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ABSTRACT: Exploiting the potential of nanoscale devices for
logic processing requires the implementation of computing
functionalities departing from the conventional switching para-
digm. We report on the design and the experimental realization of
a probabilistic finite state machine in a single phosphorus donor
atom placed in a silicon matrix electrically addressed and probed
by scanning tunneling spectroscopy (STS). The single atom logic
unit simulates the flow of visitors in a maze whose topology is
determined by the dynamics of the electronic transport through
the states of the dopant. By considering the simplest case of a unique charge state for which three electronic states can be
resolved, we demonstrate an efficient solution of the following problem: in a maze of four connected rooms, what is the optimal
combination of door opening rates in order to maximize the time that visitors spend in one specific chamber? The
implementation takes advantage of the stochastic nature of electron tunneling, while the output remains the macroscopic current
whose reading can be realized with standard techniques and does not require single electron sensitivity.
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finite state machine, single atom transistor

The increasing ability to experimentally build and
manipulate systems at the nanoscale and to exploit

quantum effects has a tremendous impact on modern
technologies for information processing. Because of high
packing density and low-power dissipation, single electron
devices (SEDs) are recognized as promising building blocks for
innovative logic units.1−4 As devices approach the size of atoms,
quantum phenomena become important, changing the physical
model of how information is encoded and processed. To
maximize the impact of important technological advances on
the fabrication and the control of SEDs, new information-
processing principles going beyond the binary switching
paradigm of the traditional transistor logic need to be
introduced.5−10

In recent years, several types of analog and digital circuits
have been demonstrated on SEDs by exploiting their specific
single-charge transfer characteristics.4,11 These include multi-
valued logic gates,12,13 complex operations,14−17 and finite state
machines,18,19 in which the finite response time of the device is
used at advantage to store the information to be processed.

One of the major qualitative differences to be considered in
scaling down the size of logic devices is the emergence of the
inherent randomness that governs the behavior of physical
systems at the atomic scale. Randomness is associated with
both the variability of nanodevices in terms of structure and
properties20−23 and to the fundamental stochastic nature of
quantum processes like electron tunneling.
Within the traditional logic architecture, randomness is

mainly associated with noise and errors, thus being considered
as a drawback to avoid or to tolerate at best.24,25 However,
different information processing paradigms as the recently
proposed approximate computing,26 noise-based logic,27,28 but
also the more traditional theory of non deterministic
automata29 demonstrate that randomness can represent a
resource rather than a drawback, and it can be turned at
advantage for the efficient solution of complex logic problems.
Therefore, the physical implementation of these principles in

Received: December 12, 2016
Revised: February 7, 2017
Published: February 17, 2017

Letter

pubs.acs.org/NanoLett

© 2017 American Chemical Society 1846 DOI: 10.1021/acs.nanolett.6b05149
Nano Lett. 2017, 17, 1846−1852

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
B

A
SE

L
 o

n 
A

pr
il 

23
, 2

02
1 

at
 1

3:
39

:3
0 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/NanoLett
http://dx.doi.org/10.1021/acs.nanolett.6b05149


atomic scale devices is a promising avenue to develop
innovative architectures for logic processing. The random
behavior of single electrons has been used for high-quality
random-number generation30 and stochastic processing for
image-pattern matching.31−33

A finite state machine (FSM) is an abstract model of
computation defined by a set of internal states, its initial state,
and the rules governing the transitions among the states. If the
rules are given in terms of probabilities, then we are considering
a probabilistic FSM.29,34 In this paper we discuss the design and
the laboratory proof-of-concept implementation of a proba-
bilistic finite state machine at the atomic level by harnessing the
stochastic nature of the quantum mechanical tunneling of single
electrons in and out of a dopant atom in a silicon matrix. The
machine is a simulator of the flow through a maze whose
topology is dictated by the physical structure of the single
electron device. Key ingredients of the device are that the
dynamics of electron transfer involves simultaneously several
states which are coupled by relaxation processes. The SED
consists of a single phosphorus atom embedded in a silicon
crystal experimentally probed by low temperature scanning
tunneling spectroscopy (STS) at 5K. We demonstrate that the
single atom unit provides the solution of a flow optimization
problem. Specifically, electron dynamics simulates visitors
through a four-chamber maze. We will demonstrate how the
single atom machine can solve a specific problem like: what is
the optimal combination of gate opening rates in order to maximize
the time that visitors spend in one specif ic room of the maze?
Differently from other approaches relying on single-electron

manipulation and detection techniques,38 the output of our
logic implementation is deterministic and is given by the
reading of the macroscopic tunneling current. This reading can
be realized with standard techniques and does not require
single electron sensitivity.
Electronic Transport. The sample is fabricated in situ, that

is, in the same ultra high vacuum setup as the cryostat
containing the STM head. A highly n-doped silicon substrate is
annealed, creating a depleted region near the surface as well as a
flat surface. This surface is doped with phosphorus atoms
(density ∼2 × 1011 cm−2). The phosphorus doped layer is
overgrown epitaxially by 2.5 nm, i.e., ∼18 monolayers, of
intrinsic silicon. Finally the reconstructed 2 × 1 (001) Si surface
is passivated with hydrogen. This vertical structure allows for
resonant single electron transport thanks to the n-doped
substrate, which acts as an electron reservoir.35−37 Due to
quantum confinement, several charge and orbital states of the
donor system can be resolved by transport measurements on
the single atom device.24,35,36,39 In STS, changing the potential
U allows to select the donor states that enter the transport
window which is the energy range between the Fermi energy of
the n-doped Si substrate and the Fermi energy of the metallic
tip. All of the donor states in this window contribute to the
tunneling current. An image of the wave function of the
electron bound to the P donor is shown in Figure S1A of the
Supporting Information (SI) file.
The donor energy levels resolved in the experiment are

schematically represented with different colors in the energy
diagram in Figure 1A. The one-electron state corresponds to
the neutral dopant (D0) in its ground state, and it is denoted as
Se (in blue). The two-electron states are the ground state S0 (in
black) and two excited states S1 (in red) and S2 (in green) of
the charged dopant D−. Electrons tunnel from the Si sample to
the tip as pointed out by the arrows with the corresponding

tunneling rates: ΓS,i are the tunneling-in rate from the electron
reservoir to the i-th energy level of D−, Wi for i = 1, 2, 3 are
intra-atomic relaxation rates between electronic states and Γi,D
are the tunneling-out rates from the states of the donor to the
tip. Tunneling-in is the fastest process. Depending on the
voltage applied to the tip, electrons can tunnel-in (and tunnel-
out) to (from) one (S0), two (S0 and S1), or three (S0, S1, and
S2) dopant states.
Current−voltage curves show a typical stepwise increase in

current when a new state enters the transport window. The
height of the steps depends on both tunneling and relaxation
processes. Continuous lines in Figure 1B shows the current
measured as a function of the applied voltage, U, for six
different tip−sample distances ΔZ = Z0 + Z, with Z0 an offset
distance defined by the feedback parameters (U = −1.45 V and
I = 50 pA) and Z varying from 0 to 50 pm with increment of 10

Figure 1. (A) Schematic energy diagram of the single donor energy
levels resolved in the STS experiment: the neutral donor D0 ground
state Se (blue line), the charged donor D

− ground state S0 (black line),
and excited states S1 and S2 (red and green lines). U is the applied bias
voltage, and ΔZ is the tip−sample distance; VB denotes the valence
band in Si, and filled states are shown in gray. The bias window is
found between the Fermi energies of the sample Ef,Si and the tip Ef,W.
Electrons tunnel from the sample to the tip. (B) Current vs voltage
plot corresponding to six values of the tip−sample distance ΔZ = Z0 +
Z, with Z0 an arbitrary distance and Z varying from 0 to 50 pm with
increment of 10 pm. Experimental data (color lines, black: Z = 0 pm,
green: Z = 50 pm) and prediction of the kinetic model (dashed black
lines). The parameters used to fit the experimental data are given in SI.
(C) Corresponding differential conductance dI/dU versus the applied
voltage U.
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pm; panel C shows the corresponding conductance (dI/dU).
More details on the experiment can be found in the SI file. The
first current step relates to the two-electron (D−) ground state,
S0, of the dopant, entering the transport window at U = −1.03
V. The two following steps correspond to excited states of the
two-electron charge state, S1 and S2. At short tip−sample
distances the conductance plot shows an additional peak at
higher energy whose physical origin is difficult to assess and
therefore will not be considered further in our analysis.
The current always increases when a new state enters the

transport window. Since we are looking at the D0/D− transition
in a single electron tunneling regime, the next electron can
tunnel-in only when the previous one has tunnelled-out. If the
electron enters the dopant in an excited state, it can tunnel-out
from the same state or it can relax to an electronic state of
lower energy. Let us introduce the population vector P =
[P0P1P2Pe] that represents the probability of the possible
dopant states. Limiting our attention to the D0/D− transition
implies Pe = 1 − P0 − P1 − P2. The tunneling current can be
calculated on the basis of the tunneling-out rates and the
populations of the dopant states. A master equation governs the
time evolution of the populations, dP/dt = K·P, where an
element of the kinetic matrix Kαβ is the transition rate from the
state α to the state β that depends on the applied voltage and
the tip−sample distance through the tunneling rates ΓS,i and
Γi,D (see eqs 1−3) of the SI for the explicit form of the rates
and the kinetic matrix). The measured current is obtained from
the stationary solution of the evolution equation, Pst, that are
the steady-state populations of the dopant at a given bias
voltage and tip distance

= Γ + Γ + ΓI e P P P( )0,D 0
st

1,D 1
st

2,D 2
st

(1)

where e is the elementary charge and the tunneling out rates
Γi,D depend on the tip−sample distance (see Figure S3 in the
SI). Figure 1B−C reports the calculated current I and
conductance dI/dU profiles (dashed lines) that are in excellent
agreement with the experimental results (full lines).
By using the master equation, the tunneling of electrons

through the dopant is described in terms of a continuous time
Markovian dynamics over the discrete set of states S = {S0, S1,
S2, Se}. This assumption is justified in the regime of weak
coupling between the molecule and the electrodes, and it
assumes that the waiting times, Ti = τi − τi−1, between
consecutive events are generally large compared to the duration
of each charge transfer process. The dynamics is Markovian
because the separation of time scales implies that the
probability of the system to move to a next state Sn+1 depends
only on the current state Sn and not on the previous dynamical
history of the system. If we could follow the microscopic time
evolution of the SED starting from the state of a neutral
impurity (the D0 charge state denoted as Se), we would see an
electron jumping at a random time from the source electrode to
one of the accessible states of the dopant, for example S1.
Waiting another random time, that electron would either
tunnel out to the drain, contributing to the current and leaving
the dopant in the Se state, or relax to the ground state S0. This
hold-and-jump dynamics is completely defined by the rate matrix
K. The Markov chain implemented by the hold and jump
process of electrons through the states of the dopant
implements a probabilistic finite state machine.34,40 The device
has several internal states, and it makes transitions between
them according to a codified set of probabilities. The state-
transition diagram of the single atom machine is drawn in

Figure 2A where the states of the machine are defined by the
physical states of the dopant (S0, S1, S2, Se) and their

connections are labeled with the corresponding transition rates.
The next reachable states and the probability of transit to each
state depend only on the current state of the machine. When
the device is in the state Si, the successor state is chosen with
probability p(Sj|Si)
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The machine is autonomous since it evolves following a set
of rules for transitioning between states and producing the
output without the need for an input control signal. The
network can be mapped on a computational problem; it
simulates the flow of visitors in a maze of four chambers
connected by gates represented in Figure 2B. The gates are
directed, so that gate (i, j) controls the transit from chamber i
to j, while flow from j to i is controlled by gate (j, i). Each gate
opens independently of all others at random times, and
whenever a gate opens anyone waiting to pass will immediately
take the opportunity to do so. Over a period [0, t], the gate (i,
j) will open at times according to a Poisson process with
parameter Kij. Someone moving in this maze, presently waiting
in chamber i, will move next to the chamber whose gate from i
opens first. The stochastic dynamics associated with the D0/D−

transition of the SED simulates the motion through the
chambers, where a single visitor at a time is admitted into the
maze. The stationary populations of the single dopant device
represent the long run proportion of time that visitors spent in
each chamber. By changing the bias voltage U and the tip−
sample distance Z we externally control the opening rates of the
gates connecting Se with S0, S1, and S2 (black and red arrows in
Figure 2B), and the stationary populations generated by the
device change accordingly. The characteristics of the internal
gates (blue arrows in Figure 2) depend on the physics of the

Figure 2. (A) Transition diagram of the probabilistic finite state
machine corresponding to the Markov process of the electronic
transport. (B) Maze simulated by the probabilistic finite state machine
whose transition diagram is reported in panel A.
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specific dopant atom and its interaction with the environment.
The microscopic output of the single atom device is generated
each time the device makes a transition from the internal states
corresponding to D− (S0, S1, S2) to the neutral state D0 (Se)
delivering an electron that tunnels to the drain. However, the
measurement of a macroscopic current requires a time scale
that is longer than the system evolution. Therefore, the
macroscopic output of the machine is the experimentally
measured tunneling current which depends on the stationary
populations of the states according to eq 1.
Relaxation. In the single dopant atom the transport

dynamics depends on the competition between the tunneling-
out from the excited states and the internal relaxation. This
dependence is reflected in the relative amplitude of the current
steps and of the conductance peaks measured at different
voltages. In Figure 3A the amplitude of the current steps is
reported as a function of the tip−sample distance. If the rates of
tunneling out from the excited states are much faster than the
relaxation rates to the ground state, the peaks at more negative
bias are more intense than the peak corresponding to the
transport through the ground state only. This condition is
realized by setting a short distance between the tip and the

sample (small Z). Conversely, if the relaxation to the ground
state prevails on the tunneling-out, the conductance peak of the
ground state is relatively more intense than the other peaks as is
the case at larger distance between the tip and the sample (large
Z). The difference in the observed current−voltage profiles is a
consequence of the different dynamics underlying the
electronic transport, which also determines different stationary
populations on the states of the system.
Figures 3B reports the stationary populations Pst =

[P0
stP1

stP2
stPe

st] obtained as a long time solution of the kinetic
equation as a function of the bias potential for two different
sample−tip distances, 0 and 50 pm. At larger tip distances the
stationary population of the ground state is increased by the
transfer of population from the excited states due to relaxation.
In order to compare the current output at different tip−sample
distances, we introduce the current scaled by the slowest
tunneling rate, IN, that characterizes the time evolution of the
system at a given tip−sample distance

= Γ = + +I I e P c P c P/( )N 0,D 0
st

1 1
st

2 2
st

(3)

where c1 = Γ1,D/Γ0,D and c2 = Γ2,D/Γ0,D. Once the excited states
are within the transport window the rates of tunneling out and
their ratios are practically independent of the applied voltage U,
we estimate c1 = 5 and c2 = 10 by fitting the experimental data
of Figure 1; see SI. The corresponding differential conductance
is written as

= + +
I
U

P
U

c
P
U

c
P
U

d
d

d
d

d
d

d
d

N 0
st

1
1
st

2
2
st

(4)

Figure 3C shows the normalized conductance, eq 4, for two
different tip−sample distances (0 and 50 pm). For the smaller
tip−sample distance (solid line), when the tunneling out is
faster than the internal relaxation, the peaks corresponding to
the excited states are more intense than the peak of the ground
state. For larger tip−sample distance (dashed line) the
tunneling out slows down and competes with the relaxation
process; consequently the relative intensity of the peaks of the
excited states decreases.

The Logic. The different hold-and-jumps dynamics of
electrons underpinning the measured current at different bias
voltage and tip distance correspond, on the logical plane, to
different finite state machines. Bearing in mind that each
machine simulates the flow through a maze of the type shown
in Figure 2B let us formulate the following logic problem:
Given the maze of Figure 2B, assume we can control the

rates at which the main gates (black and red doors in Figure
2B) open. However, we ignore the opening rates of the internal
doors (blue doors connecting S0, S1, S2). The task is to find the
optimal combination of rates for the opening of the main gates
in order to maximize the time that visitors spend in chamber 1,
independently on the time that visitors spend in the other
chambers.
Notice that the solution of this problem requires a significant

amount of programming and computing effort with conven-
tional CMOS architectures. One should first analyze the
dynamics of visitors in the maze to extract the opening rates of
the internal gates and subsequently optimize the rates of the
main gates to achieve the target property. However, by using
the single atom probabilistic machine, we can implement an
alternative and efficient way to find the solution directly at the
hardware level.

Figure 3. (A) Current step amplitudes as a function of the tip−sample
distance variation Z. (B) Stationary populations of S0 (black), S1
(red), S2 (green), and Se (blue) for small (0 pm, solid lines) and large
(50 pm, dashed lines) tip−sample distances and (C) the
corresponding normalized relative conductance. The parameters of
the kinetic model are the same as in Figure 1.
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Each single atom device probed at a given bias voltage and
tip−sample distance simulates the flow of visitors in the maze
for a given set of opening rates. By scanning the bias voltage U
and by changing the tip−sample distance Z, we control the
relative magnitude of the opening rates of the main gates.
Therefore, in an experiment where the transport current is
measured as a function of U and Z, we test a family of machines
implementing mazes with different opening rates of the main
gates. Solving the problem given above amounts to finding the
value of the voltage U and of the tip distance Z that maximize
the stationary population of the state S1, the solution will be
denoted as (U*, Z*). In the following we describe how to
achieve this goal by simple manipulations of the experimental
measurement.
The procedure is illustrated in Figure 4 with the same model

used to reproduce the experimental measurement of Figure 1.
Figure 4A and B shows the calculated and experimental 2D
maps, respectively, of the normalized differential conductance
eq 4 as a function of U and Z. The first step is to identify the
three threshold values of voltage corresponding to the entering
of a new state in the transport window. These values, that we
call U1, U2, and U3 (starting from the less negative), are
identified by the three peaks of the differential conductance for
each tip−sample distance Z; see also Figure 1C. The maximum
of P1 must be located between U2 and U3, in the range of
voltage where S1 is in the transport window and S2 did not fully
enter yet. In order to determine the optimal value U*(Z) we
look for the voltage corresponding to the minimum value of the
normalized differential conductance in the domain [U2,U3]

* = = +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

I
U

U
I
U

P
U

c
P
U

d
d

( ) min
d
d

min
d
d

d
dU U U U

N

[ 2, 3]

N

[ 2, 3]

0
st

1
1
st

(5)

The location of the points U*(Z) that satisfy eq 5 is
identified by a white line in Figure 4A. U*(Z) offers a good
estimation of the maximum value of P1

st for each tip−sample
distance as long as c1 > 1 (in our model c1 = 5). The next step is
to look at the value of the normalized current measured at
U*(Z) as a function of tip−sample distance Z. We then select
Z* by locating the maximum of the current curve, as it is shown
in Figure 4C. This simple analysis of the macroscopic output of
the experiment gives a good estimation of the control
parameters that maximize the stationary population of P1,
meaning that the corresponding tunneling rates are the opening
rates that solve the given problem. In other words, the
tunneling rates at (U*, Z*) = (−1.058 V, 0.8 pm) are the
opening rates of the main gates that maximize the time that
visitors spend in chamber 1 of the maze, as it is confirmed in
Figure 4D. Their numerical values can be extracted on the basis
of the dependence of the tunneling rates on the bias voltage
and tip distance (as detailed in the SI).
Each single atom device implements a finite state machine

whose states and connectivity are compatible with the geometry
and transport characteristics of the specific device. Due to the
variability of SEDs, each device has its own transport
properties. If they are used as switching components in
traditional logic units such variability is considered as serious
drawback. In our approach, each single atom is a distinct logic
unit, so that the same variability becomes richness. In fact,
probing another device is equivalent to simulate another set of
mazes with different properties. We can then compare their
performances establishing which maze keeps the visitor in
chamber 1 for a longer time. In Figure 5 we show the

characterization of a device that differs from the experimental
model by two aspects: the tunneling barrier is less asymmetric
(the ratio of the tunneling-in and the tunneling-out is 4 rather

Figure 4. (A) Map of the normalized conductance as a function of the
applied potential U and tip distance Z. The white line gives the value
of U*(Z) minimizing the relative conductance in the domain [U2,U3].
(B) Experimental map of the normalized conductance for the six
values of tip−sample distance investigated in the experiment. (C)
Normalized current at the bias voltage U*(Z) as a function of Z. The
maximum defines Z*. (D) Contour plots of the stationary population
of state S1 as a function of the applied potential U and tip distance
parameter Z. The red star identifies (U*, Z*) representing the solution
of the logic problem obtained by applying the procedure discussed in
the text. (Color scale: low to high values follows blue to yellow
gradient.)
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than 50), and the tunneling rates of the first excited state are
higher (eight times the rates of the ground state rather than
five). By performing the same analysis of the macroscopic
output we identify the combination (U*, Z*) that maximizes
the population in chamber 1. As shown in Figure 5B this device
produces a normalized current at (U*, Z*) that is higher than
the current of the device studied in Figure 4. Correspondingly,
we also find that the maximum possible population of state 1 is
higher (0.43 against 0.37 of the experimental model device).
We can then conclude that the maze simulated by this second
device outperforms the maze implemented by the experimental
model device with respect to the condition specified by the
problem at hand.
In summary we demonstrated that the stochastic nature of

single electron tunneling in a SED can be used at advantage
enabling the physical realization of a probabilistic finite state
machine29,34 used to solve a complex logic problem directly at

the hardware level. The number and the connectivity of the
internal states of the machine, physically realized by the
accessible atomic states, determine the topology of the maze
that is simulated. Therefore, progress in precise single atom
placement allowing the engineering of “artificial molecules”
embedded in a solid state matrix36,37,41 will open the way to the
fabrication of single-molecule logic units capable of simulating
and solving networks of increasing complexity. Within our
approach, logic functionalities emerge from the physical
dynamical response of the device without the need of
decomposing neither the problem nor the solution in
elementary logic gates. Since the solution of the optimization
problem depends on the relative rates of electron transfer and
interstate relaxation rate at the hardware level, a wide class of
practical problems can be solved in devices for which these
parameters can be estimated. Here, we discussed the proof of
principle by considering the simplest case of several electronic
states of a unique charge state of a single dopant atom within a
two-terminal junction. However, the same concepts can be
easily applied to systems of complex and customizable
topology, including multiple charge states and gated by a
third electrode as in a standard transistor geometry. This work
suggests that atomic scale devices that exploit stochastic effects
to produce low-power and specialized logic units could be an
important part of future electronic technology.
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