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Valley interference and spin exchange at the
atomic scale in silicon
B. Voisin 1,6✉, J. Bocquel 1,6, A. Tankasala2,6, M. Usman 3,4,6, J. Salfi1, R. Rahman2,5, M. Y. Simmons1,

L. C. L. Hollenberg 3 & S. Rogge 1✉

Tunneling is a fundamental quantum process with no classical equivalent, which can compete

with Coulomb interactions to give rise to complex phenomena. Phosphorus dopants in silicon

can be placed with atomic precision to address the different regimes arising from this

competition. However, they exploit wavefunctions relying on crystal band symmetries, which

tunneling interactions are inherently sensitive to. Here we directly image lattice-aperiodic

valley interference between coupled atoms in silicon using scanning tunneling microscopy.

Our atomistic analysis unveils the role of envelope anisotropy, valley interference and dopant

placement on the Heisenberg spin exchange interaction. We find that the exchange can

become immune to valley interference by engineering in-plane dopant placement along

specific crystallographic directions. A vacuum-like behaviour is recovered, where the

exchange is maximised to the overlap between the donor orbitals, and pair-to-pair variations

limited to a factor of less than 10 considering the accuracy in dopant positioning. This

robustness remains over a large range of distances, from the strongly Coulomb interacting

regime relevant for high-fidelity quantum computation to strongly coupled donor arrays of

interest for quantum simulation in silicon.
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Quantum tunnelling is a widespread phenomena, where a
wavefunction leaking as an evanescent mode can be
transmitted through a finite barrier. This simple

description applies to many natural systems, accounting for
instance for molecular conformation or radioactivity1. In solid-
state systems, nanoscale structures can use tunnelling effects in
novel functionalities developed for CMOS electronics2 as well as
for quantum devices, where electrons can be confined and
manipulated in quantum information schemes3–6.

For many-body quantum devices, the tunnel interaction t,
which can couple the different sites, usually competes with the
on-site interaction U (also called the charging energy). This
competition is core to the so-called Fermi-Hubbard model. For
fermions, this model needs to be discussed together with the Pauli
exclusion principle, which forbids to form a state with two par-
allel spins on the same orbital7,8. When the Coulomb interactions
U dominate over t, the system maps to the Heisenberg model
with an exchange interaction which directly links to the tunnel
coupling through the relationship J= 4t2/U. This Heisenberg
limit is favourable for quantum simulations of magnetism4,9 and
for fast quantum computation schemes6,10,11. The mapping to the
Heisenberg model breaks down when t approaches U and when
the system is brought away from half-filling, to give rise to a rich
phase diagram with links to exotic superconductivity and spin
liquids7,8,12–14.

Phosphorus donor-bound spins in silicon are highly suitable to
explore and harness these different regimes. Donors can be placed
at nanometre scale distances from each other in the silicon
crystal15–19, where direct tunnelling interactions dominate over
dipolar coupling. Notably, 2D donor arrays (see Fig. 1a) can be
fabricated using scanning tunnelling lithography5,18, where the
atoms can be placed anywhere in a single atomic plane. These
atomically precise devices can be engineered to achieve both the
Heisenberg limit6 or the non-perturbative tunnelling interactions

regime at short inter-dopant distances7, with ratios U/t possibly
lower than 10.

The direct relationship between tunnel and exchange coupling
can be understood conceptually as they are both based on
wavefunction overlap. Hence, they are sensitive to the same
physical effects, and these atomic-scale wavefunctions must be
precisely investigated to warrant the development of applications
which requires the exchange interaction to be well controlled. In
contrast to atoms in the vacuum8, donor-bound electrons in
silicon acquire properties of the crystal band structure. In parti-
cular, silicon is an indirect band gap semiconductor20–22, with the
presence of an anisotropic mass and a valley degree of
freedom23,24. More precisely, the finite valley momentum is
aperiodic with the silicon lattice, a feature which can also be
found in 2D material structures25–27. This aperiodicity causes
interference between oscillating valley states from different
donors (see Fig. 1b). Consequently, the tunnel and exchange
interactions can vary strongly with small lattice site variations in
the donor positions, as they induce changes in both valley
interference condition and envelope overlap. Such reduction of
the exchange energy compared to hydrogenic systems has been
observed in ensemble work28,29, but a direct link to valley
interference cannot be accessed from any ensemble measurement.
Understanding the impact of valley interference at the atomic
scale, i.e. at the wavefunction level, has become essential in the
context of quantum computing10,30, but the predicted valley-
induced exchange variations range within five orders of
magnitude10,30–37, which makes it challenging to design scalable
donor qubit architectures with uniform couplings. The sensitivity
of both tunnel and exchange interactions to the precise donor
positions makes it essential to verify experimentally the presence
and magnitude of valley interference. This is challenging to
achieve in transport experiments6,15–19, which are unable to
discriminate between valley interference and envelope effects.
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Fig. 1 Direct measurement of coupled donors in silicon. a Schematics of a 2D-array of single electron spins bound to phosphorus atoms in 28Si, where
two-qubit operations can occur between nearest neighbours, i.e. red/green spin pairs, using the Heisenberg exchange interaction. b (Top) A donor’s
electron wavefunction oscillates at the valley wavevector kμ ~ 0.81k0, with k0= 2π/a0. Silicon presents a mass anisotropy which results in the donor orbital
envelope to be anisotropic as well, as highlighted by their ovoidal shape in Fourier space. (Bottom) Tunnel and exchange interactions result from the
overlap between the two donor orbitals, represented by the yellow overlap area, which is sensitive to both envelope decay and valley interference between
donors. c Experimental real-space map of the quasi-particle wave function of an exchange-coupled donor pair’s two-electron neutral state. Sequential
transport occurs vertically from a highly doped Si:As substrate, which acts as an electron reservoir, to a donor pair found in a low-doped phosphorus δ-
layer, and then to the STM tip above (not shown). The red and green dots represent the surface projections of the pinpointed lattice positions of the two
donors. The two donors are separated by 6:5a0

ffiffiffi
2

p
along [110] (perpendicular to the Si dimers, a0 is the silicon lattice constant), 0:5a0

ffiffiffi
2

p
=2 (parallel to the

Si dimers) along ½1�10�, and by 1.25 a0 in depth. The grey dots represent the silicon atom positions of the 2 × 1 reconstructed surface. The black dashed
contour indicates the experimentally measured area.
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Here, we instead implement a real-space probe into coupled
donor wavefunctions. This experimental approach leads us to
detail the precise role of envelope anisotropy, crystal symmetries,
and dopant placement accuracy to reconcile the apparent dis-
parity in the exchange variations predictions. In particular, we
consider the dopant placement precision which can be ultimately
achieved by scanning probe lithography5. We find that exchange
variations from pair to pair can be minimised to within an order
of magnitude and investigate the potential of this strategy in view
of quantum processing using exchange-based donor arrays.

Results
Valley interference and anisotropic envelope in exchange-
coupled donors. In order to directly probe valley interference
between donors, we have designed and fabricated samples to host
isolated donor pairs embedded beneath a silicon surface (see
Methods). Spatially resolved transport is performed at 4 K
between a heavily doped reservoir and the tip of a scanning
tunnelling microscope (STM). An STM image of a donor pair is
shown in Fig. 1c. It is taken at a tip-sample bias of Vb=−0.95 V,
close to the zero electric-field condition where the tip does not
influence the two-electron neutral molecular state7,38. More
specifically, the spatially resolved tunnelling current to the tip
represents a quasi-particle wavefunction (QPWF), corresponding
to the sum of the transitions from the two-electron ground state
to energetically available one-electron states. Hence, the STM
image contains two-electron wavefunction information including
interference between the two donor wavefunctions7,38,39. More-
over, the exact site positions of the two donor ions (P1 and P2,
respectively green and red dot) are determined out of different
possible position configurations using a comprehensive image
symmetry recognition protocol40,41, which notably include the tip
orbital, as the oscillating pattern observed for each donor quali-
tatively varies depending on their position in the silicon lattice. In
particular, donor P1 is located in the z= 5.5a0 atomic plane, in-
between two dimer rows, and presents a minima at the surface
projection of the ion location. The image corresponding to donor
P1 presents two rows of 2 × 3 local maxima running along the
½1�10� crystallographic axis, on each side of the ion location. On
the contrary, donor P2 is found to be in the z= 6.75 a0 atomic
plane, and sits directly underneath the middle of a dimer row of
the 2 × 1 reconstructed surface. Donor P2 presents a maximum
(instead of a minimum for P1) at this location, part of a row of
three local maxima running along this dimer.

The reduced symmetries of the STM image compared to a
spherical 1s-orbital for atoms in the vacuum, and the alignment
of its local maxima with the dimer rows at the silicon surface
clearly indicate the presence of both lattice and valley frequencies
in the donor wavefunctions. These frequencies can be probed in
more detail in Fourier space42. A contour mask was first applied
around the two donors to avoid the presence of spurious
frequencies in the fast Fourier transform (FFT) from the image
boundaries. The first Brillouin zone of the resulting Fourier
transform is shown in Fig. 2a. The different Fourier components
which can be observed correspond to scattering processes
between valley and lattice wavevectors42. In particular, the
frequencies of the silicon 2 × 1 surface reconstruction can be
identified at (kx, ky)= { ±1, ±1}k0 (with k0= 2π/a0), correspond-
ing to the a0

ffiffiffi
2

p
periodicity between the dimer rows, i.e. along

[110], as well (kx, ky)= ±(0.5, 0.5)k0 corresponding to the a0
ffiffiffi
2

p
=2

periodicity along [110] between each pair of silicon atoms
forming a dimer. The components of interest for the valley
interference analysis are found around ±(0.81, 0)k0 and
±(0, 0.81)k0. They relate to valley scattering processes, respec-
tively between the ±x and ±z-valleys, and the ±y and ±z-valleys.

It is important to note that these valley processes can be
completely dissociated from any lattice frequency-associated
process, since they rely on the valley momentum only. Moreover,
the Fourier transform presents clear diagonal slices (blue dashed
lines), which match the geometric destructive interference
condition between the two donors. Their position with respect
to the valley signal gives a hint to whether the valley states are in
or out-of-phase, if their corresponding signal in the FFT falls in-
between or on one these diagonal stripes, respectively (see
Supplementary Note 1). In order to focus on these valley
interference processes, a Gaussian filter was applied to the FFT
around the valley signal (see green ellipsoids in Fig. 2a) and
transformed back to real space. The left image in Fig. 2b shows
the x-component result of this filtering: a set of vertical stripes,
corresponding to the valley oscillations in the x-direction can be
observed for each donor, with the valley phase pinned at each
donor site. For this particular inter-donor distance, the x-valleys
look in-phase as the vertical stripes run continuously from one
donor to the other. The same filtering procedure was performed
for the y-valley real-space image. In contrast to the x-valley, the y-
valleys look out of phase with a clear break in the continuity of
the horizontal stripes in-between the donors and a succession of
phase slips. In order to be more quantitative, these valley images
can be fitted to the sum of two 2D envelopes oscillating at the
same frequency. The fitted 2D images are shown in Fig. 2c. They
give the same visual impression of the fits as that of the
experimental images. Furthermore, the valley phase differences
can be extracted from the fits, yielding kx= (0.8077 ± 0.0001)*k0,
ky= (0.8039 ± 0.0001)*k0, Δϕx= (0.050 ± 0.001)*2π and Δϕy=
(0.434 ± 0.001)*2π, which confirms that the x-valleys are in-phase
and that the y-valleys are out-of-phase. We show in Fig. 2d line
cuts through the two ions of each valley image, experimental ones
and their respective fit, to notably highlight the clear reduction of
the y-valley signal in-between the two donors compared to the
sum of the envelopes of the two donors due to the destructive
interference.

The procedure developed here establishes the existence of a
geometric valley phase interference between donors, which
depends on their relative position. This phase interference is by
construction included in the Heitler-London regime of vanishing
tunnel coupling, as the two electrons fully localise on the donors7.
In this regime, the STM image becomes equivalent to the sum of
the charge distributions of two independent single donors (see
Fig. 2d and Supplementary Note 1). However, in our case the
inter-donor distance is around 5 nm, at which some deviation
from the Heitler-London regime is expected33,34, as highlighted
by the finite overlap between the donor envelopes in Fig. 2b and
d. To verify the deviation from the Heitler-London limit and
whether the phase is robust is this regime where the electrons
start to delocalise between the two donors, we have computed the
STM image based on a calculated two-electron wavefunction
which includes electron interactions. This theoretical image,
shown in Fig. 3a, is computed using state-of-the-art atomistic
modelling capabilities summarised here and detailed in the
Methods section. First, starting from the donor pinpointed
positions, the one-electron states are obtained by atomistic tight-
binding (TB) modelling using a multi-million atom grid. The
two-electron states are then obtained using a full configuration
interaction (FCI)36,43 method based on 1e-molecular orbitals.
Interface, reservoir and electric field effects are taken into account
throughout this modelling framework to ensure an accurate
description of the coupled donors spectrum. We found a two-
electron ground state composed at 67% of the bonding A1–A1

ground state with an exchange energy of 1.5 meV (see
Supplementary Note 1). As a reference, the Heitler-London limit
results in an equal 50% contribution of both A1–A1 bonding and
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anti-bonding molecular orbitals since the tunnel coupling
vanishes. The theoretical STM image is then obtained by
computing the QPWF including STM transport and tip orbital
effect40 and is shown in Fig. 3a. We have applied the same
filtering procedure to obtain the FFT of this image, shown in
Fig. 3b. It shows very similar features compared to the
experimental FFT, with notably the presence of valley compo-
nents at ±0.81k0 and the diagonal slices which indicate the
interference. The resulting x- and y-valley images are shown in
Fig. 3c and d, respectively. The valley phases are also pinned to
the donor ions and the valley phase differences can be obtained
using an identical fitting procedure, giving ΔϕFCIx ¼
ð0:025 ± 0:001Þ�2π and ΔϕFCIy ¼ ð0:430 ± 0:001Þ�2π, in good
agreement with the experimental data as the fitted images in
Fig. 3e and f show.

We present in Fig. 4a the results obtained using the same
protocol performed on another pair. The two donors are
separated by 13a0

ffiffiffi
2

p
=2 along [110] and 9:25a0

ffiffiffi
2

p
along ½1�10�,

i.e. a larger inter-donor distance and a different orientation than
the first pair. Its FFT (Fig. 4b) presents the same characteristics as
for pair #1, with a clear valleys signal around 0.81k0 and the
presence of diagonal stripes highlighting the geometric inter-
ference between the donors. The real-space images resulting from
Fourier filtering around the valley signals and their respective fit

are shown in Fig. 4c–f. We note the presence of phase distortions
in the x-valley image which are different from a succession of
phase slips expected for a destructive valley interference pattern.
These isolated features are attributed to an instability of the
tunnelling tip during the measurement (see Supplementary
Note 1), and, importantly, they do not perturb the region of
interest for the valley interference and the exchange interaction,
i.e. the central region between the two donors. A theoretical STM
image was also obtained and analysed, based on a Heitler-London
calculation of the two-electron wavefunction as this pair shown
an inter-donor distance >7 nm and therefore falls in this regime.
We summarise the phase differences obtained for each pair in
Fig. 5, both experimental and theoretical, to notably highlight the
matching of the fitted valley phases to the geometrical phase
difference expected from the exact lattice pinpointing of each
donor atom. Full details on the filtering procedure, as well as on
the robustness of the extracted valley phase differences against the
dimension of the Fourier space filter, can be found in the
Supplementary Note 1.

The fitting procedure we have developed here also allows to
investigate the envelope part of the donor valley states, whose
characteristic extent are represented by the red dashed lines in
Figs. 2–4, for each donor and each valley. Contrarily to a simple
1s-orbital with a spherical symmetry, the envelopes are here
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Fig. 2 Visualising and quantifying valley interference between coupled donors. Pair #1. a 2D FFT of the STM image, centred on the first Brillouin zone
(solid white lines). The white dots are located at {±k0, ±k0}. The FFT shows a clear valley signal around kμ ~ 0.81k0 evidenced by the green ellipsoids. The
FFT also shows diagonal slices (blue dotted lines), cutting through the valley components of the FFT, which evidence the geometric interference between
the two donors. b Real-space images of the valley interference, obtained after inverse Fourier transform of the FFT filtered around kx ~ 0.81k0 for the x-
valley interference (left) or ky ~ 0.81k0 for the y-valley interference (right). The white crosses indicate the donor positions. The x-valleys look in-phase with
the vertical stripes running continuously from one donor to the other. The y-valleys look out-of-phase with a clear discontinuity in the oscillatory valley
pattern between the two donors. c 2D fits of the valley images, from which the position of the valley maxima and of the valley frequency, and hence the
valley phase differences Δϕx and Δϕy, can be obtained. The red dashed ellipsoids correspond to the donor envelope part of the fits, which highlights their
anisotropy. d Line cuts taken through the ion–ion direction of both valley images (red lines) and their fit (black lines), for the x-valleys (left) and the y-
valleys (right). The grey dashed lines represent the envelope part of the fits only. The x-valleys are in-phase, which results in the maxima of valley signal to
always reach the envelop part. On the contrary, the y-valleys are out-of-phase and the grey arrows in-between the two donors highlight the clear reduction
of the valley signal compared to the envelope part as a result of the destructive interference.
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clearly ellipsoidal. This feature originates from the silicon mass
anisotropy, which results in each valley orbital to present a small
envelop radius b along their longitudinal direction and a large
radius a along the two transverse directions23,42 (see Fig. 6a). The
values b/a obtained across all experimental and theoretical image
fits average to 0.52, which is in good agreement with single
donors measurements42 (see Supplementary Note 1) and with
other predictions30,35,44. Our experimental results demonstrate
the existence of a valley interference effect between donor pairs
which present a finite overlap between their wavefunctions. It is
noteworthy that the tunnel current probes the extent of the
wavefunction at the silicon/vacuum interface. In our case, this
means that the tunnelling tip probes the overlap between the tails
of sub-surface donor wavefunctions, which is precisely the
essence of what the tunnel and exchange interactions rely upon.

Exchange variations analysis for atomically precise donor qubit
devices. Valley interference between neighbouring donors impact
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fitting procedure as for the experimental data, and from which Δϕx and the
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experiment, the x-valleys are found to be in-phase. e, f Same for the y-
valleys, which like for the experiment are out-of-phase.
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the exchange interaction in a non-trivial manner. To detail this
effect, we have developed a model based on an effective mass
Heitler-London formalism30. Importantly, this phenomenological
effective mass (P-EM) model strongly relates to the valley phase
differences Δϕμ and to the ratio b/a of the donor envelope which
have been experimentally investigated above. The P-EM model
decomposes the exchange interaction into a sum of oscillating
terms, weighted according to six possible envelope terms jμν, as
follows (see Supplementary Note 3):

Jð R!Þ ¼
X

μ;ν¼± fx;y;zg
jμνð R

!
; a; bÞ cosðΔϕμð R

!Þ±Δϕνð R
!ÞÞ; ð1Þ

where μ (respectively ν) denotes the valley in which the first
(respectively second) electron is exchanged between the two
donors. Qualitatively, each weight jμν is a four-term product,

between two envelope orbitals Fμ separated by R
!
, and two

envelope orbitals Fν, likewise also separated by R
!
. The 1s-like

nature of the donor orbitals causes these envelope terms jμν to
vary exponentially with the inter-donor distance, with a
characteristic length scale related to the major envelope radius

a. As kμ is close to k0, the valley phase differences evolve rapidly
with site-to-site changes in the lattice position of the donors,
which can strongly modulate the exchange. Both envelope and
valley dependencies hence suggest that the exchange coupling will
change significantly by the displacements of dopants, hence
requiring atomic scale dopant placement accuracy30,37 for
stability. To date the most precise dopant placement technique
is obtained using STM lithography5, with the fabrication of in-
plane atomic devices where donors can be placed within ±1
lattice site precision. In the following, we investigate the exchange
variations which can be expected using this unique device
fabrication capability.

The relative weights of the six different envelope terms jμν are
plotted in Fig. 6b for a target distance dtar of 12 nm as a function
of the in-plane angle θtar defined with respect to [100]. To
parametrise the P-EM model, the valley momentum and
anisotropy ratio are set to the experimentally obtained average
values, i.e. kμ= 0.81k0 and b/a= 0.52. The large envelope radius a
is set to 2.8 nm obtained from fitting Heitler-London calculations
along [110] (see Supplementary Note 3). The weights (jxx, jxy, jxz,
jyy, jyz and jzz) evolve smoothly with θtar (and dtar), since they do
not contain any valley interference, but their ratios are not
constant and vary by several orders of magnitude. This is a direct
consequence of the anisotropic and exponential nature of the
donor envelope. Along [100], at θtar= 0∘, the jyz terms are
degenerate with jzz and jyy, and largely dominate over any term
where an electron is exchanged in a x-valley. This can be
understood as mass anisotropy results in Fx to have a minor
envelope radius b along x, hence the product between two Fx
orbitals separated along [100] is smaller than its Fy and Fz-orbital
counterparts, as they both have a major envelope radius a along x
instead. The degeneracy between jyz, jzz and jyy arises from
symmetry as the products between y and z orbitals are equal
along [100].

The envelope weight anisotropy influences the way valley
interference impact the exchange coupling. In order to get further
insight on its role, we must consider the precise placement
scheme provided by STM lithography. Each donor is stochasti-
cally incorporated within ±1 lattice site precision in a patch of
three desorbed hydrogen dimers (see Fig. 7a). This placement
precision results along [100] in 12 non-equivalent configurations
for the donors separation shown in Fig. 7b, taking the convention
to fix P1 at the origin (see Supplementary Note 3). From pair to
pair, different configurations will be stochastically obtained,
resulting in the phase terms Δϕx and Δϕy to vary accordingly, and
to potentially become destructive. Along [100], the degeneracy
and dominance of the jyy, jzz and jyz terms implies that the sum
expressed in Eq. (1) can be reduced to these terms, which only
involve Δϕy and Δϕz. Hence, Δϕx does not influence the exchange
and can be ignored along [100]. Furthermore, Δϕz= 0 since the
z-valleys are constructive anywhere in the xy-plane, and only Δϕy
matters along [100]. The 12 values of exchange obtained from
these configurations are plotted in Fig. 7c for a target distance of
12 nm. Assigning each of them to their respective position
configuration allows to understand the observed spread. The
values can be separated in four different groups according to their
respective Δϕy since it is the only phase term of interest in this
case. Among each group, the exchange values evolve mono-
tonically since their valley phase terms are the same, leaving only
an envelope dependence. The configurations perfectly aligned
with [100] (blue dashed line in Fig. 7b, c) lead to constructive y-
valleys, i.e. Δϕy= 0 and a maximised exchange coupling. The fast
damping of exchange oscillations purely along [100] was already
pointed out in previous work30,35,44, which can result in
favouring [100] as the target axis if dopant placement accuracy
is not appropriately considered. In fact, the configurations
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Fig. 6 Donor envelope overlap and exchange interaction. a Two donors
placed in the same xy-plane at a target distance dtar and angle θtar defined
from [100]. The exchange interaction can be considered as a sum of valley
interfering envelope overlaps jμν between the ±x- (orange), ±y- (purple)
and ±z-valleys (brown). The mass anisotropy results in each envelope
orbital, Fx, Fy or Fz, to be constricted along its own direction. For instance, Fx
has a small envelope radius b along x, and a large envelope radius a along y
and z. b Normalised envelope weights jμν plotted vs. θtar for dtar= 12 nm,
using b/a= 0.52 and a= 2.8 nm. Because of orbital anisotropy, the jyy, jyz
and jzz terms (respectively jxx, jxz and jzz terms) are degenerate and
dominate around [100] (respectively [010], red spots), while jzz dominates
around [110] and [−110] (blue spots).
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misaligned with [100] result in finite Δϕy and hence to a reduced
exchange energy. In particular, in-plane positions off the [100]
axis by a0/2, i.e. the closest positions to [100] (red dashed line in
Fig. 7b, c), result in destructive y-valley interference and hence
negative jyz contributions to the exchange. These negative
contributions almost perfectly cancel out the constructive jyy
and jzz terms in the exchange equation, and the exchange energy
is reduced by more than two orders of magnitude for these
specific positions30. It is important to note that these destructive
configurations are common to any previous theoretical work,
although they had different conclusions because of different
approaches in dopant placement accuracy (see Supplementary
Note 3). Moreover, they are always present for any inter-donor
distance since they result from the envelope weight degeneracy
between jyy, jyz and jzz inherent to the [100] axis. These two
arguments are crucial to definitely rule out [100] as a favourable
placement axis.

Considering placement accuracy is essential when looking to
fully understand the role of valley interference and envelope
anisotropy on the exchange interaction. Some approaches have
considered random dopant placement around a target30,32,35,37,
but the actual in-plane placement accuracy at any in-plane angle
θtar that STM lithography can ultimately offer has been
overlooked. Away from [100] at finite θtar, the envelope
anisotropy breaks the degeneracy between the jyy, jzz and jyz
terms (see Fig. 6b). The jzz term becomes dominant over any term
involving an electron exchanged in a Fx or Fy orbital, as the Fz
orbitals are the only ones to face each other across their major
envelope radius a independently of θtar (as their minor envelope

radius is out of the plane). The prevalence of jzz is maximised at
θtar= 45°, i.e. for donors separated along [110]. There, a different
symmetry condition is reached with a degeneracy occurring
between the Fx and Fy orbital products since x= y along this
direction. The following order is hence obtained, with the jzz
terms dominating over the degenerate jxz and jyz terms,
themselves dominating over the jxx, jxy and jyy terms, which are
also degenerate by symmetry. Placing donors along the [110]
orientation results in finite Δϕx or Δϕy, which can vary according
to the configuration specifically obtained from pair to pair, and
hence to destructive jxz or jyz terms. However, they both have a
negligible impact on the value of exchange since jzz dominates. As
a result, the possible exchange values obtained for two donors
aimed along the [110] axis are much more constrained and vary
by less than an order of magnitude as shown in Fig. 7c. To
summarise these results, we plot in Fig. 7d the ratio Jmin/Jmax

defined for each target distance and orientation. Along [100], the
exchange energy presents large variations independent of target
distance as the degeneracy between jyy, jyz and jzz remains.
However, along [110] the in-plane valley interference Δϕx or Δϕy
do not impact the exchange coupling for target distances beyond
12 nm as the variations reach an asymptotic limit set by envelope
considerations only (see Supplementary Note 3). As for the [100]
case, this result is in agreement with previous work30,35,44 (see
Supplementary Note 3). It is revealed here through an atomic-
scale understanding of the interplay between envelope anisotropy,
degeneracies, valley interference and dopant placement accuracy.
Furthermore, the dominance of the jzz envelope terms along [110]
results in Δϕz to be the only relevant valley phase difference, and
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the convention to fix P1 at the origin. A target along [110] results in ten possible configurations. c Left: plot of the 12 possible exchange values along [100],
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exchange variations for a target along [110] are limited to less than a factor of 10 as jzz dominates, making the exchange interaction insensitive to in-plane
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thus to the exchange variations to be arranged as a function of the
depth difference, i.e. atomic planes, between the donors. The
resulting variations with respect to the maximum in-plane
exchange value are shown in Fig. 7d for depth variations included
within ±1a0. Only the a0/4 and 1a0 planes show a significant
reduction of the exchange interaction. Moreover, for target
distances beyond 10 nm, none of these planes lead to exchange
variations as large as for the in-plane exchange variations
obtained around the [100] direction, which are the largest within
±1a0 variation in z-placement for this direction (see Supplemen-
tary Note 3).

We also compared the variations obtained from our P-EM
model to Heitler-London calculations based on the tight-binding
wavefunctions (TB-HL), for which we already demonstrated in
Fig. 2 an excellent agreement with the experiment at the
wavefunction level. The TB-HL exchange calculations shown in
Fig. 7c confirm two orders of magnitude of exchange variations
for donors placed along the [100] direction because of the
presence of destructive y-valleys configurations. They also
confirm that exchange variations can be reduced to less than an
order of magnitude along [110]. A more detailed level of
comparison between TB and P-EM models is discussed in the
Supplementary Note 3. Hence, TB formalism accurately models
the donor wavefunction’s details and can be further used to
predict the properties of advanced donor-based quantum devices
which notably include electric fields. Finally, our understanding
of the interplay between valley interference, envelope anisotropy
and atomic placement on the exchange interaction which we
developed from our P-EM model can be tied back to the original
pair which has been experimentally measured. In order to obtain
a normalisation constant for the exchange energies, we have fitted
the exchange energy obtained from TB calculations in the Heitler-
London limit along [110] for the bulk case (see Supplementary
Note 3). We notably obtain excellent agreement on the value of
the valley momentum kμ and on the anisotropy b/a with the
experimental ones. Equipped with this calibration, we can predict
an effective mass exchange value for pair #1, which we found to
be 1.50 meV, in excellent agreement with the FCI value calculated
and mentioned above. Furthermore, we have also computed a
nearby case of pair #1, where donor P1 was brought from the z=
5.5a0 to the z= 6.5a0 atomic plane. This shift results for these two
donors to have the same x and y coordinates but to be separated
by Δz= 0.25a0, which is a very destructive plane difference for
the z-valleys as seen in Fig. 7d for such pair in the neighbourhood
of [110]. Indeed, the P-EM model yields an exchange of 0.133
meV and the FCI calculations 0.108 meV, again in excellent
agreement with each other. We note that for such inter-donor
distance, the z-arrangement of the exchange values along [110] is
not fully formed yet, i.e. Δϕx and Δϕy are non-negligible for these
two cases; nevertheless, this quantitative agreement clearly
demonstrates the influence of the valley interference on the
exchange interaction, as both values for pair #1 and its nearby
cases are much lower than the maximum exchange values of the
order of 10 meV that can be obtained in this neighbourhood.

Discussion
The direct measurement and quantification of valley interference
between donor states at the atomic-scale using STM, which was
realised here, provides a detailed understanding of their impact
on exchange variations30,35,37. Importantly, we found that the
exchange interaction along the [110] direction is dominated by
the jzz term and is hence insensitive to in-plane valley interference
Δϕx and Δϕy. The agreement between atomistic calculations and
the P-EM model, which relies upon parameters which we have
here assessed experimentally, further establishes the importance

of the envelope radius anisotropy and of valley interference to
fully understand the behaviour of the exchange interaction at the
atomic scale. Using the current state of the art STM
lithography5,18,45 with ±1 lattice site precision, the preferential
crystallographic placement along [110] can be leveraged together
with an in-plane placement resulting in Δϕz= 0. As a result, STM
lithography enables to engineer donor devices where the
exchange can be totally immune to valley interference, hence
achieving a true semiconductor vacuum where complex degen-
eracies of the band structure can be ignored for coupled donors.
The exchange variations are minimised to a factor of <10 between
configurations where dopants are moved by ±1 lattice site. This
factor is only due to the change in the envelope overlap between
the wavefunctions as it is the case for vacuum systems. Impor-
tantly, by symmetry, and as confirmed by our results in Fig. 6b,
the exchange coupling along the [−110] direction (perpendicular
to [110]) is also dominated by jzz and therefore also protected
from in-plane valley interference. As such it is possible to place
donors using STM lithography along both the [110] and [−110]
directions to create 1D and 2D arrays with reduced exchange
coupling variations between nearest neighbours. In our work, the
donors were found at different atomic planes, which we attribute
to an annealing step at 600 °C performed during sample fabri-
cation in order to flatten the surface for tunnelling spectroscopy
purposes. Experimental progress has been made to minimise the
segregation of highly doped phosphorus monolayers46,47, which
should be further reduced for single donors as segregation and
diffusion constants strongly depend on dopant concentration48.
Single donor segregation mechanisms are predicted to activate
from 250 °C49, which bulk donor qubit device fabrication can
withstand6. These results motivate our scheme to keep the donors
in the same plane around the [110] axis to maximise the exchange
interaction uniformity.

Controllable exchange coupling between atom qubits is a key
requirement for two-qubits gates, which must be performed with
high fidelities and high speed in views of fault-tolerant quantum
computing architectures50,51. Exchange variations from pair-to-
pair can create rotation errors as the CNOT gate length is cali-
brated to a particular target value, which can impair the operation
of a quantum processor. To avoid these errors, a composite CNOT
gate can be performed with a so-called BB1 sequence instead of a
single pulse32,52. This composite CNOT gate can be decomposed
in a set of single and two-qubit rotations, with the advantage to
maintain a high-fidelity above 99.9%, i.e. above quantum error
correction thresholds, for any qubit pair despite a 10% error in the
characterisation of the exchange coupling. For donors separated
by 12 nm along the [110] direction, our TB-HL calculations give
exchange values ranging from 11 to 93MHz. These values can be
used together with known single qubit gate times (340 ns53) to
obtain CNOT gate times varying by <1% across an array (see
Supplementary Note 4), with an average value of 1.2 μs, for fully
characterised exchange values. This average CNOT gate time is
dominated by the single qubit rotation time for this target dis-
tance, and the spread could be overcome by tuning the exchange
values with each other electrically36. Such tuning would be
impossible for donors placed along [100] because of too large
exchange variations. The operation times expected for the out-of-
plane configurations within one monolayer do not exceed 1.34 μs.
For exchange values characterised to 90%, adding the correcting
sequence to maintain the fidelity would result in an aver-
age CNOT operation time of 2.3 μs with a spread limited to 4%
for the in-plane configurations, and a maximum time of 3.7 μs for
out-of-plane configurations with only 6 out of 82 total config-
urations exceeding 3 μs. Whilst these operation times are slower
compared to other spin-based CNOT gates54–56, they are well
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below donor coherence times which can approach seconds using
dynamical decoupling sequences57.

As already mentioned, exchange and tunnel interactions are
closely related since they both rely on wavefunction overlap
considerations. From our exchange analysis, we obtain tunnel
coupling values varying by less than a factor 5 for inter-donor
distances along [110] down to 5 nm (see Supplementary Note 3).
This distance is the lower bound at which the Heitler-London
description is valid, as tunnel coupling values are there predicted
to exceed 10 meV, i.e. becoming a substantial fraction of the 47
meV charging energy. Expected tunnel coupling values35 up to
target distances of 12 nm along [110] remain above 200 μeV for
in-plane configurations, and above 60 μeV for out-of-plane ones,
all much larger than the achievable electronic temperature of
about 50 mK (i.e. about 5 μeV). This opens the way to the study
of Fermi-Hubbard problems robust to this level of disorder, as for
the case of dimerised chains58,59, with the competition between
topological gaps originating from the TB picture60–62 and on-site
interactions. The prospect to extend studies to the regime of
strong tunnelling interactions and to 2D systems makes donors in
silicon a standout platform for quantum simulation of the Fermi-
Hubbard model.

In summary, starting from direct real-space measurements of
donor wavefunctions, we have been able to unambiguously quantify
valley interference between donor atoms in silicon in real space and
validate the predictions of existing theories. Driven by this experi-
mental approach, we consider the dopant placement precision
offered by STM lithography for a detailed understanding of the
interplay between valley interference and envelope anisotropy on
the exchange interaction. In full agreement with previous theoretical
work, our results identify the [110] crystallographic direction as
optimal for building 2D donor arrays where we predict less than an
order of magnitude variation in exchange and tunnel couplings. We
envision this fabrication strategy, in conjunction with quantum
control schemes32 and exchange tuning mechanisms36, to be a key
component in leveraging the exceptional coherence of donor qubits
in silicon towards scalable quantum simulators and quantum
processors.

Methods
Sample preparation. Samples were prepared in ultrahigh vacuum (UHV) with a
pressure lower than 10−10 mbar, starting from a commercial n-type As-doped
wafer with a resistivity of 0.001–0.003Ω cm. Samples are first flash annealed three
times around 1150 °C for a total of 30 s. After the final flash anneal, the tem-
perature was rapidly quenched to 800 °C, followed by slow (1 °C/s) cooling to
obtain a flat 2 × 1 surface reconstruction. Under these conditions, a layer of ~15
nm from the Si surface is depleted from As dopants. P dopants are incorporated at
this stage in Si by submonolayer phosphine (PH3) dosing with a sheet density of
5 × 1011 cm−2. This low-dose P δ-layer was overgrown epitaxially by ~2.5 nm of Si.
Growth parameters such as temperature and flux were chosen to achieve minimal
segregation and diffusion whilst preserving a flat surface for STM imaging and
spectroscopy purposes. Notably, the first nanometre is a lock-in layer grown at
room temperature46. Subsequent growth alternates between 250 °C and 450 °C with
a duration ratio of 3/1. A 600 °C flash follows for 10 s to flatten the surface. The
surface is finally hydrogen passivated at 340 °C for 10 min under a flux of atomic H
produced by a thermal cracker, in a chamber with a 10−7 mbar pressure of
molecular hydrogen. STM measurements are taken in the single-electron transport
regime described in refs. 24,63.

Measurement techniques. The electrical measurements were carried out at 4.2 K
in an STM (Omicron LT-STM). Both sample fabrication and measurements are
done in UHV with a pressure lower than 10−10 mbar. The tunnel current I was
measured as a function of the bias voltage U using ultralow noise electronics
including a transimpedance amplifier. The differential conductance dI/dU shown
in Supplementary Note 2 was obtained by numerical differentiation. Spatially
resolved measurements of donor pairs quantum state were acquired using the
multi-line scan technique, where the topography is recorded at U=−1.45 V
during the first pass, and played during the second pass in open-loop mode with
the current I recorded at the bias mentioned in the caption of the corresponding
figures. The sample fabrication described above results in the donor pairs to be

measured in the sequential transport regime, with a first tunnel barrier with tunnel
rate Γin occurring from the highly doped substrate annealing, and the second
tunnel barrier with tunnel rate Γout being a combination of the Si overgrowth after
P deposition and the vacuum barrier, mainly dominated by the latter and tip-
sample distance. Additional information regarding STM images and spectroscopy
analysis can be found in the Supplementary Note 1.

Atomistic simulations. Single-particle energies and wave functions for P donor
in silicon are computed by solving a sp3d5s* TB Hamiltonian64, where the P
atom is represented by central-cell corrections including donor potential
screened by non-static dielectric function65, and the P–Si nearest-neighbour
bond-lengths are modified in accordance with the published DFT prediction66.
The size of simulation domain (Si box) consists of roughly four million atoms
with closed boundary conditions in all three spatial directions. The effect of
surface strain due to 2 × 1 surface reconstruction is included in the TB Hamil-
tonian by properly displacing surface Si atoms and by modifying the inter-
atomic interaction energies in the TB Hamiltonian40. The calculation of STM
images of donor wave functions follows the published methodology40, where TB
wave function is coupled with Bardeen’s tunnelling theory67 and derivative rule
of Chen68. In our STM measurements, dominant contribution is from dz2 orbital
in STM tip. For two-particle STM images, two-electron wave functions are
computed from FCI approach43. The STM image represents a quasi-particle
wave function resulting from 2e to 1e transition39. The resulting quasi-particle
state is used to compute tunnelling matrix element described in the Supple-
mentary Note 1. The exchange calculations shown in Fig. 7 are computed either
from the corresponding atomistic TB single-particle wave functions69, or from a
P-EM model detailed in the Supplementary Note 3, both based on Heitler-
London formalism. XSEDE70, National Computational Infrastructure Australia
and NanoHUB computing resources were used.

Data availability
Any data and code used for the purpose of this article are available upon reasonable
request.
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