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Solid state spins have demonstrated significant potential in quantum sensing with applications
including fundamental science, medical diagnostics and navigation. The quantum sensing schemes
showing best performance under ambient conditions all utilize microwave or radio-frequency driving,
which poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of
quantum sensors. We overcome this limitation by demonstrating a purely optical approach to
coherent quantum sensing. Our scheme involves the 15N nuclear spin of the Nitrogen-Vacancy
(NV) center in diamond as a sensing resource, and exploits NV spin dynamics in oblique magnetic
fields near the NV’s excited state level anti-crossing to optically pump the nuclear spin into a
quantum superposition state. We demonstrate all-optical free-induction decay measurements - the
key protocol for low-frequency quantum sensing - both on single spins and spin ensembles. Our
results pave the way for highly compact quantum sensors to be employed for magnetometry or
gyroscopy applications in challenging environments.

INTRODUCTION

Spin based quantum sensors can be employed to mea-
sure a wide range of relevant physical quantities, includ-
ing magnetic [1] or electric fields [2], temperature [3], or
rotary motion [4]. This abundance of potential observ-
ables, combined with their high sensitivity at the nano-
scale makes quantum sensors highly interesting for many
fields of application, such as life sciences [5], geological
sciences [6, 7], navigation [8] and material sciences [9].

Nitrogen-Vacancy (NV) centers in diamond (Fig. 1a)
are a particularly promising platform for such spin based
quantum sensing applications, because they host a single
electron spin [10] with long coherence times [11, 12] even
at room temperature [13]. Upon optical excitation with
green light, the NV center emits spin-dependent red pho-
toluminescence (PL) [14], which enables all-optical elec-
tron spin readout. At the same time, such optical ex-
citation pumps the NV electron spin [15, 16] into a spe-
cific spin eigenstate, enabling all-optical spin initializa-
tion. Time-varying (AC) driving fields, mostly in the
microwave (MW) or radio-frequency (RF) domain can
then be used to coherently control the spin, and create
superposition states for sensing. This combination of op-
tical initialization, readout, and coherent spin manipu-
lation by AC driving fields form the basis of almost all
established spin based approaches to sensing [17].

The NV electron spin is inherently coupled to the nu-
clear spin of its Nitrogen atom – a spin which exhibits
significantly longer coherence times compared to the NV
electron spin [18, 19] and therefore provides another in-
teresting resource for quantum technology applications.
Specifically, nuclear spins have been exploited as a quan-

tum register for quantum communication [20] and en-
hanced spin readout techniques [21], but they also offer
interesting opportunities for sensing, be it for magnetom-
etry [18, 22–24] or for gyroscopy [25, 26].
Many Nitrogen spin based quantum sensing schemes

in diamond rely on the resonant coupling of the NV spin
and the nuclear Nitrogen spin at a magnetic field of about
500 G [27, 28], where spin flip-flop processes occur in the
NV’s orbital excited state at the excited state level anti-
crossing (ESLAC). It has been shown that optical pump-
ing in the vicinity of the ESLAC results in nuclear spin
hyperpolarization [29, 30], and that – by virtue of the
same mechanism – the NV center shows a nuclear spin-
state dependent rate of transient PL [28]. As a result,
optical pumping close to the ESLAC enables both all-
optical readout of the nuclear spin state and initialization
into a nuclear spin eigenstate, which, together with RF
driving, forms the basis for nuclear spin based sensing
schemes [28].
However, the ubiquitous need for AC coherent driv-

ing in spin based quantum sensing is a severe limita-
tion for many applications. Specifically, such AC driv-
ing fields can adversely affect investigated samples and
for integrated or portable sensing devices, their deliv-
ery increases power-consumption and overall complexity,
and thereby size and cost of the system. Recent experi-
ments have demonstrated microwave-free NV magnetom-
etry schemes that are based on sharp changes in NV PL
at level anti-crossings, that occur at specific magnetic
fields [31, 32]. While avoiding the need for MW or RF
delivery, these approaches do not exploit quantum co-
herence (and are therefore limited in sensitivity) and are
furthermore highly vulnerable to background drifts in NV
PL.
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Here, we present a novel method for coherent,
microwave-free quantum sensing using the 15N nuclear
spin of the NV center in diamond. Our approach is based
on optical driving of the NV center near the ESLAC in
the presence of a small, static magnetic field transverse
to the NV symmetry axis denoted by the unit vector
ez (see Fig. 1a). As we will show, such a small trans-
verse magnetic field component has a striking effect, in
that optical pumping prepares the 15N nuclear spin in
a coherent superposition state within the NV’s ground
state spin manifold. Following optical pumping, this ini-
tialization leads to Larmor precession of the nuclear spin
about an effective magnetic field; a precession we directly
monitor via nuclear spin-state dependent PL [28]. Fig-
ure 1b shows an example of such an all-optical nuclear
free induction (FID) measurement, obtained using the
pulse sequence depicted in Fig. 1c. Data for this work
were recorded on a home-built confocal optical micro-
scope (see methods) with magnetic field control; here at
a magnetic field of strength |Bext| = 540 G, tilted by
Φ = 1◦ away from ez.
The negatively charged NV center possesses an elec-

tron spin S = 1 quantized along the NV symmetry
axis ez. For NV centers formed by 15N (denoted as
“15NV” in the following), the Nitrogen nucleus exhibits
a spin I = 1/2. The Hamiltonian for the orbital
ground (gs) and excited state (es) of such a 15NV can
be expressed as

Ĥgs,es

h
= Dgs,es

0 Ŝ2
z + Ŝ ·Ags,es · Î+γSBext · Ŝ+γIBext · Î ,

(1)
where Ŝ and Î are the NV electron and nuclear spin
operators, γS = 2.8 MHz/G and γI = 431.7 Hz/G are
the respective gyromagnetic ratios, Dgs

0 = 2.87 GHz and
Des

0 = 1.42 GHz are the zero-field splittings, and Bext is
the applied magnetic field. The hyperfine coupling tensor
Ags,es has two independent components Ags

‖ = 3.03 MHz
and Ags

⊥ = 3.65 MHz for the ground state; and Aes
‖ =

−57.8 MHz, Aes
⊥ = −39.2 MHz for the excited state [33,

34]. This Hamiltonian is conveniently expressed in a basis
of spin eigenstates {|mS ,mI〉}, where mS and mI are the
magnetic quantum numbers associated with Ŝz and Îz.
The coherent FID dynamics that are studied in this work
(Fig. 1b) can be completely encompassed by a reduced
subspace spanned by {|0,−1/2〉 , |0,+1/2〉}.

RESULTS

Derivation of an effective Hamiltonian. In the
following we explain the nuclear precession data pre-
sented in Fig. 1b by discussing how the presence of the
transverse magnetic field component B⊥ significantly af-
fects the system’s optical pumping and subsequent FID
dynamics. We start by calculating an effective Hamilto-
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FIG. 1. a Crystal structure of the Nitrogen-Vacancy center
with illustration of its associated spins and coordinate axes.
b All-optical nuclear spin precession of the 15N Nuclear spin
observed at a magnetic field of |B| = 540 G tilted away from
the NV symmetry axis by Φ = 1◦. Fitting of a harmonic func-
tion (black) yields a precession frequency 251.18± 0.12 kHz.
c Pulse sequence employed for b, consisting of a 3 µs green
laser pulse separated by a variable delay τ . The first 350 ns of
each green pulse are utilized for optical nuclear spin readout,
while the remainder of the pulse reinitializes the spin system.
d Quantitative Bloch-Sphere representation of the 15N spin
in the |ms = 0〉 ground state manifold. For a magnetic field
Bext tilted from the NV symmetry axis by the angle Φ = 1◦,
optical pumping initializes the nuclear spin into ρ̂nuc

init. The
nuclear spin subsequently precesses around an effective mag-
netic field Beff . The measurement axis for all-optical readout
of this precession is given by einit. e Experimentally observed
precession frequency (blue crosses) at different values of |Bext|
and fixed Φ = 1◦, together with analytic (solid orange line)
and numerical predictions (black dots).

nian for the 15N spin in the mS = 0 ground state sub-
space, {|0,−1/2〉 , |0,+1/2〉}, using Van Vleck perturba-
tion theory [35] (see the supplementary information, Sec-
tion I, for a detailed derivation). Without loss of general-
ity, we set the transverse magnetic field to point along the
unit vector ex. We then obtain the effective Hamiltonian

HmS=0
eff
h

= 1
2

[
γIBz + νz γIB⊥ + ν⊥

γIB⊥ + ν⊥ −γIBz − νz

]
, (2)

where

νz = γSBz(Ags
⊥ )2

(Dgs
0 )2 − (γSBz)2 (3)

denotes the correction to the diagonal elements caused
by mixing between states of different mS , and

ν⊥ = −2 γSB⊥Ags
⊥D

gs
0

(Dgs
0 )2 − (γSBz)2 (4)

is the corresponding correction to the off-diagonal ele-
ments. We note that such an effective hyperfine Hamil-
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tonian for 15NV’s has been discussed earlier as a pertur-
bation in B⊥ in the limit Bz � Dgs

0 [36], or as a pertur-
bation in Ags

⊥ [28], but never as a perturbation in both
simultaneously as we present it here. Additionally, exact
analytic expressions for ν⊥ have previously been derived
in [37].

Hamiltonian HmS=0
eff yields that the 15N nuclear spin

in the NV ground state is quantized along an effective
magnetic field Beff . Diagonalization of HmS=0

eff yields

γI |Beff | =
√

(γIBz + νz)2 + (γIB⊥ + ν⊥)2 =: fnuc , (5)

where fnuc is the expected nuclear spin precession fre-
quency. Importantly, Beff is neither aligned with Bext
nor with the NV symmetry axis. Instead, it lies in the
plane spanned by Beff and Bext, and is tilted away from
ez by an angle ϑ = tan−1 [(γIB⊥ + ν⊥)/(γIBz + νz)].
Interestingly, ϑ is significantly larger than the misalign-
ment angle Φ between Bext and ez, and ϑ has a sign op-
posite to Φ due to the negative sign of γI (c.f. Fig. 1d).
Finally, note that according Eq. (4), ν⊥ = 0 when B⊥ =
0, which in turns causes ϑ = 0. In this case, both Beff
and Bext are aligned with the NV symmetry axis.
Analysis of 15N spin dynamics. We now discuss

how the presence of B⊥ affects the 15N nuclear spin dy-
namics and enables all-optical initialization into a nuclear
spin superposition state. The use of 15N is key to this,
since it does not have a quadrupolar spin splitting which
would prevent any nuclear Larmor precession. It is clear
from Eq. (4) that when B⊥ 6= 0, the 15N nuclear quanti-
zation axis depends sensitively on the hyperfine coupling
parameter A⊥, and the splitting of the involved spin-
levels. Therefore, the ground and excited state nuclear
spin quantization axes are in general different, because
the hyperfine parameters differ in both magnitude and
sign between the two cases. This difference in 15N quanti-
zation axes results in optical pumping of the nuclear spin
into a state that does not correspond to an eigenstate of
the effective ground state Hamiltonian HmS=0

eff . To be
specific, optical pumping accumulates NV excited state
population in the eigenstate with the largest mS = 0
character (i.e. the state |ψ〉 for which 〈ψ| Ŝz/~ |ψ〉 is
closest to zero), since this state has the lowest probabil-
ity of shelving into the NV’s singlet state – we denote
this state as

∣∣0̃es
〉
. By the same argument,

∣∣0̃es
〉
is also

the “brightest” state in that it yields the largest rate of
emission of NV fluorescence photons. For state

∣∣0̃es
〉
, the

expectation value of the nuclear spin lies along the vector
einit =

〈
0̃es
∣∣ Î/~ ∣∣0̃es

〉
. Vector einit therefore defines both

the direction along which the nuclear spin is initialized
under green illumination, as well as the measurement axis
for optical readout of the nuclear spin. For B⊥ 6= 0, einit
is not collinear with Beff , and thus optical pumping will
initialize the 15N nuclear spin in a state that is not an
eigenstate of HmS=0

eff . Disengaging green laser excitation
after optical pumping will therefore result in precession

of the 15N nuclear spin around Beff . Finally, note that
for NV centers formed with 14N, no Larmor precession
occurs because its quadrupolar splitting locks Beff onto
the NV axis.
Comparison with numerical results. To further

verify this picture, we developed a numerical model
that simulates the dynamics of the 15NV system dur-
ing and after optical pumping. The model is based
on classical rate equations for the optical pumping pro-
cess [16], coupled with master equations describing the
quantum-mechanical evolution of the system’s density
matrix within each relevant orbital manifold: the orbital
ground and excited states as well as the singlet state (see
further details in the supplementary information, Sec-
tion II.1).
In Fig. 1d we summarize the numerical and theoretical

results in a Bloch sphere representation of the 15N nu-
clear spin dynamics for the same magnetic field that was
used to obtain the experimental results in Fig. 1b. The
effective field Beff is calculated numerically through ex-
act diagonalisation of the ground state Hamiltonian Ĥgs,
and einit is calculated via diagonalization of the excited
state Hamiltonian Ĥes. The nuclear spin density matrix
ρ̂nuc

init following optical pumping is obtained by propagat-
ing the system density matrix ρ̂ for 3 µs of laser excita-
tion, followed by a 50 ns dark time (to let the system re-
lax fully to the ground state), and by subsequently taking
the trace over the NV electron spin degrees of freedom.
The nuclear spin precession dynamics is then described
by propagating ρ̂ under the influence of Ĥgs.
We make two observations that underline the excellent

agreement of this numerical model with our analytical
discussion. First, the orientation of Beff obtained from
numeric diagonalization of the full ground state Hamil-
tonian Ĥgs shows perfect agreement with the analytical
prediction from Eq. (2) (see further details in the supple-
mentary information, Section II.3). Second, the initial
nuclear spin direction Tr(Î ρ̂nuc

init) obtained from our nu-
merical model is perfectly collinear with einit, as long as
we set the intersystem crossing rate for themS = 0 states
to zero (see the supplementary information, Section II.3).
Both observations strongly support the validity of our
model and its applicability to quantitatively describe our
data.
All-optical nuclear 15N precession The presented

theory framework allows us to further analyze the data
presented in Fig. 1b. The observed FID oscillation fre-
quency was determined by least-squares fitting to fnuc =
251.18±0.12 kHz, in good agreement with Eq. (5), which
yields fnuc = 252.71 kHz for the experimental conditions
|Bext| = 540G and B⊥ = 10.6G. The small remaining
discrepancy can be assigned to uncertainties in control-
ling the tilt angle Φ, and determining the exact field com-
ponents B⊥ and B‖. To demonstrate that the observed
oscillations indeed originate from nuclear spin precession,
we repeated the same experiment at fixed angle Φ, while
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FIG. 2. a Measured free induction decay (FID) contrast of
a single NV as a function of magnetic field orientation, for
a fixed total field of |Bext| = 533 G. b Same data as in a,
but plotted against total transverse magnetic field B⊥. The
black line is the prediction of our numerical model, which is
normalized to the mean of the data at Φopt±0.03◦. c Nuclear
FID contrast as a function of magnetic tilt angle Φ and total
magnetic field |Bext|. d Maximal observed contrast Cmax and
corresponding tilt angle Φopt for each value of |Bext|. The
prediction of our numerical model is shown in black, which is
normalized to the maximal data point.

varying |Bext|. Figure 1e shows the resulting, near-linear
dependance of fnuc on |Bext| and the excellent agree-
ment with the predictions of both Eq. (5) and the numeric
model. The enhancement of fnuc over the bare Larmor
frequency results from the terms νz and ν⊥ in Eq. (5).
Angle (Φ) and field (|Bext|) dependance of the

all-optical 15N FID signal. The requirement of ap-
plying a transverse magnetic field B⊥ to obtain an ob-
servable, all-optical 15N FID signal motivates the ques-
tion of how the FID readout contrast C depends on both
Φ and |Bext|. Figure 2a shows single NV data, where
we determined C as a function of Φ for a fixed field
|Bext| = 533 G. We determined C from the Fourier space
amplitude of individual FID curves, for varying field mis-
alignment angles Φx and Φy, applied in the x-z and y-
z-planes, respectively. For the small angles we investi-
gated, Φ ≈ (Φ2

x + Φ2
y)1/2. As expected, when Φ = 0,

no nuclear FID contrast is observed, because in this case
Beff and einit are both collinear with ez such that the
nuclear spin is optically pumped into the non-precessing
eigenstate |0,+1/2〉 of Ĥgs. Upon increasing Φ, Beff and
einit both tilt away from ez in different directions, re-
sulting in nuclear precession of increasing contrast C. At
the same time, increasing Φ (i.e. B⊥) tends to reduce the
nuclear hyperpolarization efficiency [28, 29] and the NV

a b

Analytic
Larmor

FIG. 3. a 15N nuclear precession frequency fnuc corre-
sponding to the data shown in Fig. 2a. Only pixels for which
C > 1% are shown. b Same data as in a, plotted against
total transverse magnetic field B⊥, together with the numer-
ical model prediction (black), the prediction from Eq. (5) (or-
ange), and the bare Larmor frequency γIBz (green).

optical spin readout contrast [16], both of which reduce
C. Overall, these counteracting effects imply that there
is an optimal tilt angle Φopt which maximizes C by bal-
ancing the magnitude of the nuclear spin coherences with
nuclear spin readout efficiency. We call this maximized
contrast Cmax.
To determine Φopt and Cmax, we show in Fig. 2b the

data from Fig. 2a as a function of transverse field B⊥,
where for each data point, we determined B⊥ from the
NV’s full optically detected magnetic resonance spec-
trum. Figure 2b reveals a clear maximum in C at B⊥ ≈
8.6 G, which corresponds to Φopt ≈ 0.86◦ (see further
details in the supplementary information, Section III).
These results are in good agreement with the predictions
of our numerical model (black curve in in Fig. 2b). The
quality of the simulation depends sensitively on the NV
intersystem crossing rates, all of which were kept fixed to
literature values [16] in our calculations (see further de-
tails in the supplementary information, Section II.3). We
assign remaining discrepancies between data and simula-
tions to uncertainties on optical transition rates employed
in the model.
Interestingly, we find that our all-optical 15N nuclear

FID protocol is relatively resilient to deviations of Bext
away from ideal ESLAC conditions. For this, we inves-
tigated the dependance of the contrast C on the applied
magnetic field |Bext| and tilt angle Φx, where for each
data point, we ensured that Φy = 0 is maintained to
within experimental accuracy. The resulting data show
a nontrivial dependance of C on |Bext| and Φx (Fig. 2c),
and in particular reveal that both Φopt and Cmax change
with |Bext| (Fig. 2d). These dependencies are qualita-
tively captured by our numerical model. We find a global
maximum of Cmax ≈ 4.2 % for |Bext| = 533 G, and a
drop of C over a full-width at half maximum (FWHM)
range of ∼ 50 G.
Nuclear spin precession frequency. Further, we

investigate the dependance of fnuc on the magnetic field
tilt angles Φx and Φy. For this, we determine fnuc by
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Fourier analysis of the FID data for each data point sam-
pled in Fig. 2a. The result is shown in Fig. 3a, along with
the corresponding plot of the same data as a function of
|B⊥| in Fig. 3b. The precession frequency fnuc increases
with B⊥ in a way that is excellently described by both
Eq. (5) and our numerical model. We again assign small
discrepancies between measured and predicted values of
fnuc to experimental uncertainties in determining Bext.
Nuclear coherence time. The ease of use of our all-

optical 15N FID experiments enables facile assessment of
the 15N inhomogeneous nuclear spin coherence time T ∗2 .
To determine T ∗2 , we extend the measurement pulse se-
quence shown in Fig. 1c to longer FID evolution times τ ,
to resolve the full decay of the signal (Fig. 4a). Fitting
an exponentially decaying harmonic function to the data
yields C = 3.09 ± 0.11 % and T ∗2 = 248.1 ± 12.4 µs for
the single NV center under investigation. This decoher-
ence time is somewhat shorter than previously reported
values [38], but consistent with the rather short NV elec-
tron spin relaxation time of T1 = 315 ± 16 µs for our
shallow NV – a timescale which is known to limit the
NV’s nuclear spin decoherence time [39, 40].
Scaling to NV ensembles An interesting question

with particular relevance for potential applications in
quantum sensing is whether our all-optical scheme also
scales to ensembles of NV centers. To address this ques-
tion, we repeated our experiments on an ensemble of NV
centers in an unstructured, CVD grown diamond sam-
ple with a preferential orientation of NV centers along
one of the four possible crystal directions [41] (see meth-
ods). We maximize the contrast C in the same fash-
ion as done in the single NV case, and determine T ∗2
through the full FID trace shown in Fig. 4b. Using a
least-squares fit as before, we find C = 2.08±0.04%, and
T ∗2 = 508.5 ± 17.4 µs for this NV ensemble. While C
is comparable to the single NV case (with a slight de-
terioration due to the minority of non-aligned NVs), T ∗2
almost doubles. This value of T ∗2 , however, is still short
of the best reported values of ≈ 2.2 ms for 15NV nu-
clear spin coherence times [26, 38]. We exclude electron
spin T1 relaxation as a source for this fast nuclear spin
decoherence, as we measured T1 = 5.8 ± 0.5 ms in this
sample. Possible other sources for nuclear spin dephas-
ing in our ensemble experiment include fluctuations in
external magnetic field or temperature [38, 40].

DISCUSSION

Our all-optical 15N FID scheme lends itself to appli-
cations in quantum sensing, e.g. in magnetometry and
gyroscopy (rotational sensing). In the following we dis-
cuss the predicted performance of such all-optical coher-
ent quantum sensing schemes.

The shot noise limited FID sensitivity for spin based,

low-frequency magnetometry is given by [17, 42, 43]

ηmag ≈
1

γC
√
NT ∗2

. (6)

Here, N is the average number of detected photons per
readout pulse, C is the readout contrast, and γ is the
gyromagnetic ration of the spins employed for sensing.
Further sensitivity reductions due to overhead in prepa-
ration and measurement of quantum states are not in-
cluded in this expression, but of little relevance to our
conclusion, given the long T ∗2 times at hand.
Evaluating Eq. (6) for our single NV data (T ∗2 = 250 µs,

C = 4%, N = 0.1) using the effective nuclear gyro-
magnetic ratio γ = 1.2γI determined from the slope
of the data in Fig. 1e (or from Eq. (5)), we obtain a
photon shot noise limited magnetometry sensitivity of
ηmag = 154 µT/

√
Hz. Further, given that our approach

scales to NV ensembles, we make predictions on future
ensemble NV magnetometry sensitivity. For this, we as-
sume a laser power of 100 mW, a 350 ns readout window,
and a conversion ratio of excitation photons to detected
PL photons of 3.4 % [44], to obtain N = 3.2 · 109. To-
gether with the measured ensemble values T ∗2 = 500 µs
and C = 2 %, we obtain ηensemble

mag = 1.22 nT/
√

Hz.
For spin based gyroscopy, the sensitivity is determined

in analogy to Eq. (6), but with omission of the gyromag-
netic ratio, i.e. ηgyro = γ · ηmag [28]. Nuclear spins are
therefore particularly attractive for gyroscopy, since their
long T ∗2 times generally offer them better sensitivities
compared to electron spins, while they are less suscepti-
ble to magnetic fields and their fluctuations. Employing
the same procedure as before, we obtain a projected en-
semble gyroscope sensitivity of ηensemble

gyro ≈ 135 ◦/
√

hour.
To place these estimates in context, we note that

best reported magnetometry sensitivities using elec-
tron spin ensembles in diamond were η̃ensemble

mag <

10pT/
√

Hz [45], while NV-based nuclear spin gyro-
scopes have recently achieved sensitivities η̃ensemble

gyro =
280 ◦/

√
hour [26]. While for magnetometry, our pro-

jected sensitivity alone is not competitive with the state-
of-the-art, the microwave-free modality we present still
lends itself to specific applications, e.g. remote sens-
ing through optical fibres [46], or for cases where the
MW drive would critically affect the sample of interest.
Conversely, for gyroscopy, we project numbers compet-
itive with previous approaches. The added feature of
all-optical NV gyroscopy is hereby a key asset, which
may enable future integrated and power-efficient NV gy-
roscopes.
Looking forward, we note that our all-optical nuclear

spin sensing scheme is also amenable to alternate high fi-
delity readout schemes to increase measurement contrast,
based on spin-to-charge conversion [47, 48]. Another po-
tential path to improving contrast C is to dynamically
pulse the field misalignment angle between spin initiali-
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Data
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Data

Single NV

Ensemble

FIG. 4. All-Optical nuclear spin precession of a, a single NV in a diamond nanopillar, and b, an ensemble of NVs in bulk
diamond, both measured at |Bext| = 533 G with tilt angles Φ = 0.65◦ and Φ = 0.8◦, for a and b respectively. Each data set is
fitted with a damped harmonic function to determine the nuclear spin coherence time T ∗2 , yielding T ∗2 = 248.1 ± 12.4 µs and
T ∗2 = 508.5± 17.4 µs, for a and b respectively.

sation and readout, to separately optimise the two pro-
cesses.

In conclusion, we have presented an all-optical scheme
for observing FID dynamics of 15N nuclear spins in di-
amond NV centers. Our technique is based on optical
pumping of the 15N nuclear spin into a quantum super-
position state – a novel optical pumping process that oc-
curs near the NV’s ESLAC in presence of a small trans-
verse magnetic field. These results may find applications
in various fields of quantum sensing, most notably all-
optical magnetometry and gyroscopy, for which we give
benchmark comparisons which compare favourably with
the state-of-the-art. Our results also suggest possible ex-
tensions to a range of other, relevant scenarios, includ-
ing analogous dynamics near the NV’s ground-state level
anti-crossing, or all-optical addressing of nearby 13C nu-
clear spins. The nuclear spin dynamics we discussed
should generally be observable in any color center ex-
hibiting suitable level anti-crossing dynamics and cou-
pling to nuclear spins, and might as such offer interest-
ing opportunities for sensing with and characterization
of novel color centers in a variety of solid state hosts.

METHODS

Single NV diamond sample The majority of our
experimental results (Figs. 1-3 and Fig 4a) were obtained
on a single NV center that was created in an “electronic
grade” diamond sample (Element Six) by ion implanta-
tion and subsequent sample annealing [49]. For implan-
tation, we employed singly charged 15N ions at a flux of
1011 cm−2 and an energy of 6 keV, corresponding to a
nominal implantation depth of about 9 nm [50]. To in-
crease PL collection efficiency, parabolic diamond pillars
were fabricated in the diamond surface [51] subsequent
to NV creation – a single pillar containing an individual
NV center was studied in this work.
NV ensemble diamond sample The NV ensemble

sample used to obtain data shown in Fig. 4b was grown
on a CVD diamond substrate along the (113) crystal ori-
entation to facilitate Nitrogen incorporation and create
NVs preferentially oriented along the NV-axis lying clos-
est to the growth plane [41]. A 15 µm thick layer con-
taining NVs was obtained using 12C and 15N enriched
gas mixture, which led to an estimated NV density of
∼ 300 ppb [52].
Experimental setup A home-built confocal micro-

scope (Olympus LMPLFLN-100 objective, NA = 0.8)
was used to focus a green laser (Cobolt 06-MLD; emis-
sion wavelength 515 nm) on the sample and to simultane-
ously collect the emitted red PL. All data shown in this
paper were taken by optically exciting the NV(s) near
saturation, which for our setup corresponded to a laser
power of about 50 µW for the single NV in a nano-pillar,
and 2.2 mW for the ensemble of NVs in unstructured di-
amond. A static magnetic field was applied using a per-
manent neodymium disk magnet (supermagnete, S-60-
05-N) mounted on a linear translation stage, to tune the
magnetic field strength at the NV location. For precise
magnetic field alignment near the ESLAC, the magnet is
mounted on a goniometric stage (SmarAct SGO-60.5 and
SGO-77.5). Finally, the laser and photon-detectors were
gated with pulses which were created and synchronized
using a high-frequency signal generator (Zurich Instru-
ments SHFSG), which also served as a source for mi-
crowave pulses used for the characterization of the mag-
netic field via optically detected magnetic resonance ex-
periment.
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SUPPLEMENTARY INFORMATION

I. Effective Nuclear Hamiltonian

Here, we calculate an effective Hamiltonian for the 15N spin in the electronic mS = 0 subspace. To that end,
we employ Van Vleck perturbation theory, which is applicable to Hamiltonians Ĥ that can be written in the form
Ĥ = Ĥ0 + V̂ , where Ĥ0 is block diagonal, made of distinct subspaces, and V is a perturbation that couples the initially
uncoupled different subspaces of Ĥ0. Following the notation in [35], to second order, the effective Hamiltonian for
each individual subspace is given by

〈i| Ĥα
eff |j〉 = 〈i, α|H0 + V |j, α〉

+ 1
2
∑
k,γ 6=α

〈i, α|V |k, γ〉 〈k, γ|V |j, α〉

×
[

1
Ei,α − Ek,γ

+ 1
Ek,α − Ek,γ

]
. (7)

Here, latin indices denote states within a given subspace, and greek indicies count over the subspaces. Equation (7)
is valid if the energy difference between states in different blocks is much larger than the coupling between them,
|Ei,α − Ej,β | � 〈i, α|V |j, β〉.
Hamiltonian Ĥgs from the main text is such a block diagonal Hamiltonian. Written in the basis {|mS ,mI〉}, it

reads

Ĥgs

h
=



D
gs
0 + γSBz +

γIBz+Ags
‖

2
γI
2 Bx

γS√
2
Bx 0 0 0

γI
2 Bx D

gs
0 + γSBz −

γIBz+Ags
‖

2
1√
2
A

gs
⊥

γS√
2
Bx 0 0

γS√
2
Bx

1√
2
A

gs
⊥ + 1

2 γIBz
γI
2 Bx

γS√
2
Bx 0

0
γS√

2
Bx

γI
2 Bx − 1

2 γIBz
1√
2
A

gs
⊥

γS√
2
Bx

0 0
γS√

2
Bx

1√
2
A

gs
⊥ D

gs
0 − γSBz +

γIBz−A
gs
‖

2
γI
2 Bx

0 0 0
γS√

2
Bx

γI
2 Bx D

gs
0 − γSBz −

γIBz−A
gs
‖

2


(8)

where the blocks are defined by states of equal values of mS , and where, without loss of generality, we define the
direction of the transverse magnetic field as the x-direction, e.g. that By = 0 and Bx =: B⊥.

We now evaluate Eq. (7) for Ĥgs = Ĥ0 + V̂ with Ĥ0 = Dgs
0 Ŝ

2
z +γSbzŜz+γIbz Îz and V̂ = B⊥(γI Îx+γSŜx)+Ŝ ·A · Î,

and α corresponding to the mS = 0 subspace. This leads to the following matrix elements,
〈1| ĤmS=0

eff |1〉
h

= +γIBz
2 + (Ags

⊥ )2

Ags
‖ − 2Dgs

0 + 2γIBz − 2γSBz

+ 4γ2
SB

2
⊥D

gs
0

(Ags
‖ − 2Dgs

0 + 2γSBz)(Ags
‖ + 2Dgs

0 + 2γSBz)
, (9)

〈2| ĤmS=0
eff |2〉
h

= −γIBz2 + (Ags
⊥ )2

Ags
‖ − 2Dgs

0 − 2γIBz + 2γSBz

+ 4γ2
SB

2
⊥D

gs
0

(Ags
‖ − 2Dgs

0 − 2γSBz)(Ags
‖ + 2Dgs

0 − 2γSBz)
, (10)

〈1| ĤmS=0
eff |2〉
h

= 〈2| Ĥ
mS=0
eff |1〉
h

= +γIB⊥
2 + γSB⊥A

gs
⊥/2

Ags
‖ − 2Dgs

0 + 2γSBz
+ γSB⊥A

gs
⊥/2

Ags
‖ − 2Dgs

0 − 2γSBz

+ γSB⊥A
gs
⊥/2

Ags
‖ − 2Dgs

0 + 2γSBz − 2γIBz
+ γSB⊥A

gs
⊥/2

Ags
‖ − 2Dgs

0 − 2γSBz + 2γIBz
. (11)

Since γI � γS , we simplify in all denominators the terms (γS ± γI) ≈ γS . In similar fashion, we use the fact that
Ags
‖ � Dgs

0 and thus set (Ags
‖ ± 2Dgs

0 ) ≈ ±2Dgs
0 in all denominators. We obtain the following effective Hamiltonian

for the 15N spin in the mS = 0 manifold:

ĤmS=0
eff
h

= 1
2

+γIBz + +γSBz(Ags
⊥ )2−Dgs

0 (Ags
⊥ )2−2Dgs

0 (γSB⊥)2

(Dgs
0 )2−(γSBz)2 γIB⊥ −

2γSB⊥Ags
⊥D

gs
0

(Dgs
0 )2−(γSBz)2

γIB⊥ −
2γSB⊥Ags

⊥D
gs
0

(Dgs
0 )2−(γSBz)2 −γIBz + −γSBz(Ags

⊥ )2−Dgs
0 (Ags

⊥ )2−2Dgs
0 (γSB⊥)2

(Dgs
0 )2−(γSBz)2

 . (12)
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Next, we add an energy-offset of
(
Dgs

0 (Ags
⊥ )2 − 2Dgs

0 (γSB⊥)2) / ((Dgs
0 )2 − (γSBz)2) to place the energy levels sym-

metrically around zero, and thereby obtain the Hamiltonian given in the main text,

ĤmS=0
eff
h

= 1
2

[
γIBz + νz γIB⊥ + ν⊥

γIB⊥ + ν⊥ −γIBz − νz

]
. (13)

where

νz = γSBz(Ags
⊥ )2

(Dgs
0 )2 − (γSBz)2 (14)

denotes the correction to the diagonal elements caused by mixing between states of different mS , and

ν⊥ = −2 γSB⊥Ags
⊥D

gs
0

(Dgs
0 )2 − (γSBz)2 (15)

is the corresponding correction to the off-diagonal elements. Note that these expressions for νz and ν⊥ are diverging
for Dgs

0 = γSBz, e.g. near the ground state level anti-crossing. However, Van Vleck formalism is not applicable to that
regime since the corresponding electronic subspaces of H0 are not sufficiently spaced in energy once this condition is
approached.

II. Numerical Model for Optical Pumping under ESLAC Conditions

In this section, we present in detail our numerical model for simulating the spin dynamics of the NV center with
and without green illumination for a given magnetic field B. To calculate the trajectory of both the electron and
nuclear spin under optical pumping it is necessary to consider not only classical rate equations coupling the orbital
states, but also to incorporate the quantum mechanical evolution of the spins within each orbital state. Our model
follows an approach previously taken to model the effect of chemical reaction kinetics on NMR spectra [53].

II.1 Mathematical Description of the Model

We model the room temperature NV− center as a system made up of three distinct electronic states: The ground
state (gs), the excited state (es), and a meta stable singlet state (s). We neglect the distinct Ex and Ey orbital
branches in the excited state as they are efficiently averaged at room temperature, as well as the existence of two
singlet states - we assume that there is only one such singlet state. We also neglect laser induced ionization to the
NV0 state.

First we define a separate spin density operator for each orbital state (labelled with α) which evolves coherently
per the Liouville-von Neumann equation of motion

d
dt ρ̂α = ˆ̂

Lαρ̂α, (16)

where the carets denote operators, double carets denote superoperators, and α indexes over the different orbital states.
The commutation superoperator ˆ̂

Lα in Equation (16) can be calculated from the corresponding Hamiltonian Ĥα as

ˆ̂
Lα = −i

(
Ĥα ⊗ Eα − Eα ⊗ ĤT

α

)
, (17)

where α ∈ {es, gs, s} denotes the orbital, Eα is the identity matrix of the same dimensionality as Hα and T denotes
matrix transposition. The Hamiltonians for each orbital state are given by:

Ĥgs,es/h = Dgs,es
0 Ŝ2

z + Ŝ ·Ags,es · Î + γSB · Ŝ + γIB · Î (18)
Ĥs/h = B · σ̂ . (19)

where Ŝ and Î are angular momentum operators for the electron and 15N nucleus acting on the joint electron/nuclear
Hilbert space, and σ̂ are the 2x2 spin-1/2 matrices. The constants and coupling tensors are defined in table I. Next,
we couple these differential equations with additional (real valued) superoperators corresponding to the incoherent



11

optical pumping process. These superoperators act to reduce or increase the population of a given spin state and thus
take the role of spin-selective relaxation superoperators

d
dt ρ̂gs = ˆ̂

Lgsρ̂gs − kgreenρ̂gs + kredρ̂es + ks1( ˆ̂
S⊗+1 + ˆ̂

S⊗−1)ρ̂s + ks0
ˆ̂
S⊗0 ρ̂s

d
dt ρ̂s = ˆ̂

Lsρ̂s − (2ks1 + ks0)ρ̂s + k
ms=|1|
ISC

ˆ̂
T e( ˆ̂

P1 + ˆ̂
P−1)ρ̂es + kms=0

ISC
ˆ̂
T e

ˆ̂
P0ρ̂es

d
dt ρ̂es = ˆ̂

Lesρ̂es + kgreenρ̂gs − kredρ̂es − kms=|1|ISC ( ˆ̂
P+1 + ˆ̂

P−1)ρ̂es − kms=0
ISC

ˆ̂
P0ρ̂es, (20)

where ˆ̂
P±1,0 are projection superoperators that project ρ̂α onto the NV-electron spin state with mS = ±1, 0 while

leaving the dimensionality of ρ̂α unchanged. This superoperator ensures that the rate of inter system crossing (ISC)
out of the excited state depends on the instantaneous spin state population of ρ̂es. Next, ˆ̂

T e is a partial trace
superoperator that acts on a 36-dimensional joint electron/nuclear density operator and traces out the NV-electron
degrees of freedom, leaving a 4-dimensional density operator corresponding only to 15N. Finally, ˆ̂

S⊗0,±1 is a direct
product superoperator that acts on a 4-dimensional 15N density operator and turns it into a joint electron/nuclear
density operator with the NV-electron in the state ms = 0,±1. Note that because their effect changes dimensionality
of ρ̂α, the matrix representations of ˆ̂

T e and ˆ̂
S⊗0,±1 are not square. Further, since none of these superoperators act

on the 15N degrees of freedom this model assumes that the nuclear spin state is preserved throughout the optical
pumping process. Equation (20) is normalized such that the sum of the traces of the spin density operators ρα is equal
to 1, meaning Trace{ρ̂α} is the fractional population of the total system in orbital state α. We will give procedures
for generating the corresponding matrix representations for the superoperators in Eq. (20) later in this section.

Figure 5 shows a pictorial representation of the processes modeled by Eq. (20). The ground and excited states are
coupled via optical excitation with rate kgreen and radiative decay with rate kred respectively. The spin selective ISC
causes non-radiative transitions from the excited state to the singlet, described by the rates kms=±1,0

ISC . Relaxation
from the electronic singlet into the ground state is also electron spin selective, with rates given by kms=1 and kms=0
respectively. The precise values for the ISC and relaxation rates have been subject to considerable debate. At the
end of these section we present modeling results for different sets of these parameters.

FIG. 5. Level Structure for the optical pumping model. Each of the three orbital states is governed by its own Hamiltonian.

By concatenating the vector representations of ρ̂gs, ρ̂s, and ρ̂es into a single 76x1 spin density operator for the
entire system, ρ̂, Eq. (20) can conveniently be cast in matrix form:

d
dt

[
ρ̂gs
ρ̂s
ρ̂es

]
=
[ ˆ̂
Lgs − kgreen

ˆ̂
E36 +ks±1( ˆ̂

S
⊗
1 + ˆ̂

S
⊗
−1) + ks0

ˆ̂
S
⊗
0 +kred

ˆ̂
E36

0 ˆ̂
Ls − (2ks±1 + ks0) ˆ̂

E4 +kmS=|1|
ISC

ˆ̂
Te( ˆ̂

P1 + ˆ̂
P−1) + k

mS=0
ISC

ˆ̂
P0

kgreen
ˆ̂
E36 0 ˆ̂

Les − kf
ˆ̂
E36 − k

mS=|1|
ISC

( ˆ̂
P1 + ˆ̂

P−1) − kmS=0
ISC

ˆ̂
P0

] [
ρ̂gs
ρ̂s
ρ̂es

]
, (21)

where E36(4) is a 36x36(4x4) identity matrix. In the following, we will call the resulting 76x76 dimensional matrix
ˆ̂
A. Note that because of how we formed ρ̂ by concatenation it cannot represent coherences between different orbital
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states, however such coherences are unlikely to be significant and are not necessary to explain the physics of interest
in this work. We also note that since we use identity superoperators to represent the radiative processes, spin-spin
coherences will be preserved under optical excitation and radiative decay within this model. Since the matrix ˆ̂

A
commutes with itself for all values of time t, Eq. (21) can easily be integrated and thus the time evolution of the
system can be calculated as

ρ̂(t) = e2π ˆ̂
Atρ̂(0), (22)

for any time t. At any given time the first 36 entries of ρ̂(t) corresponds to ρ̂gs(t) written in vector form, the next
4 entries are ρ̂s(t) and the last 36 are ρ̂es(t). We take the predicted instantaneous photoluminescence for ρ̂(t) as the
fractional population in the excited electronic state,

PL(t) = Trace{ρ̂es(t)} . (23)

We note that in this work we use Eq. (22) to calculate the time evolution of the system both in the presence and and
absence of green illumination by choosing different values for the parameter kgreen and calculating the propagation
piecewise with different ˆ̂

A matrices.

II.2 Matrix Representations of Superoperators

We define the matrix representations of the 15N spin operators on the joint electron/nuclear space as Îx/y/z =
σ̂x/y/z ⊗ Ê3 and the NV-electron spin operators as Ŝx/y/z = Ê2 ⊗ λ̂x/y/z, where λ̂ are the 3x3 spin-1 matrices. The
action of the partial trace superoperator is defined by ˆ̂

T eÎx/y/z = Trace{Ê3}σ̂x/y/z. In the numerical implementation
of our model we vectorize operators as 36x1 or 4x1 dimensional column vectors. The matrix representation of ˆ̂

T e is
determined following the procedure layed out in [53] and reproduced here for completeness:

{ ˆ̂
T e}αβ =

{
1 , if m = n

0 , else
(24)

where

α = (i− 1) · dI + j

β = (((i− 1) · dS +m)− 1) · dS · dI + (j − 1) · dS + n , (25)

where i, n = 1 ...dI count through the degrees of freedom of the first subspace (nuclear in our case), and j,m = 1 ...dS
count through the degrees of freedom of the second subspace (NV-electron in our case). The resulting ˆ̂

T e matrix is
4x36 dimensional.

The matrix representation of the direct product superoperator ˆ̂
S⊗0,±1Ê2 = Ŝ0,±1 is

{ ˆ̂
S⊗0,±1}αβ = {κ̂0,±1}mn (26)

where

α = (((i− 1) · dS +m)− 1) · dS · dI + (j − 1) · dS + n

β = (i− 1) · dI + j , (27)

and

κ̂+1 =

1 0 0
0 0 0
0 0 0

 κ̂0 =

0 0 0
0 1 0
0 0 0

 κ̂−1 =

0 0 0
0 0 0
0 0 1

 . (28)

The numbers i, j, n, m, dS and dI are the same as defined above. The resulting dimensionality of the matrix
representation of ˆ̂

S⊗0,±1 is 36x4.
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Finally, we define the matrix representation for the projection superoperator,

ˆ̂
P0,±1 =

4∑
k=1

ρk0,±1 · (ρk0,±1)T (29)

where ρk0,±1 = κ̂knuc ⊗ κ̂0,±1 is the 36x1 column vector representation of the joint 6x6 density matrix operator and

κ̂1
nuc =

(
1 0
0 0

)
κ̂2

nuc =
(

0 1
0 0

)
κ̂3

nuc =
(

0 0
1 0

)
κ̂4

nuc =
(

0 0
0 1

)
. (30)

While ˆ̂
T e and ˆ̂

S⊗0,±1 both change the dimensionality of the state they operate on, ˆ̂
P0,±1 is a square 36x36 matrix and

thus preserves dimensionality. The sum in equation (29) ensures that ˆ̂
P0,±1 projects onto a particular electronic spin

state, while leaving the nuclear spin unchanged.

II.3 Details on Simulation Evaluation

In order to simulate the PL of the all-optical pulse sequence introduced in the main text using the model described
above, one needs to choose values for the various NV parameters and transition rates k. Here, apart from Dgs

0 which
we determine experimentally as described later in the SI, we use literature values for these simulation parameters.
The exact numbers employed are listed in table I and originate from [33, 34]. For the optical transition rates, we
consider five different sets of numbers, labeled parameter sets 1 to 5, as shown in the table II.

Dgs
0 [MHz] +2870.760402

Ags
‖ [MHz] +3.03

Ags
⊥ [MHz] +3.65

Des
0 [MHz] +1420

Aes
‖ [MHz] −57.8

Aes
⊥ [MHz] −39.2

γS [MHz/G] 0.000431744
γI [MHz/G] 2.802494716

TABLE I. Numeric values for the employed NV parameters.

Parameter Parameter Parameter Parameter Parameter
Set 1 Set 2 Set 3 Set 4 Set 5

kred [MHz] 66 77 63.70 63.2 67.4
kmS=0

ISC [MHz] 0 0 12.97 10.8 9.9
k

mS=|1|
ISC [MHz] 57 30 80.00 60.7 96.6
ks0 [MHz] 1.0 3.3 3.45 0.8 4.83
ks1 [MHz] 0.7 0 1.08 0.4 1.055
Reference [45] [54] [55] [16] [56]

TABLE II. Numeric values for of the optical transition rates used in our model. We consider five different parameter sets. In
the main text, we use set 4.

Note that parameters sets 1 and 2 assume kmS=0
ISC = 0, prohibiting inter system crossing for mS = 0 population

in the excited state. Using the values of either of these sets, we fully simulate the all-optical sequence described in
the main text, that consists of a green initialization pulse, followed by a interval of free evolution in the dark and
subsequent PL readout during a short green laser pulse. First, we simulate optical pumping of ρ̂(0) at NV saturation
for 3000 ns, e.g. setting kgreen = s ·kred with s = 35% as determined experimentally on the single NV sample. To that
end, we choose ρ̂(0) such that all six states in the ground electronic orbital are occupied with each 1/6, and the excited
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orbital states and the single states are empty. Afterwards, we run the model with kgreen = 0, propagating the optically
pumped state in the dark for 290 ns. This empties out the singlet into the ground state. Subsequently, still with
kgreen = 0, we propagate the system for a duration τ , followed by a readout made up of 350 ns with kgreen = s · kred.
This readout pulse is simulated in steps of 1 ns, and the total PL(τ) is the sum of the PL of each step. Plotting PL(τ)
yields an oscillation whose frequency f we determine by taking the position of maximum of the corresponding Fourier
spectrum. The contrast C of the oscillation in PL(τ) is also determined via the Fourier spectrum: We compute it as
C = 4V/V0 where V is the amplitude of the detected Fourier space peak, and V0 is the Fourier space peak at zero.

Param.Set 1

Param.Set 3

Param.Set 5
Param.Set 4

Param.Set 2

C C

a b

FIG. 6. The data shown in Fig 2b and d in the main text, together with the results of the numerical simulation, run with each
of the five optical transition rate parameter sets. Overall, set 4 has the best agreement with the data, which is why model 4 is
used for all numerical results shown in the main text.

With this procedure, we simulate both the nuclear precession frequency f as well as the precession contrast C, for
B-field values corresponding to every pixel shown in Fig 2b in the main text. The numeric result for the precession
contrast C is shown in Fig. 6a, where for ease of comparison, the experimental data has been normalized to 1 and the
simulation to 0.75. The plot demonstrates that the numeric result depends strongly on the chosen optical transition
rates. Specifially, depending on the employed optical set of parameters, we find maximal contrast for B⊥ between 7.9
and 10.2G.
In Fig 6b we show the results of running the model for B-field values that correspond to the measurement shown

in Fig 2d in the main text. Again, it is evident that the choice of optical transition rates has a significant effect on
the numeric result. All set of parameters predict a global maximum in C between 530 and 550G. Interestingly, sets
1 and 2 which dictate kmS=0

ISC = 0 differ drastically from the other parameter sets with kmS=0
ISC 6= 0 in that they show

a second local maximum for C at about 470G. This is not consistent with our data.
Overall, we find that parameter set 4 has the best agreement with our data, and thus we use set 4 for all simulations

shown in the main text’s figures. Note that since PL(τ) is not true to scale, we normalize all numeric results for C
shown in the main text to the corresponding data.

Finally, we note that the numeric model agrees very well with the analytic predictions for the nuclear precession
frequency. This excellent agreement is demonstrated in the main text’s figure 3b. We want to emphasize, however,
that not only the precession frequency fnuc = γI |Beff | of numerical and analytical predictions agree well, but also the
tilt angle ϑ of Beff , as shown in Fig. 7. Here, Beff and its tilt angle ϑ are calculated numerically by diagonalization
of Ĥgs, or analytically via Eq. (2) in the main text. Combined, this means that both approaches yield the same Beff .

Simulation
Analytic

FIG. 7. Prediction of the tilt angle ϑ of Beff of both our the numeric simulation and the analytic approach based on Van Vleck
perturbation theory. These predictions have excellent agreement.

III. Magnetic Field Map

In the main text’s Fig. 2b (and 3b), we have shown the same data as in Fig 1a (and 3a), but plotted against the
transverse magnetic field B⊥. Here, we elaborate on how this magnetic field is determined experimentally. Since
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we generate the external magnetic field with a permanent magnet that is mounted on a goniometer, and since this
goniometer does not rotate about the NV perfectly, it is in general not accurate to simply measure |Bext| and set
B⊥ = sin(Φ)|Bext|. Instead, we measure the magnetic field vector components B⊥ and B‖ individually for every other
pixel of the main text’s Fig. 2a, using the same experimental conditions, by taking an optically detected magnetic
resonance (ODMR) spectrum of each individual pixel. This way, we experimentally determine all four transition
frequencies for a given magnetic field; two corresponding to the hyperfine transitions from the electron spin manifold
|0〉 to the electron spin manifold |+1〉, and two corresponding to the hyperfine transitions from |0〉 to |−1〉. Then, we
determine Dgs

0 by fitting the ground state Hamiltonian Ĥgs as defined in the main text to the four measured transition
frequencies of the center pixel, where we enforce B⊥ = 0 since Φx = Φy = 0. We find Dgs

0 = 2870.760402 MHz. Using
this calibration of Dgs

0 , we then determine the magnetic components B‖(Φx,Φy) and B⊥(Φx,Φy) of all other pixels
by fitting Ĥgs to the transition frequencies of these pixels, using Dgs

0 as determined before. In the end, we interpolate
both B‖(Φx,Φy) and B⊥(Φx,Φy) to twice the density in Φx and Φy to match the pixel density of Fig. 2a (respectively
3a). This interpolated result is shown in Fig. 8a and b, where |B| = 533 G. The simulations shown in the main text,
as well as the data in Fig. 2b and 3b are based on these experimentally determined magnetic field values.

a On-Axis Magnetic Field On-Axis Magnetic Fieldb c Scaling of       with angle 

in Gauss in Gauss

Linear Fit

FIG. 8. a Parallel magnetic field component B‖ and b transverse magnetic field component B⊥ as a function of tilt angles Φx

and Φy, measured via optically detected magnetic resonance of all four microwave-driving 15N transitions. Each of the shown
pixels corresponds to one pixel in the main text’s Fig. 2a and 3a. The total magnetic field is about |B| = 533 G. c Measured
transverse magnetic field as a function of total tilt angle Φ, revealing a linear dependance with slope 10.01G/deg, allowing for
a simple conversion of B⊥ to corresponding Φ and vice versa.

Further, these magnetic field data can be plotted against total angle, Φ = (Φ2
x + Φ2

y)1/2, as shown in Fig. 8c,
revealing a near-linear dependance of B⊥ on Φ. This is to be expected, since for |B| = 533 G and small angles Φ as
investigated here,

B⊥ = sin(Φ · π/180◦)|B| ≈ Φ · π/180◦|B| = Φ · 9.3G/deg . (31)

The linear fit shown in Fig. 8c gives that in our experiment the slope is 10.01G/deg. This slightly larger value compared
to above prediction (and its not perfeclty linear shape) is explained by the fact that the goniometer employed in our
experiments is not rotating the permanent magnet perfectly about the NV, resulting a slight change in total magnetic
field whenever the magnet is rotated.

Finally, note that we use the slope of 10.01G/deg to convert B⊥ to Φ – but only for data taken at |B| = 533 G
because this is the only field where we acquired ODMR data for the entire range of the goniometer. Specifically, as
discussed in the main text, at |B| = 533 G the best contrast is achieved at B⊥ = 9.4 G which thus corresponds to
Φopt = 0.94◦.

IV. Ensemble Data

In the main text’s Fig. 2 and 3, we discuss the dependance of the of the observed nuclear precession on the applied
magnetic field in the context of a single NV. However, all that data can also be reliably reproduced on a full ensemble
of NVs. In Fig. 9, we show the results of these ensemble measurements which were taken on the NV ensemble described
in the main text: an unstructured, grown diamond with 15NVs that are preferentially aligned with a specific crystal
orientation. These ensemble measurements reproduce the single-NV data in both qualitative and quantitative way,
demonstrating that the all-optical nuclear quantum sensing scheme proposed in this work does scale well to NV
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c d

a b

FIG. 9. Same measurement as shown in the main text in Fig. 2a, c, d and Fig. 3a, but here the data were taken on an ensemble
of NVs rather than on a single NV. We find the same qualitative and quantitative result, with the only difference being a
slightly lower contrast C.

ensembles. We note, however, that the ensemble shows a contrast C of about half the single-NV contrast, which we
assign to the minority of non-aligned NVs.
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