronounced decrease of the initial FWM amplitude at $t_{12} = 0$ with increasing temperature, such that the signal cannot be measured beyond $T = 35$ K. This decrease is attributed to the phonon-induced dephasing caused by the linear coupling to phonons, which dominates the short-time behavior of the signal. To analyze this effect, we measure the coherence dynamics on a picosecond time scale. The results are shown in Figure 4. The linear coupling describes the fact that the equilibrium positions of the lattice ions in the presence of an exciton are different from their values in the absence of an exciton; that is, a polaron is formed. When an exciton is abruptly generated by a femtosecond pulse, the formation of the polaron is accompanied by the emission of a phonon wave packet, traveling through the QD volume and then through the surrounding lattice with a sound velocity of about 5 nm/fs, as illustrated in Figure 4a. Once the wavepacket has left the QD, the phonon-assisted transitions have dephased and are not further contributing to the FWM. In the t_{12}-dependence of the FWM signal this manifests itself as a fast decay on a time scale of about 2 ps, clearly revealed in Figure 4b.

The final value after the initial drop FWM_{drop} is plotted as a function of temperature in Figure 4d. With increasing temperature the phonon coupling becomes more effective, and, accordingly, already at $T = 30$ K the coherence decays by a factor of 5 during the first 5 ps. This explains why the initial value of the signal seen in Figure 3b, where this initial decay is not resolved, rapidly decays with increasing temperatures.

Figure 2. (Top) Three-pulse sequence employed to measure the trion population dynamics. E_1 and E_2, having a delay of $t_{12} = 20$ ps, create the trion population and are jointly advanced in time, such that the FWM triggered by E_1 probes the population decay via the t_{2B} dependence. (Bottom) Measurement yielding the exciton lifetime $T_1 = 347 \pm 12$ ps. The noise level is indicated by open circles.

Figure 3. (a) (Top) Two-pulse sequence applied to probe the echo profile. (Bottom) Integrated FWM amplitude versus T_{ph} at 5 K revealing the Gaussian echo with a temporal width yielding σ; the theoretical fit is given by the solid line. Inset: Inhomogeneous broadening $\sqrt{8 \ln(2)} \sigma$ retrieved from the echo temporal width for different temperatures. (b) (Top) Two-pulse sequence applied to probe the trion dephasing. (Bottom) Measured FWM amplitude as a function of the delay t_{12}, yielding coherence dynamics for different temperatures; theoretical fits as solid lines. Inset: Dephasing time T_ϕ as a function of temperature.

DOI: 10.1021/acsphotonics.6b00707
ACS Photonics 2016, 3, 2461–2466
In the spectral domain, the initial decay is associated with a broad phonon background around the ZPL.\(^{29,30}\) This is seen in the PL spectra taken from the same QD, shown in Figure 4c. For low temperatures the background is asymmetric, reflecting the dominance of phonon emission processes over absorption processes, while at higher temperatures, when the thermal occupation of the involved phonons becomes much larger than one, the phonon background becomes symmetric.

For the theoretical modeling of the signals we employ the standard model of a QD coupled to acoustic phonons via the pure dephasing mechanism,\(^{10,11,29}\) which has been proven to successfully describe a variety of optical phenomena in single QDs and QD ensembles. For this model exact analytical formulas for linear and nonlinear optical signals after excitation with an arbitrary series of short laser pulses can be obtained within a generating function formalism.\(^{32,33}\) To be specific, we model the QD trion transition as a two-level system, which is simulated via deformation potential coupling to longitudinal acoustic (LA) phonons with a linear dispersion relation.\(^{10,34,35}\) To describe our experiment we obtain FWM drop \(\propto Z^2\) as well as the PL ratio \(\propto Z^2\). We approximate \(Z\) as the PL ratio between the measured ZPL and the entire PL, including the phonon background. In spite of finite spectral resolution and significant \(\sigma\) for all considered temperatures we obtain close agreement between FWM drop and \(Z^2\) independently estimated from PL, as shown in Figure 4d.

In summary, we have employed in situ EBL to deterministically embed QDs within microlenses, providing a convenient nanophotonic platform to perform coherent nonlinear spectroscopy of individual QDs. Microlenses structures enable efficient penetration across the dielectric boundary and tight focus of the light around the QD, which has been exploited to perform FWM microspectroscopy. We have measured and modeled the role of acoustic phonons on the coherence of single QD excitons, in particular corroborating signatures of single phonon wave packet emission in FWM and PL. Our fundamental studies, aiming to understand the complex interplay between charges and lattice vibrations, are at the heart of condensed matter optics. They are relevant for a large class of individual emitters in solids, such as epitaxial and colloidal QDs or color centers in diamond, or emerging QD-like emitters in transition-metal dichalcogenides.\(^{10,40}\) Our findings are also pertinent for ultrafast nonlinear nanophotonics, optomechanics, and phonon transport in nanostructured devices.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.6b00707.

Detailed discussion regarding simultaneous fitting of the initial FWM decay and phonon-assisted transitions in PL; temporal response function of the spectrometer, which was involved in the analysis of the data shown in Figure 3 (PDF)
ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES

