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“... was ist das?”

“Das ist, äh, eine Doktorarbeit.”

“Eine Doktorarbeit? ... Jetzt bin ich aber erleichtert. Ich dachte schon, es sei eine
schreckliche Krankheit.”

“Das ist eine Doktorarbeit gewissermaßen auch.”

Rumo & die Wunder im Dunkeln, Walter Moers





Abstract

As computing requirements and data volumes continue to increase, the need for faster,
more efficient memories has become a driving force in many research areas. One
proposed alternative to current ferromagnetic (FM) storage technology is antiferro-
magnetic (AFM) memories, which promise faster, more energy-efficient switching and
higher bit densities. Developing such technologies requires progress on two fronts. On
the one hand, we must understand and harness the AFM magnetic textures central
to the proposed memory devices. At the same time, we require technologies capable
of addressing these typically hard-to-access systems. In this thesis, we use magne-
tometry based on the nitrogen vacancy (NV) center in diamond to address both sides
of this problem.

NV magnetometry, in particular scanning magnetometry, can be employed in a
variety of environmental conditions, providing access to a wide range of materials and
phenomena. Furthermore, the high magnetic field sensitivity and spatial resolution
achievable with this technique enable us to address the nanoscale magnetic textures
of interest. However, sensitivity and resolution are limited by our ability to collect
the NV center photoluminescence (PL) and by how close we can bring the NV to the
magnetic field source, respectively. Here, we aim to improve on the state-of-the-art
scanning NV magnetometry probe with a novel design based on a truncated parabolic
pillar. The parabolic nature of the pillar leads to excellent directional emission of the
PL, allowing us to demonstrate median PL rates of 2.1 MHz and collection efficiencies
of 57%. As such, we realize improved sensitivities compared to the state-of-the-
art scanning probes while simultaneously achieving nanoscale resolution through the
truncated end facet of the pillar.

We then use these improved scanning probes to study the magnetic properties of
a magnetoelectric AFM – chromia (Cr2O3). Due to its room-temperature AFM or-
dering and the ability to switch the magnetic order with electric fields, this material
is a popular candidate for spintronics applications. In our study, we demonstrate
control over the magnetic orientation of a bulk Cr2O3 crystal and employ its magne-
toelectric properties to nucleate domain walls (DWs). Using NV magnetometry, we
characterize the surface magnetization of Cr2O3 and investigate the DW structure.
We furthermore demonstrate an interaction between the DW and patterned surface
topography, allowing us to develop a model of the DW mechanics. In particular, we
observe a Snell’s law-like behavior of the DW in the presence of topographical steps
and pinning of the DW to the edges of these steps. We use this pinning, together
with local heating of the Cr2O3 crystal, to exert control over the motion of the DW.

These results bring us one step closer to achieving AFM-based memories. Having
shown the ability to generate, control, and move DWs in an AFM crystal, we have laid
the groundwork for a DW-based memory. Moreover, by improving the understanding
of antiferromagnetic DW mechanics, we highlight material properties of Cr2O3 that
may benefit and guide future material research.
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1. Introduction

From phones and watches to fridges and traffic lights, smart devices have become
a fundamental part of daily life. Though the scale of the computers that form the
foundation of this “smart” revolution has drastically changed since the earliest re-
alizations, they are still based on the same principles. They rely on controlling the
flow of electronic charges through series of transistors, capacitors, and integrated cir-
cuits. While the progress in electronics has enabled us to perform operations, store
and access information at very high rates, such systems tend to be highly volatile.
Once the power is turned off, that information is gone. For this reason, non-volatile
data storage methods are crucial to modern computing. However, as we near physical
limits on data density and computation speeds, the need for alternative technologies
will continue to grow.

One source of such alternatives is the field of study known as spin electronics or
spintronics. Here, the goal is to harness the electronic spin in magnetic systems as
an alternative or complementary degree of freedom to the electron charge [1, 2]. A
classic example of harnessing magnetic systems for data storage is ferromagnetic (FM)
memories as found in hard drives. These memories rely on the reading and writing
of information to and from nanoscale domains in a magnetic material. In the ’90s,
spintronics found great commercial success through the development of spin valves,
which use the giant magnetoresistive effect to read out magnetic bits [3]. The discovery
of other techniques for manipulating spins, including spin-transfer torque [4] or spin-
orbit torque [5], has continued to push the development of new memory technologies
due to the promise of low energy consumption, fast switching times, and non-volatility.
Devices based on magnetic textures such as domain walls (DWs) or skyrmions have
also been suggested as alternate forms of magnetic memories. These devices could
eliminate the need for a moving read/write head and enable higher bit densities [6–8].
Such magnetic textures have also been proposed in new, non-volatile logic elements [9,
10].

Critical to the development of spintronic technologies is the identification, fabrica-
tion, and characterization of new magnetic materials. Historically, FMs have been
used due to the ease with which one can read and write magnetic regions. Unfortu-
nately, switching of magnetic domains in such materials is typically limited to GHz
speeds [11] and their susceptibility to magnetic fields makes the stored data vulnerable
to strong external fields.

Therefore, a promising development in spintronics has been to move away from
traditional FM materials to antiferromagnetic (AFM) materials. Antiferromagnets
lack an overall magnetic moment and are therefore robust against external magnetic
fields [12]. Additionally, the observation of THz switching and spin excitation has
proven very attractive [13, 14]. However, due to their robustness against magnetic
fields, controlling the magnetic order of AFMs with such fields is typically difficult.
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For this reason, the ability to control the magnetic state of the material through the
application of electric fields rather than currents is a particularly appealing quality as
it could significantly reduce the energy cost of manipulating the material state [15].
Electric field switching is achievable, for example, using multiferroic materials, which
exhibit simultaneous magnetic, electric, or elastic orderings, or in magnetoelectric
materials, which exhibit coupled magnetic and electric properties. One material,
which has shown much promise in this direction is chromia or Cr2O3, an insulating
magnetoelectric crystal. Recent demonstrations of electric field-based reading and
switching of the magnetic order in Cr2O3 highlight its potential for future spintronic
technologies [16–18].

To guide future application directions and discover new functionalities, an under-
standing of the underlying physics and magnetic ordering in materials such as Cr2O3 is
paramount. To achieve this, we require techniques to image and study the magnetic
ordering and textures in a diverse range of systems. However, the fundamentally
nanoscale range of such magnetic textures and the high-frequency nature of their
dynamics place rather strict requirements on the methods used to investigate them.
One of the most common techniques is magnetic force microscopy (MFM). Here, the
signal arises from the interaction between a magnetic tip and the stray magnetic field,
allowing for very high spatial resolution [19]. Similarly, magnetometry based on super-
conducting quantum interference devices (SQUIDs) relies on measuring the magnetic
flux and shows incredible sensitivities [20]. Photoemission electron microscopy based
on X-ray magnetic circular dichroism (XMCD-PEEM), on the other hand, measures
the interaction between X-ray polarization and the magnetic orientation of a crystal,
providing very high temporal resolution in a pump-probe configuration [21]. In recent
years, another technique that has proven very successful for imaging nanoscale spin
textures such as skyrmions [22, 23] and DWs in FMs [24] but also domain structures
in AFM multiferroics [25, 26] is magnetometry based on the nitrogen vacancy (NV)
defect in diamond.

The NV center is an atomic diamond defect, which due to its electronic spin state,
exhibits excellent sensitivity to stray magnetic fields. Such stray fields may arise
from magnetic spin textures or even from a single atomic layer of magnetic moments.
One of the enabling factors here is the long spin coherence time, which may be used
to detect not only static (DC) but also oscillating (AC) signals in a wide range of
materials [27]. Furthermore, in scanning NV magnetometry, where the NV is placed
at the apex of a diamond pillar probe, real-space imaging of magnetic systems may
be performed with nanoscale resolution [28–30]. The high sensitivity and nanoscale
resolution are two significant advantages of this technique, but it also benefits from
impressive stability over a wide range of temperatures [31]. This versatility of NV
magnetometry and its ability to measure magnetic textures in real space makes this
a powerful technique and allows us to address typically difficult-to-image materials
and magnetic textures.



3

Scope of this thesis

Over the course of this thesis, we aim to show how NV magnetometry may be used to
develop a better understanding of the magnetic properties of Cr2O3 through imaging
and characterization of the mechanics of DWs. In doing so, we hope to open up a
path to novel AFM memory devices. In the process, we will also address the issue of
improving the performance of NV magnetometry through diamond fabrication.

We begin in Chap. 2, by introducing the underlying principles of NV magnetometry,
starting with the structure of the NV center and its spin energy levels. From here,
we see how to achieve all-optical spin initialization and readout. We then discuss the
NV center charge state, which forms an often overlooked source of background for
the readout process. Following this, we dive into a description of NV magnetometry.
Specifically, we discuss the magnetic field dependence of the NV spin states and how to
determine the local stray field through optically detected magnetic resonance imaging.
We conclude this section with a theoretical discussion of the primary driving factors
of this technique: the magnetic field sensitivity and spatial resolution.

We will see that the spatial resolution is determined by how close the NV can be
brought to the source of the magnetic fields, while the sensitivity is strongly influenced
by our ability to collect the NV photon emission. Unfortunately, the latter of these
two points is hindered by reflection from the diamond surface due to the high index
of refraction of diamond. For this reason, in Chap. 3, we explore how both of these
aspects can be addressed by engineering the diamond environment. Specifically, we
present a novel form of scanning diamond probe, whose parabolic tip shape leads to
excellent waveguiding of the NV emission and high collection efficiencies. To quantify
this, we first present simulations of our devices. We then motivate the design and
highlight the improved collection efficiency and angular emission compared to tradi-
tional cylindrical scanning probes. We also briefly examine the fabrication techniques
used to create these structures before moving into a detailed characterization of our
devices. We conclude by again returning to a discussion of the sensitivity and spatial
resolution achieved through these structures.

Finally, we turn to the ultimate goal of this thesis, a study of DW mechanics in
Cr2O3. In Chap. 4, we first give a theoretical introduction into the typical energies
involved in magnetic systems as well as the origins of the magnetoelectric effect. We
then focus on the physical and magnetic structure of Cr2O3 in more detail, including
a description of the surface magnetization, an important source of stray magnetic
fields. We then use scanning NV magnetometry to characterize the magnitude and
temperature dependence of this surface moment. Following this introduction, we
move to a description of DWs. We demonstrate the ability to nucleate these DWs
in a bulk Cr2O3 single crystal using a method known as magnetoelectric annealing.
We then attempt to use NV magnetometry to extract both the DW type and width.
Quantitative stray field images of the DWs obtained through NV magnetometry allow
us to analyze the behavior of the DW as it interacts with raised structures patterned
on the Cr2O3 surface. We observe both pinning and a Snell’s law-like deflection of the
DW, which we proceed to explain through simulations and analytic calculations using
energy minimization arguments. Combining the pinning we have observed with local
heating from a focused laser, we also demonstrate control over the DW position in
the crystal – an essential step for realizing novel AFM memories. Finally, we shift to
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a discussion of recent results focusing on raising the critical temperature of thin-film
Cr2O3. We finish by bringing together the results of this chapter into a proposal of a
new form of DW-based magnetic memory and explore possible future directions for
Cr2O3 studies.

In Chap. 5, we conclude our discussion. We present a summary of the critical
results and look towards the future. For instance, we explore necessary improvements
to the scanning setup that will allow us to expand the functionality of scanning
NV magnetometry. We also present several potentially exciting research directions,
focusing on further AFM systems that promise to yield exciting physics.



2. Fundamentals of NV magnetometry

As the miniaturization of technology is pushed to its physical limits, sensing and
imaging of magnetic fields (magnetometry) at the nanoscale have become essential
tools. In spintronics, nanoscale magnetic textures such as skyrmions [2, 8, 23] and
domain walls (DWs) [6, 32] may be used to encode digital information; in biology,
sensing of minute magnetic fields from bacteria can help us learn more about cellular
processes [33]. These are just two cases in a wide range of magnetometry applications
spanning all of the natural sciences. What unites these applications are two universal
requirements: high sensitivity and high spatial resolution. One method to achieve
both of these points is sensing with the nitrogen vacancy (NV) center.

Though diamonds have been recognized for their hardness, purity, and optical prop-
erties for thousands of years, the realization that their defects could be used as a
powerful technological tool is much more recent. Since their initial characterization
in the 1970s [34], NV centers have become extremely popular. Many of the properties
that have made diamond so attractive, such as its biocompatibility and wideband
optical transparency, also make the NV a promising platform for sensing magnetic
fields [27, 31, 35], electric fields [36, 37], strain [38, 39] and temperature [40, 41] in a
wide range of materials and even in biological systems [42, 43].

To see how we can achieve high sensitivity and high-resolution imaging of anti-
ferromagnetic systems, we will spend this chapter investigating the NV’s properties,
focusing on magnetic field sensing at room temperature. We will begin by examining
the NV spin and charge states before moving into an introduction of NV magnetom-
etry. Our goal is to build up the theoretical building blocks used later in this thesis
when we explore NV centers in fabricated diamond structures and their ability to
image DW mechanics in an antiferromagnetic (AFM) crystal.

2.1. The NV center in diamond

In an ideal diamond, carbon will form a diamond-cubic structure, with each carbon
atom being connected to four others, resulting in rigid tetrahedral sub-structures.
However, one may introduce defects into this lattice, for example, by removing or
replacing one of these carbon atoms. In particular, when one carbon atom is replaced
by a nitrogen atom and one of its neighboring carbon atoms is missing leaving behind
a “vacancy”, the resulting combined defect is known as the NV center.

Such defects may occur naturally in diamond due to remaining atmospheric ni-
trogen during the growth process but can also be controllably generated. Recently,
the generation of NV centers based on the natural nitrogen content in diamond has
been achieved through high-power lasers [44, 45]. The most common method though,
involves bombarding the diamond with nitrogen ions [46, 47] and subsequently an-
nealing the diamond. In this way, the vacancies generated through the bombardment
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Figure 2.1.: The structure of the NV center. (a) The diamond lattice, hosting a
single substitutional nitrogen atom (green) next to a vacancy (dashed line). Dangling
bonds (light blue) from the nitrogen and nearby carbons (gray) contribute electrons
to the NV state. Here, the (100) diamond surface is colored in gray. The NV axis
(thick arrow) is shown in the circular inset, forming an angle θNV = 54.7◦ with the
[100] axis. Additionally, we show the NV center optical dipoles (dotted lines) in the
plane perpendicular to the NV axis. (b) Four possible orientations of the NV, with
the NV axis shown as an arrow and labeled with the corresponding crystallographic
description.

migrate, forming NV centers with the implanted nitrogen [48]. The resulting point-
like defect is shown in Fig. 2.1a.

Here, the line connecting the substitutional nitrogen and the vacancy forms a nat-
ural symmetry axis, referred to as the NV axis. This axis can have one of four
orientations in the lattice, given by the [111], [1̄,1,1̄], [1,1̄,1̄] and [1̄,1̄,1] axes [49], as
shown in Fig. 2.1b. From here on in, we will assume a [100]-oriented diamond surface.
In this case, the top diamond surface, shown in gray in Fig. 2.1a, corresponds to the
(100) plane. This orientation leads to a polar angle θNV = 57.4◦ between the [100]
crystal axis and the NV axis [50], as shown in the inset of Fig. 2.1a.

Due to the missing atom at the vacancy site, dangling bonds from the nearby carbon
atoms result in three unpaired electrons. The nitrogen supplies five more electrons,
three of which are covalently bonded to the nearby carbons, while the remaining
two will occupy the orbital states formed by the dangling bonds. This five-electron
state constitutes what is known as the neutral, or NV0 charge state. However, more
commonly, one additional electron will be drawn in from the surrounding environment,
giving rise to the negative, or NV− charge state. We will explore the difference
between these two charge states of the NV center in more detail in Sec. 2.1.2, but for
the time being, when we refer to the NV center, we will be restricting ourselves to
the negative charge state.
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2.1.1. Spin states of the NV center

Calculations of the energy levels of the NV center based on the six-electron configura-
tion [51, 52] reveal an S=1 spin triplet ground and excited state. Both states may be
characterized by the spin eigenstates |ms〉 of the Ŝz operator with respect to the NV
axis, such that Ŝz |ms〉 = ~ms |ms〉, where ms = 0,±1. At room temperature, the |0〉
and |±1〉 spin ground states are split in energy by spin-spin interactions, leading to a
zero-field splitting (ZFS) of D0 = 2.87 GHz, as shown in Fig. 2.2. The magnetic dipole
transitions between the |0〉 and |±1〉 states may therefore be driven by an external
microwave (MW) frequency field. Excitation between the orbital ground and excited
states, on the other hand, is achieved via a spin-preserving optical transition. While
the NV may be excited resonantly at 637 nm, we typically use an off-resonant, 532 nm
continuous wave (CW) laser to drive the optical transition for all three spin states.

Triplet
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state

Triplet
excited
state

53
2 

nm

63
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nm

Vibrational
modes

Singlet 
state

|±1

| 0

|±1

| 0

Figure 2.2.: Electronic state of the NV−. En-
ergy levels of the NV, highlighting the triplet
ground and excited state and the metastable sin-
glet state. Here, we show the |0〉 and |±1〉 states,
separated by the ZFS, D0. Non-resonant excita-
tion by a 532 nm laser is shown with solid, green
arrows, and MW driving of the spin states is
shown in blue. (Non-) Radiative decays are shown
as (dashed) solid arrows. The non-radiative decay
channel strength is shown with the intensity of the
line, emphasizing the non-spin-conserving nature
of decay via the singlet state.

Let us now use the energy level
diagram in Fig. 2.2 to discuss one
of the most important character-
istics of the NV center, namely
the ability to optically initial-
ize and read out the NV spin
states. To understand this, we
require one additional point: the
metastable singlet state of the NV
center [53], shown to the right
in Fig. 2.2. While the |0〉 state
decays primarily radiatively (red,
wavy arrows) with only weak non-
radiative decay (gray, dashed ar-
rows) to the singlet state, the
|±1〉 states have an over 50%
probability for non-radiative de-
cay. In Fig. 2.2, we denote the
strength of the non-radiative de-
cay channels by the gray scale of
the dashed arrows.

As the singlet state has a
significantly longer lifetime
(∼150 ns [54]) than the |±1〉
and |0〉 excited states (∼7 ns
and ∼13 ns respectively in bulk
diamond [55]), a significant por-
tion of the |±1〉 population will
be shelved into this metastable
state. During this shelving
period, the |0〉 state will undergo
multiple cycles of optical excitation and radiative decay. This process will therefore
lead to a contrast in photoluminescence (PL) between the |0〉 (bright) and |±1〉
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(dark) states of up to 30% [56]. In this way, we can differentiate between the
spin states using only optical detection methods. Furthermore, as the decay from
the singlet state is not spin-conserving [53], we will begin to transfer population
from the |±1〉 states into the |0〉 state. This process allows us to initialize the NV
center optically. Together with the MW driving of the spin states, we are able to
manipulate, readout, and initialize the spin state of the NV center.

2.1.2. Charge states of the NV center

While we will continue to focus on the negative charge state of the NV center through-
out this thesis, it is important to reiterate that this is not the only available charge
state. Though often neglected in discussions of NV magnetometry, the charge state
has been used as a successful alternative method for reading out the spin state of the
NV center [57]. Unfortunately, PL emission from the NV0 state also forms a fluo-
rescence background signal for our readout technique. As such, understanding where
this background comes from will also help us to overcome it.
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Figure 2.3.: The NV charge state. (a) Simplified energy levels of the NV− (red)
and NV0 (yellow) and their energetic position within the diamond bandgap. Two-
photon processes can lead to ionization of the NV− or recombination with the NV0,
at a rate γ−0 and γ0− respectively, as shown with black arrows. The radiative decay
rates of the two NV charge states are given by Γ− and Γ0. (b) Emission spectra of a
single NV center in a diamond pillar. The emission is measured with a spectrometer
(HRS-500-S, Princeton Instruments) while exciting the NV center with a CW 532 nm
laser. Here, the NV center undergoes a change in charge state, from being primarily
NV− (red) to predominantly NV0 (yellow). The ZPLs of the two charge states are
shown with black, dashed lines and labeled accordingly. Oscillations in the emission
spectrum arise from the cavity formed in the diamond pillar. (c) Charge state mea-
surement showing a histogram of the detected number of photons. The NV0 (yellow)
and NV− (red) distributions are fit according to Ref. [57], as shown with a dashed
black line. The dot-dashed yellow and red lines show the resulting thresholds needed
to distinguish the two charge states.



2.1. The NV center in diamond 9

Figure 2.3a, shows the simplified NV− and NV0 energy diagrams relative to the
conduction and valence bands of diamond [58]. It is possible for the excited NV− to
absorb a second photon, thereby moving the excess electron (black circle) to the
nearby conduction band as shown [59]. This process leaves the NV in the neutral
charge state. Conversely, a similar two-photon process can excite an electron from
the valence band, allowing it to combine with the NV0, forming the negative charge
state. These two processes are commonly known as ionization and recombination.
The rate at which these two processes occur is characterized by two light-intensity
dependent rates, γ−0 and γ0− respectively, which tend to be long compared to the
lifetime of the NV- excited states.

Despite the difference in their energy level diagrams [58], both NV− and NV0 show
similar emission spectra, as shown in Fig. 2.3b. Here, we present the emission spec-
trum of a shallow NV center within a diamond pillar, excited with a CW 532 nm laser.
Following a tri-acid clean [60], the NV center is found to be primarily NV− (red) but
becomes predominantly NV0 (yellow) after some time. From these spectra, we can
identify the broad phonon-mediated sideband of both charge states as well as their
sharp zero phonon lines (ZPL) at 575 nm for the NV0 and 637 nm for the NV− [61].
Due to the significant overlap between the two spectra, it can be challenging to dif-
ferentiate the PL of the two charge states. Unfortunately, the NV0 does not show the
same spin-state dependent PL as the NV−. Therefore, without careful control [57],
any time spent in the NV0 state will reduce the NV− spin readout contrast.

One way in which one can control the charge state fluctuations is to reduce the
ionization rate. Whereas the NV− and NV0 PL rates (Γ− and Γ0 respectively) depend
linearly on the excitation power below saturation, both γ−0 and γ0− show a quadratic
power dependence [59]. Therefore, working at low excitation powers can lead to
higher charge stability. To reduce the NV0 background, one can use the wavelength
dependence of the two spectra in Fig. 2.3b. Specifically, we see that the NV0 spectrum
is shifted to slightly shorter wavelengths compared to the NV− spectrum. While the
broad, overlapping phonon sidebands prevent us from completely filtering out the
NV0 emission, one can use a long-pass filter to remove a large portion of the NV0 PL
while losing only a fraction of the NV− PL.

The frequency shift between the NV− and NV0 spectra is also key to distinguishing
the charge states. In particular, there is a small wavelength interval around 594 nm
in which one can optically excite NV− while only weakly exciting NV0. By driving
the NV center with a laser within this wavelength range and using a long-pass filter,
we can obtain a factor of 20 difference in the PL rate of the two charge states [57].
Specifically, we drive the NV with 0.49 µW of 594 nm CW excitation over 812.5 µs
while simultaneously counting the detected photons. We see the result of such a mea-
surement in Fig. 2.3c. Here, we have created a histogram of the number of measured
photons over 100 000 repetitions. We observe two well-separated distributions which
we associate with the NV0 state (yellow) and NV− state (red), where we see the clear
difference in PL rate between the two charge states, from which we define thresholds
on the expected number of counts when in a given charge state [57]. In this way, we
can determine the charge state before and after a secondary measurement, allowing
us to select those events in which the NV was in the negative charge state, thereby
completely removing the NV0 background. We will revisit this technique in the next
chapter.
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2.1.3. Additional properties of the NV center

In general, the optical initialization and readout of the NV center spin and charge
state is an attractive property as it makes NV magnetometry a very accessible tech-
nique. The NV center brings with it several other advantages as well. For example,
though our focus lies on room temperature magnetometry, we would be remiss not to
mention the incredible temperature compatibility of the NV center. In particular, we
are able to perform NV spin readout at temperatures below 100 mK [62] and exceed-
ing 600 K [63]. At cryogenic temperatures, one also gains access to an orbital degree
of freedom of the NV excited states, which at room temperature is inaccessible due to
phonon-mediated orbital averaging [56, 64]. As strain and electric fields couple pri-
marily to the orbital degree of freedom [65, 66], low temperatures can help us explore
new aspects of the NV center. This broad temperature compatibility of the NV also
presents a significant advantage over other sensing techniques such as SQUIDs, which
only function at cryogenic temperatures [20].

Another advantage of the NV center is that it is non-invasive. As such, it is less
likely to inadvertently influence the magnetic textures we wish to measure, as com-
pared to other techniques such as MFM, which relies on a magnetized tip. We are
assuming that we do not change the magnetic system through our optical or MW
excitation of the NV, which is a reasonable assumption considering the typically low
driving strengths used. NV magnetometry also benefits from the low toxicity of the
diamond host. This makes diamond biocompatible and allows, for example, nanodi-
amonds to be inserted directly into living cells as a popular alternative to traditional
fluorescence markers [67].

The final property that we wish to discuss here is the coherence time i.e., the time
over which the quantum phase of the NV spin remains intact. Deep in the diamond
bulk, the loss of coherence of the NV center is typically caused by the fluctuation of
nearby 13C spins, which appear naturally in diamond [68]. Near the diamond surface
however, the emergence of additional spins and charges typically leads to much faster
decoherence. Generally, the decoherence of the NV center is associated with three
processes – spin relaxation, homogeneous spin dephasing, and inhomogeneous spin
dephasing – with corresponding relaxation times commonly labeled T1, T2 and T ∗2 ,
respectively.

Each of these processes results from spin noise in the nearby surroundings of the
NV center, but are differentiated by the frequency of the spin noise leading to the
loss in coherence. While the T ∗2 time-characterized processes are primarily sensitive
to slow fluctuations exceeding the time of typical magnetometry measurements, the
T2 time-characterized processes are most sensitive to fluctuations on the order of
1/T2, typically in the 1-100 kHz range. These long coherence times are crucial in for
example, quantum computing, where they have propelled the popularity of the NV as
a quantum bit [69, 70]. Finally, T1 time-characterized processes are associated with
magnetic field noise resonant with the ground state spin transitions of the NV center
i.e., at GHz frequencies. Bulk NV centers boast remarkably long spin relaxation
times, exceeding seconds at cryogenic temperatures [71] and reaching µs even when
approaching 1000 K [72].

While the loss of spin coherence may be unfavorable when trying to maintain a
given spin superposition, it can also be a valuable detection tool. For example, the
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changing coherence time in the presence of spin noise may be used to perform AC
magnetometry with the NV center. Such spin noise may originate from spin waves for
example [73], thereby allowing us to detect and image dynamics in magnetic systems.

2.2. Magnetometry with the NV center

We have now explored some of the properties that make the NV center such a versatile
sensor. Among other accomplishments, NV magnetometry has aided in realizing
magnetic field measurements under extreme conditions [74] and in answering long-
standing questions in the magnetics community [75]. We now turn to a discussion of
the basic principles of this technique.

2.2.1. Measuring the magnetic field

In discussing the energy level diagram of the NV center, we have always assumed the
NV |±1〉 states to be degenerate. However, in the presence of an external symmetry-
breaking field, this will no longer be the case, a fact that will be key to using the NV
as a sensor. Let us, therefore, consider the simplified Hamiltonian1 of the NV ground
state in the presence of a magnetic field, B:

Ĥ/h = D0Ŝ
2
z + γNVB · Ŝ. (2.1)

Here, Ŝ is the spin operator vector of the electronic spin, and γNV = 2.8 MHz/G is
the NV gyromagnetic ratio. We focus on three aspects of this Hamiltonian, namely
the shift of the energy levels in the presence of a magnetic field parallel (B‖) or
perpendicular (B⊥) to the NV axis, as well as temperature. We summarize these
three cases in Fig. 2.4. In the left panel of Fig. 2.4a, we show the energy levels
for the B‖ case, where the |±1〉 states shift linearly with the field according to the
Zeeman splitting, ∆Z = 2γNVB‖, while the |0〉 state remains unchanged. In contrast,
B⊥ will lead to a mixing of the electron spin states, resulting in a quadratic shift of
D0 with B⊥, in addition to a small splitting as shown in the left panel of Fig. 2.4b.
Finally, though not explicitly stated in the Hamiltonian, D0 is temperature dependent,
allowing us to use the NV as a thermometer [40, 76]. As shown in the left panel
of Fig. 2.4c, the ZFS decreases with approximately dD0

dT = -72.4 kHz/K near room
temperature.

Though many techniques exist to measure these field and temperature-dependent
shifts of the NV energy levels, perhaps the simplest is optically detected magnetic reso-
nance (ODMR). Key here is the spin-dependent PL rate discussed earlier. This widely
applicable technique has enabled the detection of many nanoscale magnetic phenom-
ena, including spin spirals in AFMs [25], skyrmions [77], and even ferromagnetic DW
hopping [24]. ODMR measurements rely on sweeping a MW driving frequency over
the NV spin transition frequencies while recording the PL of the NV center. Under
these conditions, due to the reduced PL rate of the |±1〉 states, one will observe a dip
in PL when the resonance condition between the |0〉 and |±1〉 spin states is met.

1Note that here, we have ignored any discussion of interactions with the nuclear spin, which leads
to the hyperfine structure of the NV center. For a more detailed discussion of these effects, and the
full NV Hamiltonian, see [65].
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Figure 2.4.: Influence of external stimuli on the NV ground state. (a) Influ-
ence of an external, static magnetic field, applied along the NV axis, on the electronic
ground state of the NV. (Left) The |±1〉 states experience a Zeeman splitting, while
D0 remains unchanged. (Right) An example of an ODMR trace taken at zero applied
field (black circles) and with a field of ∼5.5 mT, applied parallel to the NV axis (blue,
hollow circles). The ODMR trace shows the splitting of the |±1〉 states. (b) Effect
of a static magnetic field applied perpendicular to the NV axis. (Left) Schematic of
the NV ground state levels, showing the resulting increase in D0 and slight splitting
of the |±1〉 levels. (Right) Representative ODMR trace at zero applied field (black)
and an external field of ∼6 mT, applied perpendicular to the NV (blue). (c) Effect
of temperature on the ground state of the NV center. (Left) The shift of the |±1〉
energy levels due to the temperature dependence of D0. (Right) An ODMR trace
taken at room temperature (black) and ∼66 °C (blue), showing the shift in D0.

We focus on CW ODMR in particular, where the NV is simultaneously driven with
a CW 532 nm laser while sweeping the MW field. Such ODMR measurements are
shown in the right panels of Fig. 2.4 for a range of different experimental conditions.
In the absence of an external magnetic field, the degeneracy of the |±1〉 states results
in a single resonance at D0 = 2.87 GHz, as shown in black in Figures 2.4a and b.
However, upon applying a static field, we see two resonances emerge corresponding
to the |0〉 → |−1〉 and |0〉 → |+1〉 transitions, as shown in blue. In the case of a field
B‖ applied parallel to the NV axis, the resulting separation of the resonances will be
the Zeeman splitting ∆Z . By extracting ∆Z , we can determine the magnetic field
amplitude parallel to the NV axis. However, as we can not differentiate between a
field parallel (positive splitting) or anti-parallel (negative splitting) to the NV axis,
we often apply a small bias magnetic field. This bias allows us to extract the sign as



2.2. Magnetometry with the NV center 13

well as the amplitude of an unknown magnetic field.

In Fig. 2.4b, we show the case of a field B⊥, applied perpendicular to the NV
axis. We see a splitting in addition to the shift of D0 towards higher frequencies, as
discussed previously. Due to the quadratic dependence on B⊥, for magnetic fields
below several mT, these effects are much smaller than the linear splitting induced
by a magnetic field parallel to the NV axis [31]. For this reason, B⊥ may often be
neglected in the presence of weak stray fields. This procedure can also be extended
to full vector magnetometry. By measuring the field with different NV orientations,
one can directly extract each magnetic field component [78, 79]. Alternatively, from
a 2D scan of a single magnetic field component e.g., B‖, one can obtain the complete
magnetic field vector at increasing distances from the magnetic origin [27, 80].

Finally, in Fig. 2.4c, we see the slight shift in D0 towards smaller frequencies,
indicating an increase in temperature. As this shift is on the order of kHz while the
width of a single ODMR line is typically ∼6 MHz, identifying the small temperature-
dependent shifts using this method requires very careful measurements.

2.2.2. ODMR variations

Obtaining a full ODMR spectrum can be time-consuming, as such a measurement
generally takes upwards of 10 s. One solution is to focus only on a single ODMR
resonance line. In the absence of strong perpendicular magnetic fields or large varia-
tions in temperature, which would shift the ZFS, and therefore the ODMR lines, this
process can significantly reduce the measurement time. Here, we will focus on three
techniques used in this context to speed up ODMR acquisition.

Firstly, as shown in Fig. 2.5a, it is possible to extract the magnetic field based on a
single ODMR line, a technique we refer to as single line tracking. In this procedure,
we assume that the magnetic field gradients result in changes in the Zeeman splitting
that are small compared to the width of the MW frequency window. Under these
conditions, the shift between two subsequent measurements should be visible within
the same frequency window, as shown by the red and blue ODMR spectra in Fig. 2.5a.
We therefore fit the ODMR line by a Lorentzian for each measurement and shift the
subsequent frequency window to be centered on the extracted ODMR minimum. In
this way, we maintain a narrow frequency window, allowing us to measure with fewer
points than required for a full spectrum, thereby shortening the measurement time.
However, this method is limited to small magnetic field gradients and still requires
up to several seconds of measurement time per spectrum to obtain sufficient signal to
noise.

Shown in Fig. 2.5b is a second method that relies on measuring only a single point
of the ODMR trace. Rather than varying the MW driving field frequency, we set it to
a fixed value, in this example, at the center of the ODMR line. As the magnetic field
at the NV changes, the resonance shifts relative to the set MW frequency, leading to
a change in the measured PL rate. Therefore, we will observe a reduced PL rate only
where the resonance condition between NV spin transition and static MW driving
frequency is met. This method is known as isofield, or iso-B imaging [81, 82]. While
this method is fast, it also only yields contour maps of the magnetic field, and is
therefore primarily a qualitative technique.
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Figure 2.5.: Three variations on CW ODMR-based magnetometry. In each
subfigure, the red squares show the initial ODMR line, and the blue circles denote the
shifted ODMR line following a wait-time or moving to a new pixel. (a) Single line
tracking. We measure the original (red) and shifted (blue) ODMR lines and shift the
frequency sweep window (red area) to be centered around the shifted ODMR (blue
area) for the subsequent measurement. (b) Iso-field measurement. We fix the MW
driving to a single value, shown with a black dash-dotted line. As the resonance shifts
with the external field, the measured PL rate (red dotted line) increases (blue solid
line). This behavior results in minimal PL only when the resonance condition is met.
(c) Feedback tracking of the ODMR line. We set two MW sources to frequencies
on either flank of the resonance as shown with black dash-dotted lines. We alternate
between these two MW sources and measure the corresponding PL rate. The two
measured PL rates (red dashed line) are the same for the red curve. As the ODMR
shifts (blue), the PL rate at one frequency will decrease, while the other increases
(blue, solid lines), allowing us to determine the direction of the shift and correct the
applied MW frequency accordingly, as shown with the black arrows.

We can modify this second technique slightly to obtain fully quantitative magnetic
field maps as in the first method. To do so, we again set the MW drive to a single
frequency, located on a flank of the ODMR line as shown in Fig. 2.5c. We also apply
a second MW source, which we set to a frequency on the opposite flank of the same
ODMR line. We then lock the MW frequencies to each other to ensure that they
remain a linewidth apart. Now, we switch between these two MW sources in ∼5 µs
intervals while simultaneously measuring the PL obtained under driving with one
or the other. Ideally, the PL counts measured in either case should be the same.
However, as the resonance shifts due to a local magnetic field applied along the NV
axis, the PL of one flank will decrease while the other increases. We therefore use the
PL difference as the error signal for a PI loop, with which we match the MW driving
frequencies to the instantaneous NV spin transition frequency. In this way, we are
again able to track the frequency of the ODMR line [83]. We refer to this technique
as feedback imaging. As we measure only two points, we can measure quickly with
typical integration times of 0.1 s. However, this integration time also limits how fast
we can scan through a strong magnetic field gradient without losing track of the
ODMR line. This technique is used most commonly in the remainder of this thesis.
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2.2.3. Sensitivity

Having developed the necessary background for understanding NV magnetometry, we
now turn our attention to the two most important characteristics of any magnetometry
technique: sensitivity and spatial resolution. We begin with the sensitivity.

Put simply, sensitivity (ηB) refers to the smallest detectable magnetic field for a
signal-to-noise ratio of 1. Formally, we can write this as follows [31, 84]:

ηB = δB
√
T , (2.2)

where δB is the detectable change in magnetic field and T is the measurement time.
Looking at the specific case of an ODMR-type measurement, the measured signal
S(B) in a time T will be given by (∂S/∂B)(δB)(T ) while the noise is limited by the
photon shot noise N =

√
ΓNVT [31]. Here, ΓNV is the PL rate of the NV center.

Taking S/N = 1 as in our definition of ηB, we can rewrite Eq. 2.2 as follows:

ηB =

√
ΓNV

(∂S/∂B)|max
(2.3)

From this expression, we see that the stronger our signal varies with the magnetic
field, the smaller ηB becomes i.e., the better our sensitivity.

We can further develop this concept for DC, ODMR-based magnetometry by a
closer inspection of the denominator in Eq. 2.3. In particular, due to the fluctuating
nuclear-spin bath surrounding the NV center, the natural lineshape of the detected
resonance will be approximated by a Gaussian with a FWHM limited by the T ∗2 time
of the NV [85]. Therefore, we wish to find

(∂S/∂B)|max =
1

γNV
(∂S/∂ν)|max for S(ν) = ΓNV

[
1− C exp

{
−(ν − ν0)/(2σ2)

}]
,

where σ is the standard deviation of the Gaussian, C is the contrast, and ν0 is the
center frequency [85]. Evaluating the second derivative of this expression and setting
it to zero, we find that the maximum slope is given by (PF∆ν)/(CΓNV), where
∆ν = 2

√
2 ln 2σ is the FWHM of the Gaussian and PF =

√
e/(8 ln 2). Inserting this

into Eq.2.3, we obtain the following expression:

ηB,ODMR = PF
1

γNV

∆ν

C
√

ΓNV

. (2.4)

Note that under optical and MW driving, the ODMR spectrum is subject to power
broadening, leading to a Lorentzian line shape, which will result in a modification of
PF = 4/(3

√
3). Each of the parameters is presented in Fig. 2.6 with an example of

an ODMR measurement under strong driving, fit with two Lorentzians.
From the expression in Eq. 2.4, we see that improving the sensitivity of ODMR

detection can take multiple routes. Each of the three parameters - C, ΓNV, and ∆ν
will be affected by the driving conditions, thereby providing some control over the
sensitivity [85]. We will explore this point in more detail in Chap. 3.3.1. However,
there are also fundamental limits on these three parameters that require modifica-
tion of the fundamental NV properties or more complex measurement techniques to
improve the sensitivity further.
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Figure 2.6.: Calculating sensitivity from an
ODMR spectrum. Example of an ODMR spec-
trum taken with 26 µW of 532 nm excitation and
an effective MW driving field of ∼36 µT, fit with
the sum of two Lorentzians. Due to this strong
driving of the NV, we see significant broadening
(∆ν = 15.5 ± 0.5 MHz). However, this also yields
excellent contrast C = Amp/ΓNV = 27 ± 3%.
With a base PL rate ΓNV = 0.88 ± 0.01 MHz, we
find that the resulting sensitivity, using Eq. 2.4,
is 1.7 ± 0.7 µT.

One possibility, as discussed
in Sec. 2.1.2, is to increase the
contrast by controlling the NV
charge state. As mentioned,
charge state stability may be im-
proved by using low optical exci-
tation powers. Additionally, us-
ing a long-pass filter in the signal
detection path helps remove some
of the NV0 background. Though
this leads to an overall drop in
PL, the remaining PL should dis-
play a larger spin contrast. Un-
fortunately, the charge state se-
lection technique discussed briefly
in Sec. 2.1.2 is currently not prac-
tical for ODMR measurements for
the following reason: though the
overall measurement time for an
ODMR spectrum is on the order
of seconds, this is averaged over
thousands of repetitions, each
a factor of ∼15 shorter than
a single charge state measure-
ment [86]. However, this method
is very promising for longer mea-
surement protocols such as those
seen in AC magnetometry.

Alternatively, one can focus on
improving either the linewidth or the PL rate ΓNV. The fundamental linewidth of
an ODMR is determined by the inverse coherence time of the NV center and can
suffer when the NV center is brought close to the diamond surface (see Sec. 2.1.3).
However, recent results in modifying the diamond termination show great promise for
extending this coherence time [87, 88]. Another option for extending the coherence
time is through complex pulsing schemes [89, 90]. At the same time, to increase ΓNV,
we typically rely on diamond engineering [29, 91]. This allows us to overcome the
total internal reflection that is the primary limiting factor when collecting the NV
PL. This point will be the focus of the next chapter.

Overall, the balance of the NV properties influencing the contrast, PL rate, and
line width is a nontrivial problem, and discussing it in detail is beyond the scope of
this thesis. Luckily, many in-depth reviews of this topic exist [90, 92, 93].

2.2.4. Spatial resolution

Finally, we discuss the spatial resolution of NV magnetometry. As the NV center is
a single atomic defect, the spatial resolution does not depend on sensor size, unlike
SQUIDs [20], nor on the diffraction limit as in optical techniques. Instead, the spatial
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resolution of a scanning NV magnetometer is given by the distance between the NV
center and the source of the magnetic signal. To understand why, we will use a
simple argument borrowed from the Rayleigh criterion in optics. Let us consider two
magnetic dipoles, oriented perpendicular to a given sample surface and separated by
a distance d. The field of a single magnetic dipole is given by:

B =
µ0

4π

[
(m · r)r

r5
− m
r3

]
, (2.5)

where m is the magnetic moment, and r is the position vector. In Fig. 2.7, we plot
the z-component of the stray field for these two dipoles, normalized to their maximum
amplitudes, as a function of the distance h between a vertically-oriented NV center
and the sample plane (inset). At a distance h = d, we see that the distance between
the peaks of the two field profiles is equal to the width of a single profile. Beyond
this point, these two objects will no longer be “resolvable”. Thus, analogous to the
Rayleigh criterion, when located at a distance dNV from the source, the minimal
resolvable distance between two magnetic dipoles i.e., the spatial resolution, is also
dNV.

-d/2 d/2

h = 0.2d

h = 1.4d

h = d

h = 0.6d

h = 1.8d

h

x

h

Figure 2.7.: An intuitive pic-
ture of spatial resolution.
Here, we show the normalized
z-component of the stray mag-
netic field arising from two dipoles
placed a distance d apart and de-
tected by an NV with an orienta-
tion shown in the inset. We plot
the stray magnetic field for dif-
ferent distances h from the sam-
ple plane where the dipoles are lo-
cated. At a distance h = d, we see
that the FWHM (black arrows)
of the individual profiles (dashed
lines) are equal to the distance be-
tween maxima. Hence, our ability
to resolve two distinct magnetic
sources is limited by the distance
between NV and source.

One can also argue the spatial resolution in a more quantitative and general manner
using the propagation of magnetic fields. This procedure is typically done in Fourier
space, where the propagation of a given Fourier component of the stray magnetic field
directly above the sample, to a plane at a distance dNV> 0, corresponds to multi-
plication with e−dNVq. Here, q is the in-plane wavevector of a given magnetization
pattern m(r) = (mx,y(r),mz(r)) at z = 0. Thus, the decay of the magnetic field
with distance depends on the spatial frequency of the magnetic texture in question.
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Returning to a real-space description, let us examine, for example, the z−component
of the field. We find that [27]:

Bz(r, dNV) = −µ0/2
[
αz(r, dNV) ?∇2mz(r) + αx,y(r, dNV) ?∇ ·mx,y(r)

]
, (2.6)

where ? represents a 2D convolution between the magnetization and the resolution
function αx,y,z. In particular,

αz(r, dNV) =
1

2π (r2 + d2
NV)

1
2

αx,y(r, dNV) =
dNV

2π (r2 + d2
NV)

3
2

(2.7)

Here, r = (x, y). In this form, we can see more clearly how dNV determines the
magnetic field features that can be resolved. From this discussion, one should realize
the importance of having an NV as close to the diamond surface as possible in order
to improve the spatial resolution. We will explore this requirement in more detail in
Chap. 3.3.2.

2.3. Conclusions

In our discussion of the NV center and NV magnetometry, we have occasionally made
comparisons to common techniques used in the magnetism community. As we have
seen, each of these techniques comes with advantages and disadvantages, which allow
for unique contributions to the field of magnetism. An excellent review comparing
some of the techniques described in this chapter has recently been published [94]. NV
magnetometry, in particular, benefits immensely from the ability to address a diverse
range of materials in a large number of environmental scenarios.

Of course, the key to this versatility is the NV center itself, and in this chapter,
we have explored some of the basic properties of this valuable diamond defect. Apart
from some contextual statements, we have limited ourselves to a discussion of the
properties relevant to room temperature magnetometry, which will form the focus of
the remainder of this thesis. In Sec. 2.1, we have delved into the electronic energy
levels of the NV, where we discussed the spin S=1 triplet ground and excited state,
whose |0〉 and |±1〉 spin states form the basis of NV magnetometry. Due to the differ-
ent decay channels and, subsequently, the differing PL rates of the spin states, we are
able to initialize and read out the state of the NV optically. We also discussed a sec-
ond degree of freedom of the NV center: the charge state. In particular, we explored
how to characterize the background signal it forms for our magnetometry techniques.
Finally, in Sec. 2.2, we moved to a discussion of NV magnetometry itself, providing
the necessary background to understand how ODMR-based DC magnetometry is per-
formed. We also described some variations on the traditional ODMR measurement,
which will be used throughout this thesis. We concluded this section by discussing
the two defining parameters of NV magnetometry - sensitivity and spatial resolution.
Specifically, we explored how the other aspects discussed in this chapter can influence
the sensitivity and how the spatial resolution may be given by the distance between
NV and magnetic field source. In the next chapter, we will expand on this discussion
in the context of a novel diamond probe for scanning NV magnetometry.



3. Truncated parabolic scanning
probes for magnetometry

In the previous chapter, we introduced a powerful tool for addressing nanoscale mag-
netic field imaging: the nitrogen vacancy (NV) center. One of its strengths – the
all-optical communication with the NV center – however, also turns out to be one of
its most significant challenges. In Sec. 2.2.3, we showed that the sensitivity of our DC
magnetometry technique improves with increasing photoluminescence (PL) collection
efficiency. Unfortunately, the high index of refraction of diamond (n = 2.4) results
in significant total internal reflection (TIR) at a diamond-air interface, preventing us
from achieving high PL collection efficiencies in planar diamond structures. Thank-
fully, this material property may also be manipulated to our advantage through the
fabrication of photonic structures.

Photonic engineering of diamond structures has existed for many years now [95, 96].
In quantum information applications, for example, where the spatial resolution is not
of relevance, a large variety of structures have been fabricated with the primary goal of
extracting as many photons as possible from the diamond. Diamond solid immersion
lenses, as shown in Fig. 3.1a, have achieved single-NV PL detection rates of approx-
imately 1 MHz through the minimization of oblique reflections at the diamond-air
interface [97, 98]. More exotic structures such as dielectric antennas [99], metalenses
(Fig. 3.1b) [100], and bull’s eye gratings (Fig. 3.1c) [101], have also been used to
achieve high PL rates by creating conditions in which wide-angle emission is directed
out of the plane of the diamond, towards the detection area.

In scanning applications, where the NV must be brought near and scanned relative
to the surface of a secondary material, a single-sided waveguide has proven to be
the most practical and popular solution. In such a structure, the NV is traditionally
located close to the end-facet of a long, tapered [102] or cylindrical [28–30] pillar (as
shown in Fig. 3.1d and e, respectively). The pillar is monolithically combined with a
larger diamond slab typically referred to as a cantilever. This geometry allows the NV
to be brought close to a sample while simultaneously providing a waveguide for the PL.
The PL then exits the diamond at the backside of the cantilever, where it is collected
through an objective. These structures achieve nanoscale spatial resolutions [103],
but the collection efficiency tends to fall below 50% even in optimized cases [104].

Recently, one of the highest collection rates to date (approximately 4 MHz) has
been achieved through the fabrication of a single-sided diamond parabolic reflector
(Fig. 3.1f) [91]. This technique requires an NV placed at the focus of a parabolic
diamond structure and uses the TIR of diamond to direct the PL parallel to the
pillar axis, as shown in Fig. 3.2b. In this way, one can minimize reflections at the
backside of the structure, where the PL is collected through a single oil-immersion
lens. This waveguiding of the PL is achieved for a wide range of wavelengths and is
robust against deviations from the ideal curvature and displaced emitters.
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Figure 3.1.: Engineering the diamond environment. These images present vari-
ous approaches towards photonic engineering of the diamond environment to optimize
the collection of PL from emitters located within the diamond. (a) All-diamond solid
immersion lens produced through focused ion beam milling. Reproduced from [98],
with the permission of AIP Publishing. (b) A diamond metalens designed to collimate
the emission of a bulk NV center and fabricated using electron beam lithography and
ICP-RIE etching (a typical top-down approach). Adapted with permission from [100].
(c) A bull’s eye grating fabricated through etching with a Si hard mask and achiev-
ing PL rates up to 4.5 MHz. Adapted with permission from [101]. Copyright 2015
American Chemical Society. (d) A tapered pillar, achieving up to 1.7 MHz PL rates
and fabricated using a top-down approach. Reprinted with permission from [102].
Copyright 2015 American Chemical Society. (e) Cylindrical pillars used for scanning
applications fabricated using a top-down approach. Reprinted from [29], with the
permission of AIP Publishing. (f) Parabolic diamond reflectors achieving PL rates
up to 4 MHz through grayscale lithography of the diamond. Adapted with permission
from [91]. Copyright 2018 American Chemical Society.

However, for scanning applications, which will be the focus for the rest of this thesis,
the parabolic reflector is limited in two aspects. Firstly, immersing a diamond probe
with oil to make use of the improved collection of the oil-immersion lens is not possible
in scanning setups. Secondly, placing the NV at the focus of a parabola leads to a
significant diamond thickness between the NV and source, leading to a poor spatial
resolution.

This chapter will address the limitations of both the parabolic reflector and classical
scanning probe by combining them into a single device: the truncated parabolic
scanning pillar (TPSP). We will examine the behavior of the NV dipole in such
structures and discuss how this structure helps to realize high collection efficiencies
and narrowly collimated emission. We will then turn to an extensive characterization
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of typical, fabricated devices containing single NVs, touching upon some of the NV
properties discussed in Chap. 2, such as the charge state. Finally, we conclude with
a discussion of these pillars in scanning applications, focusing on the sensitivity and
spatial resolution introduced in the previous chapter. Most of the results presented
here have been published in Ref. [32].

3.1. Parabolic reflector concept

In our TPSP design, we wish to harness the excellent photonic properties of the
parabolic reflector in a typical scanning probe geometry. To do so, we replace the
classical, cylindrical pillar with a parabolic reflector but with one significant modi-
fication: the truncation of the pillar apex. By truncating the parabola, we can still
use the channeling of the PL while simultaneously bringing the NV close to the sur-
face of the diamond. In this way, we minimize the NV-to-source distance, thereby
maximizing our spatial resolution.

3.1.1. Geometric optics picture

The use of parabolic reflectors is by no means a revolutionary concept. Rather, it
has found its way into many areas of daily life, from car headlights to the Hubble
spacecraft and satellite dishes. The general motivation behind parabolic reflectors is
that any emission from the focus will always be reflected in a direction parallel to the
axis of symmetry and vice versa, making collection extremely efficient.

We use this property in the geometric optics consideration shown in Fig. 3.2. In
Fig. 3.2a, we show the general geometry of our scanning probe, including the collection
and excitation through the objective. The inset shows an example of a completed
TPSP, which we will describe in more detail in Sec. 3.1.3. For now, we will focus
on the tip of this device, as shown in Fig. 3.2b. We first present an ideal diamond
parabolic reflector with an NV located at the focus (f) of the parabola, described by:

4fy = x2. (3.1)

In Fig. 3.2b and c, we have chosen f = 61 nm based on typical device parameters.
In this simplified geometric optics picture, we clearly see the effect of the parabolic
structure, which is to guide the emission from the focus into a directed, collimated
beam. Thus, the structure acts as an optical waveguide. As the angle between the
waveguided emission and back surface of the diamond cantilever is now zero, the
reflection from the cantilever will be minimized, allowing us to collect ∼80% of the
emission that reaches this point.

To minimize the distance between the NV center and the diamond surface, we trun-
cate the parabola just below the NV. This case is shown in Fig. 3.2c for a truncation
20 nm below the focus, the typical depth of the NVs within our devices. The majority
of the rays that reflect from the end facet are then further reflected by the walls of
the significantly larger pillar leading to a similar, highly directional emission at the
backside of the cantilever. As such, the TPSP behaves as a nearly ideal parabolic
reflector despite the truncated end facet.

However, placing an NV center near the diamond surface, will also modify the
emission behavior of the defect. In bulk diamond, the optical dipoles of an NV center
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Figure 3.2.: The TPSP. (a) Schematic show-
ing the excitation of and collection from a sin-
gle scanning device. Inset: An SEM image of
a TPSP with the associated diamond cantilever.
(b) Ray diagram demonstrating the functionality
of a parabolic tip. The (assumed isotropic) emis-
sion of the NV, located at the focus f , is reflected
from the walls of the device, parallel to the axis of
the pillar. (c) A similar ray diagram for a TPSP
truncated 20 nm below the focus.

can radiate unimpeded. In a di-
amond structure, on the other
hand, the modified diamond sur-
face will alter the supported pho-
tonic modes. The resulting mod-
ification of the local density of
states will then lead to changes in
the excited state lifetime i.e., the
radiative lifetime of the NV cen-
ter [104].

An intuitive picture of the lat-
ter result is given in Ref. [105]
for a generic dipole near a mir-
ror. Following these arguments,
we imagine placing the NV cen-
ter near the diamond surface (a
poor mirror) such that construc-
tive interference of the emission
is achieved above the NV cen-
ter. This constructive interfer-
ence mimics an increase in the ra-
diation probability of the NV cen-
ter, or equivalently, a decrease in
the radiative lifetime of the NV.
Conversely, destructive interfer-
ence will lead to no radiation at
all, and so the radiative lifetime is
effectively infinite. In our TPSP
geometry, this modification of the
radiative lifetime of the NV arises
not only due to the fact that the
dipole exists close to a flat dia-
mond end facet but also due to
the overall pillar shape. As such, for a given NV center within a TPSP, we expect to
see a change in the radiative lifetime of the NV center, thereby affecting the amount
of emitted PL.

3.1.2. Simulating devices

Though this geometric optics argument provides a useful picture to motivate our use of
the parabolic reflector, it is not entirely accurate as the length scales of the device are
on the order of the wavelength of the NV emission. To properly capture the benefits
of the TPSP and understand the behavior of the NV within the structure, we turn
to finite-difference time-domain simulations of scanning probes. In these simulations,
Maxwell’s equations are solved on a discrete grid, resulting in a full vectorial solution
of the electromagnetic field within a given geometry. Here, we use the Lumerical
simulation package.
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Figure 3.3.: Simulations of a cylindrical pillar vs. TPSP Lumerical simulations
of an s- (red) or p-polarized (blue) dipole in (a) a cylindrical pillar and (b) TPSP,
both having a 200 nm-diameter end facet. (i) Comparison between the dipole emis-
sion (I) normalized to the emission of a bulk dipole (Ibd) as a function of wavelength
for the full device simulation (solid lines) and for the waveguide alone (dashed lines).
Oscillations arise due to the cavity formed between the pillar end facet and the can-
tilever backside. (ii) The waveguided power (Iwg) and the power collected within
an NA = 0.8 at the cantilever backside (Ina) as a function of wavelength. (iii) The
normalized intensity collected at the backside of the device, shown as a function of
the polar angle. Here, we integrate the power contained in an annulus [φ,φ + δφ],
divided by the area of the annulus. The resulting NA, given by the point where the
normalized intensity drops to 1/e2 of its maximum, is shown with a black dashed line.

Within the framework of this software, we define scanning probes consisting of a
waveguide or pillar, attached to a large diamond slab similar to that shown in the
inset of Fig. 3.2a. In particular, we focus on two waveguide geometries: our novel
TPSP with a 200 nm-diameter truncated facet and the traditional scanning probe,
consisting of a 200 nm-diameter cylindrical pillar [106]. Both of these geometries are
highlighted in the leftmost panels of Fig. 3.3.

In each case, we simulate the electromagnetic field of a broadband dipole emitter,
placed 20 nm from the end facet of the pillar, and centered on the pillar axis. To
simplify our simulations, we will consider s- and p-polarized dipoles oriented perpen-
dicular, respectively parallel, to the pillar axis. Given the 35.3° formed between the
NV dipole plane and the normal axis of the (100) diamond surface (see Fig. 2.1a),
the emission of the NV can be decomposed into a 2/3 s- and 1/3 p-polarized contri-
bution [107]. This decomposition allows us to perform simulations for the simpler s-
and p-polarized dipoles while still accurately describing the NV.

We will focus on three quantities, which we extract from our simulations for each
of these dipole orientations: the emitted power of the dipole, I, the power passing
through the base of the waveguide, Iwg, and the power collected at the backside of
the full structure, Ina. The positions at which these values are extracted are shown
in the leftmost panels of Fig. 3.3. Specifically, Ina is the power collected within
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the numerical aperture (NA) of a typical objective (NA=0.8). These parameters are
then normalized to the total emitted power of an ideal dipole in bulk diamond, Ibd

to isolate the change in the dipole emission described in the previous section. These
three quantities also yield three useful characterization parameters: the Purcell factor
(I/Ibd), which describes the change in emission rate, the waveguiding efficiency of
the pillar (Iwg/I), and the collection efficiency of the whole device (Ina/I).

Let us begin by considering the emitted dipole power, I, as shown in Fig. 3.3a(i)
and b(i). Here, we plot I/Ibd as a function of the wavelength over the typical NV
center emission from 630 nm to 800 nm. However, the behavior we observe depends
on whether we only consider the waveguide or the full structure.

Focusing first on the waveguide simulation (dashed lines in Fig. 3.3a(i), b(i)), we
see that the emission of the p-polarized dipole (blue) is strongly suppressed in both
structures. Thus, for the moment, we will focus on the s-polarized dipole (red) instead.
In the cylindrical pillar (Fig. 3.3a(i)), the dipole emission for the s-polarized dipole
drops by 50% over the entire wavelength range. For the parabolic pillar (Fig. 3.3b(i)),
on the other hand, the emitted power of the dipole closely resembles that of a bulk
dipole even over the wide range of wavelengths.

Turning to the full structure simulation (solid lines), we observe interference fringes
in the collected power. These result from the cavity that forms between the end-facet
of the pillar and backside of the cantilever, resulting in a Purcell effect. The emission
behavior of the dipole in the parabolic and cylindrical pillar can be summarized by
averaging over the wavelengths1 shown in Fig. 3.3a(i) and b(i). These values are given
in Table 3.1, where we observe an average Purcell factor of 0.99 for the parabolic pillar
but only 0.65 for the cylindrical one. The Purcell factor highlights the first advantage
of the parabolic pillar: an improved emission compared to its cylindrical precursor.
Due to the rapid expansion of the diamond pillar from the end facet, the dipole
experiences a more bulk-like environment, resulting in high broadband emission.

Let us move on to the waveguided and collected power plotted in Fig. 3.3a(ii) and
b(ii). We see that for the cylindrical pillar (Fig. 3.3a(ii), dashed line), Iwg/Ibd drops
by an additional factor of approximately two relative to I/Ibd in Fig. 3.3a(i). This
drop indicates that a large portion of the dipole emission is lost from the waveg-
uide before reaching the base of the pillar. On the other hand, the parabolic pillar
(Fig. 3.3b(ii), dashed line) shows very little change compared to I/Ibd in Fig. 3.3b(i).

Geometry Dipole I/Ibd Iwg/Ibd Ina/Ibd

Cylindrical s 0.65 0.32 0.18
(Fig. 3.3a) p 0.13 0.02 0.02
Parabolic s 0.99 0.81 0.68
(Fig. 3.3b) p 0.17 0.12 0.10

Table 3.1.: Summary of the emitted (I/Ibd), waveguided (Iwg/Ibd), and collected
(Ina/Ibd) power in cylindrical and parabolic scanning probes as extracted from sim-
ulations. These values have been integrated over the entire wavelength range from
630 nm to 800 nm.

1We average as follows: I/Ibd = 1
N

∑N
i=1 (I/Ibd)λi . Here, N is the number of simulated

wavelengths λi and (I/Ibd)λi is the Purcell factor for a given wavelength.
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In Table 3.1, we see an average waveguiding efficiency (Iwg/I) of 82% and 49% when
normalized to I/Ibd for the parabolic and cylindrical pillars, respectively. This factor
of 1.6 improvement in the parabolic geometry over the cylindrical one highlights the
performance of our TPSP model. We will now consider the full structure (solid lines).
Despite the large oscillations in the TPSP emission (Fig. 3.3b(ii)), the wavelength-
averaged collection efficiency Ina/I still reaches 69% compared to 28% (normalized
to I/Ibd) for the cylindrical case, as summarized in Table 3.1).

Recall that all the values we have stated here are for the s-polarized dipole. As
mentioned in our discussion of I/Ibd, in Fig. 3.3a(i) and b(i), we see that the emitted
power I of the p-polarized dipole is suppressed by a factor of ∼7. In addition to the
lifetime effects mentioned in Sec. 3.1.1, an additional reason for this suppression is the
coupling of the emission to the waveguide. While the s-polarized dipole exhibits good
modal overlap with the propagating waveguide modes of the pillar, the p-polarized
dipole emission is not well transmitted in the waveguide. This is supported by the
fact that the collection efficiency (normalized to I/Ibd) for the p-polarized dipole
also drops to 59% and 15% for the TPSP and cylindrical pillar, respectively. It
further manifests itself in the far-field modes, which are Gaussian for the s-polarized
dipole but donut-shaped for the p-polarized dipole. Based on the combined simulation
results, we can conclude that the majority of NV emission we observe will come from
the s-polarized components of the dipoles.

Finally, we will use the full-structure simulations to simulate the far-field emission
patterns of these devices. In Fig. 3.3a(iii) and b(iii), we show the emitted intensity
measured at the cantilever backside, averaged over the azimuthal angle and full wave-
length range (630 nm to 800 nm), and plotted as a function of the polar angle. From
these plots, we quantify the angular emission of the devices by determining the NA
of the devices, shown as a black dashed line. We do so by selecting the angular posi-
tion where the emission intensity has dropped to 1/e2 of its maximum. This analysis
shows a factor of 2 improvement in the NA of the parabolic device compared to the
cylindrical one. The reduced NA represents a further advantage of the TPSP design.
This difference in NA can also be understood in an intuitive sense by considering
the pillar geometry. As the base of the cylindrical pillar is small compared to the
simulated wavelengths, it will act as a narrow aperture, and the dipole emission will
undergo much stronger diffraction when entering the wider diamond cantilever. The
broad angular emission of the cylindrical pillar also contributes to the reduced collec-
tion efficiency as large emission angles will lead to more TIR at the cantilever surface.
The parabolic pillar, on the other hand, due to its continuous expansion, circumvents
this diffractive behavior.

The results of these simulations can be summarized with two important realizations.
Firstly, in comparison to the cylindrical pillar, we have seen that simulations of the
parabolic pillar show a much higher dipole emission and collection thereof. Comparing
the average collection efficiency for these two structures in Table 3.1, we see a roughly
fourfold improvement. The improved collection efficiency will lead to an increase in
the collected PL, and thus our sensitivity as discussed in Chap. 2.2.3. Secondly, from
the far-field simulations, we see that the parabolic pillar also results in a significantly
more directed emission, which allows us to collect the NV PL signal with a narrower
NA objective. Such objectives are typically associated with larger working distances
and higher transmission rates, which allow for more convenient operation.
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3.1.3. Fabrication

Naturally, having understood and designed an ideal TPSP, the next challenge is
to fabricate such a structure. Following already well-established techniques [29,
102], we begin with a 50 µm-thick plate of (100)-cut, type-IIa diamond (Element
Six). The diamond is implanted with a nitrogen density of 2×1011 ions/cm−2

and energy of 12 keV at a 7◦ angle and then annealed to achieve approxi-
mately 20 nm-deep NV centers, typical for scanning probes [92]. We will realize
these structures using a combination of electron-beam lithography and inductively-
coupled plasma reactive ion etching (ICP-RIE, Sentech) to define the struc-
tures. The details of this fabrication procedure may be found in Appendix A.1.1.

1 μm

300 nm

(i)

(ii)

(iii)

(iv)

(a) (b)

Figure 3.4.: The fabricated device. (a) SEM
images of the parabolic etching steps. (i-iv) The
progression of the mask (teal) as it is etched to-
gether with the diamond via an O2/CF4 plasma
with increasing CF4 concentration. (b) SEM im-
age of the completed TPSP device.

We begin by writing the masks
(FOx-16, Dow Corning) for
20 µm× 40 µm cantilevers, and
etching these structures to a
depth of approximately 2 µm, on
the top i.e., implanted side of
the diamond. We subsequently
pattern circular, 1 µm-diameter
masks aligned to the cantilevers.
These circular masks will define
our pillars. The pillar etch itself
consists of two stages. In the
first stage, the diamond is etched
using an O2 plasma chemistry
(interspersed with occasional
CF4 steps [108]) to produce a
tapered diamond pillar approxi-
mately 6 µm in length and 2 µm
in diameter at the base. Here, the
taper arises due to the etching
of the diamond along the natural
crystal facets [109].

In the second stage, we intro-
duce the novel procedure used to
achieve the parabolic shape of the
pillar tip that is central to our
device concept. Essential at this
point in the etch is that the mask
has developed a conical shape as seen in Fig. 3.4a(i). We will now make use of the
preferential etching of the FOx mask by CF4 [102, 108]. Specifically, we change the
rate at which the angle of the mask is transferred to the diamond by controlling the
relative etch rates between diamond and FOx (see Appendix A.1.1). Through short
steps with increasing CF4 concentration, we develop a gradually increasing taper an-
gle (Fig. 3.4a(i-iv)). The resulting structure then approximates a parabola with a
focus ∼20 nm above the end facet, ideally corresponding to the NV center depth.
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Figure 3.5.: Simulations of the fabricated device. (a) A comparison of the
collected emission of the fabricated device (dark lines) and an ideal TPSP (faint
lines) from simulations. The solid lines show Ina/Ibd, while the dashed lines give the
value of Iwg/Ibd as a function of wavelength for an s- (red) and p- (blue) polarized
dipole. (b) A similar comparison showing the angular dependency of the fabricated
and ideal TPSP devices. The NA of the respective devices is shown by the labeled
dashed black and gray lines, respectively.

Finally, we remove the remaining mask, leaving us with a tapered pillar with a trun-
cated, parabolic tip, as shown in Fig. 3.4b. The diamond is then etched from the
opposite side relative to the pillars to release the structures in preparation for scan-
ning magnetometry [29].

If we compare the fabricated structures to the ideal parabolic pillar, we notice
that the tapered pillar leads to a much steeper diamond sidewall. To understand the
influence of this deviation, we return to simulations. We extract the geometry of the
fabricated structure from a profile image as in Fig. 3.4b, which we then compare to
the ideal TPSP using the same simulation procedure outlined in the previous section.
In Fig. 3.5a, we focus on the waveguided (Iwg/Ibd, dashed lines) and collected power
(Ina/Ibd, solid lines). We observe good agreement between the ideal (pale lines) and
fabricated devices (dark lines). As before, we summarize the wavelength-averaged
values in Table 3.2, from which we extract a collection efficiency of 65% for the s-
polarized dipole of the fabricated device. Comparing this value to the 69% collection

Geometry Dipole I/Ibd Iwg/Ibd Ina/Ibd

Fabricated s 0.98 0.78 0.64
p 0.16 0.10 0.08

Parabolic s 0.99 0.81 0.68
p 0.17 0.12 0.10

Table 3.2.: Summary of the emitted (I/Ibd), waveguided (Iwg/Ibd), and collected
(Ina/Ibd) power observed in simulations of the fabricated parabolic pillar and com-
pared to the ideal parabolic device. These values have been averaged over the range
from 630 nm to 800 nm.
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efficiency of the ideal device, we see that the fabricated device represents an excellent
approximation of an ideal TPSP. Additionally, the angular distribution of the emission
in the far-field shown in Fig. 3.5b demonstrates performance (dark lines) comparable
to that of the ideal TPSP (pale lines) with only a 20% increase in the NA. As such,
we expect our fabricated devices should exhibit high collection efficiencies and well-
collimated emission patterns.

3.2. Characterization

We now wish to verify the improved performance of the fabricated devices introduced
in the previous section. To do so, we require a detailed characterization of the optical
properties of both the NV center and the pillar itself, which we will explore in this
section. In a single round of fabrication, we typically etch a ∼1 mm× 1 mm area of
the diamond, which we refer to as a write field (WF), resulting in approximately 300
devices, as shown in Fig. 3.6. Characterization of these devices is carried out in a
homebuilt confocal microscope equipped with 532 nm and 594 nm CW lasers and a
wavelength-tunable, supercontinuum picosecond pulsed laser (SuperK Extreme, NKT
Photonics). More details concerning this setup may be found in Appendix A.2.1.

We begin with a pre-characterization of the devices, where we focus on extracting
three parameters of interest for scanning magnetometry: the NV PL rate, the contrast
of the ODMR spectrum, and the number of NV centers in the pillar. We have already
discussed the importance of the first two parameters in Chap. 2.2.3. For scanning
magnetometry, we additionally aim for single-NV devices. Such devices allow us to,
for instance, avoid confusion due to multiple ODMR lines when performing feedback
scans as introduced in Chap. 2.2.2.

Figure 3.6.: Characterization
of devices in a completed
write field. An optical image
of a single etched WF containing
308 devices. The devices are
color-coded based on the number
of ODMR lines detected in the
initial characterization: red de-
notes no ODMR detected, yellow,
more than one pair of ODMR
lines, and green, a single pair of
lines. Some devices (those with-
out color) were precluded from
characterization due to missing
pillars or large defects at the
pillar location. Of the resulting
109 single NV structures, 36 were
selected for further analysis and
are marked with a white border.

0 ODMR pair 1 ODMR pair>1 ODMR pair

100 µm
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All three parameters can typically be well-addressed through a single ODMR mea-
surement [110, 111]. Here, we apply a small bias field without aligning it to any
given NV axis, such that one should observe different splittings for each of the four
NV orientations. The first two parameters are then obtained by fitting the ODMR
lines with Gaussian lineshapes. Additionally, the number of resonance pairs in the
spectrum gives an indication of the number of NV centers in the pillar. Through this
procedure, of the 294 devices characterized, we identified 109 devices containing a sin-
gle ODMR pair and 60 devices containing multiple ODMR pairs, with the remaining
devices showing no ODMR at all. These results are summarized in Fig. 3.6.

Though an ODMR spectrum is generally a good indication of the number of NV
centers, a pillar can contain two NVs with the same orientation, resulting in a sin-
gle pair of resonances. In particular, this means that of our 109 single ODMR pair
devices, we would expect some to contain multiple NV centers (see Appendix A.3
for more details). In the next characterization step, we select 36 of these potentially
single-NV devices from across the WF. In the following sections, our goal is to char-
acterize these devices thoroughly. We will begin by verifying the single-NV nature of
the devices through autocorrelation (g(2)(τ)) measurements, which may be used to
indicate the presence of a single quantum emitter. In the remaining characterization,
we examine the saturation PL, excited-state lifetime, and charge state of the NV
centers. Finally, we will discuss the pillar-defined properties, namely the collection
efficiency and angular emission, which we will compare to simulations.

3.2.1. Saturation behavior of single NV centers

We begin our investigation of the NV centers in our TPSP devices by verifying the
single-NV nature of the 36 selected devices. Figure 3.7a shows the result of a g(2)(τ)
measurement performed on one of these devices. These measurements are realized
by recording the correlations between photons arriving at two single-photon counters
in a Hanbury Brown-Twiss configuration. In particular, we record a histogram of
the events in which a photon is detected on the first counter followed by a second
photon on the second counter. We bin the data by the time between photon arrivals,
which is measured using a time-of-flight analyzer (P7889, FastComtec). Ideally, if the
source is a single quantum emitter, the resulting g(2) trace will be characterized by
a g(2)(0)<0.5 [112]. However, the g(2) by itself is not sufficient to guarantee that a
device contains only a single NV center [110], which is why we also take the ODMR
trace into account. As we observe a g(2)(0)= 0.16 ± 0.02 in combination with the
single ODMR pair, this device contains, with high likelihood, only a single NV. Of the
36 selected devices showing a single pair of ODMR lines, only 25 show g(2)(0)< 0.5.

We will now focus the remaining analysis on these 25 single-NV devices. In par-
ticular, we will begin with one of the most common figures of merit for assessing the
performance of scanning devices: the saturation PL rate. A representative example of
a saturation measurement of the NV PL rate, ΓNV, as a function of 532 nm excitation
power P is shown in Fig. 3.7b. The measured PL rate (black points) includes the
emission of the NV together with a linear background signal, and as such, we fit the
saturation curve with [113]:

ΓNV(P ) =
ΓsatP

P + Psat
+ ΓbgP. (3.2)
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Figure 3.7.: Identifying and characterizing single NV centers. (a) Autocor-
relation measurement of a representative NV center. The data are fit by the equation
shown in the plot [113] to normalize the g(2) and obtain a g(2)(0)= 0.16 ± 0.02, con-
firming that the device indeed hosts a single NV center. (b) PL rate collected from
the same representative device as a function of the excitation power. The gray circles
give the measured data, which we fit in red with Eq. 3.2, yielding a saturation PL
rate Γsat = 2.1 ± 0.2 MHz and Psat = 14 ± 3 µW. The blue dashed line gives the
background-subtracted fit. The right-hand panels show histograms containing the
saturation PL (top) and power (bottom) extracted from all 25 single NV devices.
The results of the measurement to the left are shown with black dashed lines, and the
median and 1σ intervals of the combined measurements are given by the red bars.

Here, Γsat is the saturated PL rate, Psat is the saturation power, and Γbg is the
background emission per unit excitation power. We plot the raw NV contribution in
Fig. 3.7b as a dashed blue line to show the saturation behavior of the NV more clearly.
From the expression in Eq. 3.2, we obtain Γsat = 2.1± 0.2 MHz and Psat = 14 ± 3 µW.
Considering all the characterized devices, we obtain a median Ĩsat = 2.1 MHz and
P̃sat = 27 µW with 1σ confidence intervals of [1.9, 2.8] MHz and [20, 48] µW, respec-
tively. Histogrammed statistics of the measurements are provided in the right panel
of Fig. 3.7b, where Ĩsat and P̃sat and their respective 1σ intervals are shown with red
bars. The sample measurement in Fig. 3.7b is marked with a black, dashed line.

To our knowledge, these values represent the highest recorded saturation PL rate for
NV centers in scanning probes. Furthermore, it represents a factor of five improvement
over the previous generation of devices [29, 30]. As such, it highlights the improved
waveguiding efficiency of the TPSP compared to its cylindrically-shaped predecessors.

3.2.2. The excited state lifetime

While the saturation PL rate is a figure of merit of great practical relevance, it does
not provide complete information about the photonic properties of the NV center
and the TPSP. As discussed in Sec. 3.1.1, the presence of the diamond surface will
influence the emission behavior of the NV center. In particular, in this section, we
will discuss the change in the radiative decay rate, Γre. Experimentally, we can access
this parameter through the excited state PL lifetime te = 1/Γe, where Γe is the total
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Figure 3.8.: Excited-state lifetime of the NV center. Semi-log plot of the mea-
sured NV PL following a picosecond pulse excitation as a function of time. The
measurement is fit by the sum of two exponentially modified Gaussians [114] to ex-
tract the excited state lifetime of the |0〉 and |±1〉 states. The right panel presents
a histogram of the |0〉 state lifetime for 24 single NV devices. Again, the left-hand
panel measurement is shown with a black dashed line, and the median and 1σ band
are given by red bars.

decay rate of the NV excited state and consists of the radiative component Γre and a
non-radiative one Γnre .

To measure te, we excite the NV with a picosecond pulsed laser at a repetition rate
of 2.44 MHz and average power of 0.26 µW tuned to a 12 nm band centered around
532 nm. The photons emitted following an excitation pulse are then measured with an
avalanche photodiode, and their arrival time is recorded with the P7889 time-of-flight
analyzer, resulting in the plot shown in Fig. 3.8. This histogram now contains the
emission from the short-lived |±1〉 excited states and the longer-lived |0〉 excited state
(see Sec. 2.1.1), leading to a bi-exponential decay.

In practice, our measurements will begin to pump the NV center into the |0〉
state. In combination with the substantial non-radiative decay of the |±1〉 states,
the majority of the emission we measure will therefore be the result of radiative decay
from the |0〉 excited state. Thus, we approximate the measured radiative decay rate
as Γre ≈ 1/t0e. For the measurement shown in Fig. 3.8, we obtain t0e = 23 ± 1 ns.
The median |0〉 state lifetime, t̃0e is found to be 21.5 ns with a 1σ confidence in-
terval of [18.9, 23.4] ns. Comparing this to the value of t0e in bulk [55], we obtain

Γ̃re ≈ 0.57 Γre,bd.
Let us also compare this ratio of the radiative decay rate to that expected from

simulations. Recall that we have simulated the Purcell factor I/Ibd for both s- and
p-polarized dipoles. The Purcell factor gives us the change in radiative decay rate for
each of these dipole orientations, but we wish to estimate the value for the NV dipole.
Therefore, we recall that the NV dipole has a 2/3 s- and 1/3 p-projection, allowing
us to write the overall suppression of Γre in the pillar as follows:

Γre ≈ Γre,bd

[
2

3

(
I
Ibd

)s
+

1

3

(
I
Ibd

)p]
, (3.3)

where (I/Ibd)
s(p)

is the Purcell factor for the s- and p-polarized dipoles respectively.
Taking the values from Table 3.2, we obtain Γre ≈ 0.7Γre,bd. The discrepancy between
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the simulated and measured values suggests the presence of additional radiative sup-
pression in our TPSPs. This suppression can, for example, be caused by lateral shifts
of the NV from the pillar axis, which further modify the optical environment by
bringing the NV closer to one of the sidewalls.

3.2.3. The charge state

One further aspect of the NV center – the NV charge state – tends to be overlooked
in the characterization of scanning probes. As introduced in Chap. 2.1.2, the charge
state of the NV center fluctuates between the NV− state we are interested in and
the NV0 state, which forms one source of background fluorescence. To overcome this
unwanted signal, we remove some of the NV0 emission with a 594 nm long-pass filter
and 635 nm dichroic mirror. Unfortunately, this also means that the time spent in
the NV0 state will reduce the PL signal collected from NV− [59]. Therefore, for a
proper assessment of the device performance, it is essential to take the charge state
of the NV center into account.

We follow a slightly modified version of the procedure in Bluvstein et al. [110]
to determine the charge state. We begin by characterizing the rates and thresholds
introduced in Chap. 2.1.2 by exciting the NV with 0.49 µW of 594 nm excitation and
simultaneously measuring the PL collected within an 812.5 µs measurement window.
We fit the resulting photon number distributions according to a Poissonian model
of the photon statistics as described in the SI of Ref. [57]. In particular, this model
allows us to extract the ionization, recombination, and PL rates of both charge states.
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Figure 3.9.: Steady-state charge state of the NV. The NV− population mea-
sured as a function of the 532 nm pump pulse length. The inset shows the pulse
sequence used to measure this data. We separate the data based on the charge state
at the beginning of the measurement: yellow if the NV begins in NV0 or red if it
begins in NV−. The steady-state charge state of the NV is derived from the asymp-
totic convergence of the two curves (shown with a black, dashed line). The right-hand
panel shows a histogram of the steady-state NV− population measured for 24 single
NV devices. The measurement in the left-hand panel is shown with a black dashed
line and the median and 1σ band are shown in red.
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From these rates, we define thresholds on the number of detected photons to dif-
ferentiate the two charge states. We then perform a pump-probe measurement in
which a 532 nm pump pulse of varying length is inserted between two 250 µs-long
594 nm probe pulses as shown in the inset to Fig. 3.9. Together with our pre-defined
thresholds, these probe pulses allow us to determine the initial and final charge states
based on the number of detected photons within a single measurement window. This
measurement is repeated 100,000 times, allowing us to plot the percentage of cases
where the NV center ends in the NV− as a function of the pump pulse length, dif-
ferentiated by the initial NV charge state as shown in Fig. 3.9. We see that the two
curves representing measurements starting and ending in NV− (red) or starting in
NV0 and ending in NV− (yellow) seem to converge for pump pulses exceeding 2 µs in
length. Therefore, the convergence point of these two curves gives the steady-state
NV− population, which is 80 ± 2% in this particular measurement. Considering once
more all measured devices, the median NV− population is measured to be 79% with
a 1σ confidence interval of [71, 82]%.

3.2.4. Collection efficiency

This finally brings us to our goal of determining the collection efficiency εdev of our
TPSPs. Experimentally, we can not measure εdev directly as it will be combined with
the optical path efficiency εsetup. Instead, we will measure the detection probability
ε, together with the optical path efficiency εsetup, which we can then use to determine
εdev = ε/εsetup. Typical measurements of ε rely on short, intense pulses to transfer
ground state population into the excited state in order to measure the fraction of
excitations that result in photonic detection. However, these measurements suffer
from two drawbacks. Firstly, these high-energy pulses will often lead to ionization of
the NV− state, decreasing the measured PL rates. Secondly, obtaining an accurate
estimate of the background is challenging.

We address both issues by making use of the NV charge state. Specifically, we
again perform a pump-probe measurement (see Fig. 3.9), where our pump pulse is
now a single picosecond pulse tuned to a spectral band between 590 nm and 620 nm.
We additionally measure the percentage of events resulting in a photon detection
event. Unlike the pulse sequence presented in Fig. 3.9, we additionally measure the
PL within a 275 ns window, starting several clock cycles (12.5 ns each) before each
excitation pulse. Here, we use an FPGA (myRio, National Instruments) to perform
these rapid operations. As the window extends far beyond the measured NV excited
state lifetime of 23 ns, we are certain to collect any PL resulting from the excitation
pulse. Additional 594 nm probe pulses (125 µs) before and after the excitation pulse
allow us to determine the NV charge state. We then record the number of events in
which a photon is detected and group these events according to the measured charge
state. This measurement is repeated for increasing pump powers, resulting in the
curves shown in Fig. 3.10.

By requiring both the initial and final states to be either NV− or NV0, a change in
charge state in the 275 ns counter window will be very unlikely, thereby eliminating
the first drawback we mentioned. Furthermore, as the pump pulse is outside the
excitation band of NV0, any photons detected when starting and ending in NV0 must
originate from the background. In this way, we can directly measure the background
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fluorescence2 and circumvent the second pitfall. We finally subtract the background
(yellow diamonds) from the NV− signal (red squares) to obtain the true, charge-state
corrected detection probability (gray circles) as a function of pump power (Fig. 3.10).
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Figure 3.10.: Charge-corrected detection
probability. The percentage of events in
which a photon is detected following a single
picosecond excitation pulse, differentiated based
on the charge state measured before and after
excitation. Events in which the NV begins
and ends in the NV0 state (yellow diamonds)
represent a measurement of the background and
are therefore subtracted from the events where
the NV begins and ends in the NV− state (red
squares) to obtain the charge-state corrected
detection probability (gray circles) as a function
of the excitation pulse energy. We see that the
curve seems to saturate above 40 pJ leading to a
maximum detection probability of ∼12%.

Using this procedure, we record
a maximum collection efficiency
ε = 0.12 for the device under
investigation. Finally, we esti-
mate our optical path efficiency
(see Appendix A.2.1 for details)
and use the measured detec-
tion probability to determine the
charge-state corrected collection
efficiency εdev = 57%. This value
represents a distinct improvement
over previous approaches [104].

Let us also compare this mea-
sured collection efficiency to what
we would expect from our device
simulations. To do so, we need to
evaluate the total emitted power
INV and power collected at the
objective INV

na for the NV dipole.
Again, we recall that the emit-
ted field of the NV dipole can
be broken down into a 2/3 s- to
1/3 p- polarization, allowing us
to draw on simulations of each
dipole component as summarized
in Table 3.2. In particular, simu-
lations of the full NV dipole indi-
cate that we can estimate the to-
tal emitted power of the dipole by
summing the individual measured
powers with the relevant prefac-
tor, such that

INV/Ibd =
2

3
(I/Ibd)s +

1

3
(I/Ibd)p.

Here, we have normalized to the emission of the bulk dipole Ibd to reflect the simulated
quantities. Furthermore, for a single dipole orientation,

ε
s(p)
sim = (Ina/Ibd)s(p)/(I/Ibd)s(p),

gives the ratio of collected power to that emitted by the dipole i.e., the collection
efficiency. Multiplying the collection efficiency with the corresponding emitted power,

2We assume the background is the same for all excitation wavelengths
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we obtain

Ina =
2

3
(I/Ibd)sεssim +

1

3
(I/Ibd)pεpsim.

Taking the ratio of these two expressions and simplifying, we find that

εdev ≈
(
Ina

I

)NV

≈
2
3 (Ina/Ibd)

s
+ 1

3 (Ina/Ibd)
p

2
3 (I/Ibd)

s
+ 1

3 (I/Ibd)
p . (3.4)

Using the values summarized in Table 3.2, we obtain an expected collection efficiency
of 64%. Though this value exceeds that which we measured, it is surprisingly close
considering that the simulations assume an NV placed perfectly in the center of the
end facet, ideal excitation, and other factors that could change our collection efficiency.

3.2.5. Angular emission

In the final part of our characterization, we wish to verify one last aspect of our
TPSP design: the highly directional emission seen in Fig. 3.5b. Experimentally, we
can address this aspect by imaging the device’s back focal plane (BFP). Located at
the rear focal point of the collecting objective, the BFP is a Fourier transform of
the object plane. Therefore, it can be used to determine the angular distribution of
the photons originating from the object plane; in our case, the NV center within the
TPSP. This plane can be imaged on a regular CCD camera as described in [115].
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Figure 3.11.: Back focal plane imaging (a) A typical BFP image captured with a
CCD camera. We highlight the edge of the objective (NA = 0.8) with a white dashed
line. (b) BFP images showing the PL difference when driving with an off-resonant
(left) or resonant (right) MW showing a drop in emission localized to the region
within the white dash-dotted line. The bottom plot shows the intensity within the
white dash-dotted line, normalized to the non-driven case as a function of the applied
MW frequency. We compare these points to the measured ODMR for the same tip
(blue, dashed line). (c) The same BFP image as in (a) showing the NA = 0.37 of the
device, determined by fitting two 2D Gaussians to the normalized intensity (white,
dash-dotted line). The bottom image shows the BFP of a simulated TPSP tilted by
5◦ relative to the cantilever normal.
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An example of a BFP image of the emission from a TPSP device is shown in Fig. 3.11a.
In such an image, we observe a drop in the pixel white-level at the angular limit of the
collected light. We mark this boundary, which corresponds to the NA of our objective
(NA = 0.8) [99], with a dashed white line. Within this area, we obtain a localized
region of high intensity, which we attribute to the PL originating from the NV center.

To verify that this observed emission indeed originates from the NV center, we
perform a set of BFP measurements while simultaneously driving with a fixed MW
frequency. We process our BFP measurements as grayscale images and extract the
white level of each pixel, which we refer to as the pixel intensity. We then subtract
the intensity of the BFP taken in the absence of MW driving from that taken with
driving. This process is repeated for several frequencies across the ODMR range. In
doing so, we observe that the resulting difference images show a distinct, localized
drop in intensity when the microwave is resonant with one of the two NV transitions
(Fig. 3.11b, top-right panel). This intensity reduction is made even more apparent
when compared to the off-resonant case (Fig. 3.11b, top-left panel). Here, we highlight
this region with a dash-dotted circle. In the bottom panel of Fig. 3.11b, we plot the
pixel intensity of the driven case, integrated over the region within the dash-dotted
circle, and normalized to the non-driven case. We see a correspondence with the
ODMR lines of the NV center shown with a blue dashed line, thus confirming our
hypothesis that the BFP emission indeed originates from the NV. Furthermore, the
observed drop in intensity is localized within the dash-dotted area, implying that
the small lobe to the left in Fig. 3.11a does not come from the NV. Instead, this is
likely background emission, possibly due to fluorescent contamination on the device
or ambient lighting.

Let us now turn to the question of NA and explore how we use these BFP images
quantitatively. We will again take the intensity matrix of our BFP images, which we
fit using the sum of two 2D Gaussians. One of these Gaussians is fixed to be concentric
with the objective aperture to imitate a broad background, while the second is allowed
to vary freely in center coordinates and width to fit the signal arising from the NV.
From this fit, we extract the 1/e2 point of the narrower signal Gaussian, which is
then plotted as a white, dash-dotted line in the top panel of Fig. 3.11c. Though not
stated, the dash-dotted lines in Fig. 3.11b are obtained in the same way.

To relate the 1/e2 point of the Gaussian fit (in pixels) to an effective NA, we use the
radius of the NA = 0.8 circle (white, dashed line) identified previously as a conversion
factor. In this way, we obtain an NA = 0.37 for the image shown in Fig. 3.11c. The
BFP was measured for a total of ten devices, resulting in a median NA = 0.44 with
a 1σ confidence interval within [0.41, 0.55]. Comparing this to the simulated NA in
Fig. 3.5b, we find that the simulated NA = 0.42 fits well within this range.

We note that the emission pattern in this device is markedly off-center. This an-
gular offset of the emission may be explained through a tilt of the pillar relative to
the cantilever surface. Figure 3.11c (bottom) shows the simulated far-field emission
extracted for a pillar angled at 5◦ from the cantilever normal. Here, we observe a
comparable shift in the emission relative to the pillar axis shown with crosshairs.
Simulations of emitters placed away from the symmetry axis of the pillar show a dis-
tortion of the emission for large displacements but can not explain the experimentally
observed offset.

Thus, we have succeeded in verifying the narrow angular emission of the TPSPs seen
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in simulations. Through the in-depth characterization of the novel scanning probes
presented in this section, we have highlighted the improved photonic properties of
these devices. In particular, we have achieved the highest PL rates in scanning probes
to date and photon collection efficiencies exceeding 50%. Due to this significant
improvement, the device concept has also been submitted for patenting.

3.3. Applications to magnetometry

Our goal in this thesis is to utilize the TPSP probes in scanning magnetometry. While
the basic concepts of ODMR-based magnetometry have been discussed in Chap. 2.2,
let us shortly discuss the physical implementation of DC scanning NV magnetometry.
This technique relies on the spatial scanning of the NV center relative to the surface of
a magnetic sample. By dividing the scanning area into a raster pattern and recording
the ODMR frequency via one of the three methods detailed in Chap. 2.2.2, we obtain
real-space images of the stray magnetic field at a height dNV from the sample surface.
We realize this scanning procedure by using our TPSP like the tip of an atomic force
microscope, as described in Ref. [29]. In particular, the TPSP is glued to the end
of a pulled quartz capillary, which in turn is glued to one tine of a quartz tuning
fork. We excite oscillations in the tuning fork with a piezo and use the oscillation
amplitude of the tuning fork to maintain in-contact operation through a feedback
loop while the sample of interest is scanned below the TPSP. This procedure also
allows us to reliably and repeatedly scan over topographic features reaching 1.5 µm
in height. Here we also benefit from the hardness of diamond, which makes these
scanning probes very robust. This technique is described in more detail in a number
of publications [29, 31, 92, 116].

This section, will finally focus on characterizing the key parameters for NV magne-
tometry with this new TPSP design: stray field sensitivity and spatial resolution. In
particular, we examine if the favorable photonic properties of the TPSP discussed in
the previous sections will also translate to high magnetic field sensitivity and spatial
resolution.

3.3.1. Sensitivity

To estimate the DC sensitivity achievable with the TPSP devices characterized in
the previous section, we will be following a procedure based on that presented by
Dréau et al. [85]. In this analysis, we will find that the hyperfine structure of the NV
center, which we have neglected thus far, will play a role. In particular, interactions
between the electron spin and 14N nuclear spin will lead to splitting of a single ODMR
line into three resonances, corresponding to the three projections of the nuclear spin.
In Eq. 2.4, we have described the ideal DC ODMR sensitivity, assuming that the
ODMR line is well described by a single Gaussian or Lorentzian function. In their
study, Dréau et al. work at high applied fields, specifically at the excited state level
anticrossing at 51 mT, where the polarization of the 14N nuclear spin again results
in only a single resonance. However, to remain consistent with the conditions under
which we typically perform magnetometry measurements, we will consider moderate
bias fields of <3 mT. Additionally, laser and MW induced power-induced broadening
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Figure 3.12.: Determining the sensitivity. (a) ODMR spectrum taken at s = 0.3
(where s = P/Psat and Psat = 37 µW) and a MW Rabi frequency of 2.5 MHz. The
spectrum (black points) is fit with the sum of three Voigt lines separated by 2.16 MHz
(red line). The maximum slope is shown with a solid blue line. (b) Sensitivity of the
TPSP device determined by Eq. 3.5 as a function of the MW driving amplitude. The
measurements are repeated for three different optical powers resulting in an s = 0.2
(black circles), s = 0.3 (red squares), and s = 1.1 (blue diamonds). The lines are
guides to the eye. The error bars represent the standard deviation extracted from
three independent estimates of the maximum slope based on the Voigt fit, smoothed,
and raw data.

of the individual hyperfine lines in our typical measurement regimes will lead to an
ODMR spectrum as shown in Fig. 3.12a, taken with 12 µW of 532 nm excitation
(s = P/Psat = 0.3) and a MW power corresponding to a Rabi time of 2.5 MHz. Here,
we are unable to resolve the individual hyperfine lines, but at the same time, a single
Gaussian or Lorentzian line also provides a poor fit. In this regime, applying Eq. 2.4
will not provide a good approximation of the achievable sensitivity.

Therefore, we will rely on the slope of the ODMR spectrum to extract our sensitivity
instead. Recall that the sensitivity may be evaluated with the following expression:

ηB =
1

γNV

√
ΓNV

(∂ΓNV/∂ν) |max
. (3.5)

Here, ΓNV is the PL rate measured at the point of maximum slope (∂ΓNV/∂ν)|max.
For the ODMR trace in Fig. 3.12a, we estimate the maximum slope (shown in blue
in Fig. 3.12a) by calculating the gradient of the data, yielding ηB = 1.12 µT/

√
Hz.

Due to the noise in the measurement, such an approach typically results in an over-
estimate of the slope. To avoid this, we also estimate the slope by smoothing the data
using a Savitzky-Golay filter, resulting in an estimate of ηB = 1.26 µT/

√
Hz. However,

as the choice of filter and filter order is arbitrary, we make one final estimate of the
slope by fitting the data. In this way, we achieve similar smoothing without mak-
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ing assumptions regarding the smoothing function. In particular, we fit the ODMR
shown in Fig. 3.12a (red) with the sum of three Voigt functions, allowing us to accu-
rately represent the hyperfine structure of the NV center while smoothly transitioning
between a Gaussian and Lorentzian lineshape in the presence of power broadening.
Using this procedure, we obtain a sensitivity estimate of ηB = 1.29 µT/

√
Hz. We then

take the mean and deviation of these three estimates to obtain our final estimate of
the sensitivity: ηB = 1.22 ± 0.07 µT/

√
Hz for this particular ODMR.

We then repeat this analysis for various MW and optical driving conditions, sum-
marized in Fig. 3.12b for the same device shown in Fig. 3.12a (Psat = 37 µW). Here,
we give the sensitivity as a function of the MW Rabi frequency for three different
laser powers: s = 0.2, shown with black circles, s = 0.3, shown with red squares,
and s = 1.1, shown with blue diamonds. Note that the lines shown in this figure
are guides to the eye. Like Dréau et al., we observe an optimum in the sensitivity
that varies with the MW driving amplitude. For a given optical power, increasing the
MW driving will first result in an improved sensitivity before power broadening and
contrast saturation again lead to a decrease in sensitivity. While a similar optimum
is expected as a function of excitation power, it is much broader, and therefore, not
visible in Fig. 3.12b. Comparing all results within our parameter set, we observe an
optimal sensitivity of ∼1.2 µT/

√
Hz.

Finally, let us also compare these results to those presented by Dréau et al. In par-
ticular, we have realized a factor of 1.7 improvement on the CW ODMR sensitivity
limit of 2 µT/

√
Hz that they identify3. However, if we compare our estimated sensi-

tivity to values that they obtain for similar driving conditions, we observe a factor of
approximately 3 improvement. This improvement is also consistent with the increase
in saturation count rate (∼2 MHz), achieved with the device shown in Fig. 3.12. While
we have already achieved a regime in which we realize excellent sensitivities, compar-
isons to Dréau et al. suggest that we should be able to improve on these values. One
possibility is by working in a regime where we are able to resolve the hyperfine lines,
either by further reducing the power or through pulsed ODMR [85].

3.3.2. Resolution

We now complete the characterization of our novel scanning NV probes with a dis-
cussion of the spatial resolution. In Chap. 2.2.4, we have shown that the spatial
resolution of NV center magnetometry is given by the distance dNV between the NV
center and source of magnetic signal. However, measuring this distance is not a trivial
process.

A useful method for getting a qualitative sense of the distance is to record the
collected PL as the NV approaches a dielectric sample surface, also known as an
approach curve. We typically observe that the detected PL begins to oscillate and
drop off very sharply shortly before coming into ‘contact’ as shown in Fig. 3.13. Here,
contact is defined to be the point at which the tuning fork amplitude falls to 80% of
its out-of-contact value. Generally, the oscillations will be due to a combination of
standing waves in the excitation laser arising from reflections off the sample surface
and changes in the NV emission behavior. Close to the sample surface, as shown

3Dréau et al. measure a bulk NV center with 250 kHz saturation count rates, using an oil
objective.
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Figure 3.13.: Approach curve
over a dielectric surface. Mea-
sured NV PL rate as a function of
the distance between the diamond
tip and a dielectric surface. We
observe oscillations in the PL and
a rapid drop in the last ∼200 nm,
which could be used to determine
the distance between NV and sur-
face.
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in Fig. 3.13, the oscillations are primarily due to changes in the Purcell factor (see
Sec. 3.1.1) [117]. However, to extract the distance based on this portion of the ap-
proach curve, we require better modeling of the NV center emission. In Appendix A.4,
we present first attempts at simulating this behavior. On the other hand, far from
the sample i.e., at distances exceeding ∼2 µm, oscillations will be primarily due to the
standing waves in the excitation laser [118]. These laser-based oscillations have been
used to estimate dNV, as shown in the SI of Reference [118], but these estimates are
associated with large uncertainties. For this reason, we typically use this approach
curve in a qualitative manner.

The most common technique for quantitatively determining dNV however, is to
use the stray field of a well-understood and easily modeled structure. An ideal source
would be a 1D current-carrying wire, whose stray field is described by the Biot-Savart
Law. Unfortunately, obtaining this kind of ideal 1D current-carrying wire is difficult.
One possibility could be to use current-carrying carbon nanotubes, but based on
first attempts, the resulting signals tend to be much too small to be detected in DC
magnetometry, and scanning in contact may result in tearing of the device.

A similarly simple source, is a uniform, out-of-plane magnetized stripe. For such a
structure, the stray field can be described as a 1D current running along the edge of
the stripe [24], as shown in Fig. 3.14a. The stray field projection onto the NV axis, as
shown in Fig. 3.14b, can then be fit using this current model to determine dNV. This
method is well-established and forms the basis of most claims of spatial resolution,
including those we present here.

Let us now turn to a quantitative discussion of dNV extracted for these TPSP
devices using the “stripe method” mentioned above. In Fig. 3.14c, we summarize
measurements performed with six of our TPSP devices over either a FM CoFeB
stripe (NV 1 and NV 6) or an AFM Cr2O3 mesa (NV 2-5). In particular, we present
a standard box plot analysis for these devices with each measurement of the NV-to-
sample spacing shown as a gray circle and the median shown in red.

Taking the mean of the median values shown, we find d̄NV = 69 ± 13 nm, though
values of dNV down to 35 nm have been achieved. These values are comparable to
other scanning NV devices and bring us to a regime where we can address a range
of spin textures. However, the values of dNV that we find are still a factor of three
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Figure 3.14.: Determination of the spatial resolution. (a) A schematic detail-
ing the stray field arising from the edges of a FM stripe, which we model as arising
from two oppositely-flowing line currents shown at the corners of the stripe. (b) The
stray field arising from the measurement in (a) and fit with the two-current model
(red curve). From here, we extract a value of dNV = 45 ± 5 nm. (c) A box plot
summary of dNV measured for six TPSP devices. Each point denotes an individual
measurement with the median shown with a red line, a box denoting the interquar-
tile range, and whiskers drawn to the maximum and minimum values (except for the
outlier marked in red).

larger than the expected distance between the NV center and the diamond surface.
In our design, if the truncated end facet of the diamond can be brought into contact
with the magnetic stray field source, dNV should only be defined by our implantation
parameters and so is expected to be on the order of 20 nm [92, 119]. There are several
reasons why we might obtain these values.

First and foremost, the estimated depth of the NV center is based on simulations
and has yet to be independently confirmed. As such, the NV centers may indeed form
deeper in the diamond than expected. Furthermore, a larger NV-to-sample spacing
could arise from a tilt in the pillar or uneven sample surface. Mounting of the scanning
probe is done by hand [92], resulting in an expected accuracy of ±2◦. A tilt of 2◦,
can lead to a separation of 3.5 nm to 7 nm depending on the position of the NV in the
pillar. Even such small tilts can thus change dNV by ∼10%. Note that despite the
tilt of the pillar seen in BFP measurements (Fig. 3.11c), we believe that based on our
fabrication procedure, the diamond end facet should still lie parallel to the cantilever.
This particular tilt would, therefore, result in a slightly skewed parabola but not an
increased dNV.

One additional factor that will lead to changes in the distance between NV and
sample surface is dirt on the diamond end facet. Experience shows that the scan-
ning devices, though remarkably robust, suffer from collecting contamination on their
surface. This process is undoubtedly a more significant issue in room-temperature
magnetometry, where ambient conditions and open scanning setups allow dust and
other particulate matter to accumulate. Such contamination can be mitigated by
sealing the scanning setup when in use, but it is difficult to avoid altogether. For
this reason, the temporal and spatial proximity of magnetometry measurement and
distance calibration is essential. This final point will be used later in Chap. 4.
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3.4. Conclusions and Outlook

In this chapter, we have presented a novel form of diamond NV scanning magne-
tometry probe. By combining the excellent waveguiding properties of the parabolic
reflector and the truncation of traditional scanning probes, we were able to realize a
device that achieves both high magnetic field sensitivity and high spatial resolution.

In Sec. 3.1, we introduced our truncated parabolic scanning probes by motivating
the design through a simple geometric optics picture. We then expanded this picture
through detailed simulations showing the improvement in collection efficiency and
angular emission of the TPSP relative to its precursor, the cylindrical pillar. Following
these idealized simulations, we showed that it is possible to fabricate such structures,
highlighting the fabrication process and verifying their performance again through
simulations.

Moving to Sec. 3.2, our goal was to characterize these newly fabricated devices. We
began with a general, ODMR-based investigation to identify single NV structures, a
subset of which we used to perform in-depth measurements of the saturation PL and
power, lifetime, and charge state. In the process, we observed a median saturation
PL photon count rate of 2.1 MHz – a factor of 5 higher than typical PL rates in the
previous pillar models, and to our knowledge, the highest PL rates demonstrated for
NV-based scanning probes to date. Having next presented a method to measure the
charge state, we then used similar techniques to measure the charge-state corrected
collection efficiency of the TPSP. The 57% collection efficiency that we were able
to demonstrate again highlights the benefits of our TPSP design. To round out
the comparison between measurements and simulations, we addressed the angular
emission of these devices through BFP measurements, observing a median NA of
0.44. This value agrees well with simulation results and could, in the future, be used
to further simplify and optimize our collection optics.

Finally, in Sec. 3.3, we returned to the question of sensitivity and spatial resolution
introduced in Chap. 2. In particular, we observed a DC ODMR sensitivity of up to
1.2 µT/

√
Hz and a mean NV-to-sample distance of 69 ± 13 nm. Though this does

not represent a significant improvement in spatial resolution over past approaches,
we have improved the sensitivity by a factor of 2 compared to previous estimates and
measurements [85, 92].

3.4.1. Outlook

While these TPSPs exhibit some excellent properties, there is still room for further
improvements. There are many, often complementary paths that one could take to
improve both the sensitivity and spatial resolution of these devices. Here, we will
present some of these directions.

The first possibility we will explore is the use of different diamond orientations.
Thus far, we have restricted our discussion to (100)-oriented diamond, in which the
NV is oriented at a 54◦ angle to the surface normal. However, this means that
the NV dipole will exhibit both s- and p-polarized components, the latter of which
experiences strong suppression in our diamond structures. For this reason, working
with (111)-oriented diamond, where the NV may lie along the pillar axis, can be
highly beneficial [120, 121]. This orientation would result in a solely s-polarized
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dipole, which would produce the maximal PL rate. An additional benefit is that
these (111)-oriented diamond probes simplify the magnetometry process, allowing us
to measure the out-of-plane component of the stray magnetic field directly [79, 120].

A different route to improving the sensitivity of our devices is to stabilize the spin
coherence and charge state of the NV, for example, through controlled surface termi-
nation [122, 123]. Furthermore, lower implantation densities or implantation of 12C
rather than nitrogen (where one would then use the natural nitrogen in the diamond
as an NV) could reduce the defects that negatively impact the coherence times. How-
ever, both of these options would result in very low NV densities, necessitating the
use of deterministic alignment, where one targets a particular NV when patterning
the diamond pillars. Work along these lines has already begun in the group.

On the other hand, one can also focus on improvements of the TPSP itself. Though
the parabolic tip of the pillar ensures that the majority of the emission impinges
normal to the back surface of the cantilever, one still loses 17% of PL due to reflection
from the diamond surface. Thus, adding an anti-reflection coating to the back surface
of the pillar would further improve our collection efficiency, hence, our PL rate. An
anti-reflection coating could be achieved through a ∼100 nm film of SiO2 (nSiO2

=
1.5), a readily available material. The challenge here is to achieve a smooth coating
following etching and cleaning of the diamond surface, which would likely remove any
deposited oxide layers.

Though sensitivity is an important aspect of NV magnetometry, we have a second,
critical parameter to improve - the NV-to-sample distance. One obvious path to
improvement is obtaining shallower NV centers. This may be achieved through lower
energies during implantation or through soft oxygen plasmas in which we remove
nm’s of diamond at a time, bringing deep NV centers closer to the surface [127].
However, shallow NV centers come with drawbacks, such as reduced coherence times.
An alternative approach to achieving a higher spatial resolution is using overgrown
diamond to achieve sharp, pyramidal-like pillars [124], as seen in Fig. 3.15a. Though
this design of the pillar provides less high-quality waveguiding than the TPSP, the
sharp point of the pyramidal tips ensures that the NV is always at the lowest point
of the pillar, provided we can ensure that the NV is placed precisely at the tip of the
pyramid. This is a challenge that is yet to be overcome.

To bring this chapter to an end, let us take a final look towards future forms of
scanning magnetometry. Our current form of scanning setup involves atomic force
microscopy-style scanning of the diamond cantilever and pillar, attached to a tuning
fork through a thin, pulled quartz rod [29]. Both excitation and collection are then
free-space and rely on our ability to collect the PL through an objective. However, one
could also modify this to achieve a fiber-coupled sensor. By placing the diamond pillar
directly on the end of an optical fiber, as shown in Fig. 3.15b, one can excite and read
out the NV center directly, considerably reducing the need for optical elements, which
lead to significant optical losses. Additionally, one could imagine placing the MW
excitation antenna directly on the fiber, as seen in Fig. 3.15c [125], thereby leading
to a compact scanning system. Such a scenario would also make this technique much
more accessible for commercial users. We have made first attempts of such a fiber-
coupled geometry, but to date, have observed only poor coupling between the NV
PL and fiber core. Improving the match between the optical modes of the diamond
pillar and the fiber is crucial and may be achieved by modifying either the pillar
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Figure 3.15.: Future directions for NV magnetometry (a) Overgrown diamond
pillars exhibiting a sharp, pyramidal apex. Adapted with permission from [124]. (b)
A scanning probe device glued to the end of an optical fiber for coupling to the NV.
(c) A nanodiamond (dark) glued to the end of an optical fiber with a MW antenna
brought close by wrapping a 50 µm copper wire around the fiber end. Reproduced with
permission from [125]. (d) A bent, tapered optical fiber used for SNOM experiments.
The fiber is glued to a tuning fork using a small glass rod to allow for scanning.
Reproduced with permission from [126].

to have a larger base diameter or by reducing the lateral extent of the fiber. The
latter is also important for realizing scanning, as the cladding diameter is typically
much larger than the size of the diamond scanning probe. As such, tilting of the fiber
would make achieving reliable scanning difficult. One possibility in this direction is to
use current scanning nanoscale optical microscopy technology, which relies on bent,
tapered optical fibers [126] as shown in Fig. 3.15d. Placing the diamond on the end
of one of these structures could be an ideal scanning solution.



4. Mechanics of antiferromagnetic
domain walls in Chromia

At this point, let us look back at our original motivation for this thesis. In Chap. 1, we
highlighted some of the paths taken in the field of spintronics to address the question
of improving the efficiency, reliability, and speed of modern computing and mem-
ory devices [128, 129]. Magnetic storage, for example, has the distinct advantage of
being inexpensive and non-volatile. However, current technologies rely on ferromag-
netic (FM) materials, which exhibit slow switching, require high switching currents or
fields, and can be accidentally erased by applying strong, external magnetic fields. To
combat these issues, antiferromagnetic (AFM) spintronics has focused on replacing
these FM technologies with AFM ones. These materials have attracted much atten-
tion due to the promise of low energy costs and high switching speeds [130], all while
being robust against external fields.

One material, which has drawn considerable interest from the AFM spintronics
community is chromia (Cr2O3). Early records of this material date back to the
1830s as the primary component of certain green pigments [131]. It was not until
about 130 years later that people became interested in Cr2O3 for its magnetic prop-
erties [132, 133]. Chromia remains AFM above room temperature and undergoes a
second-order phase transition to a paramagnetic (PM) state at a Néel temperature
TNéel= 307 K [133, 134]. In 1960, Cr2O3 became the first material theorized to exhibit
magnetoelectric properties, i.e., coupling between its magnetic and electric proper-
ties [132] In the same year, this theory was confirmed experimentally [133]. Since then,
many studies have focused on characterizing the magnetic structure of the material
and harnessing these magnetoelectric properties. For example, it was realized quite
early that one could control the magnetic order parameter through magnetoelectric
annealing: the simultaneous application of magnetic and electric fields while cooling
through the critical temperature [134, 135]. This procedure paved the way for later
switching experiments [16, 17] and helped realize the first measurements of magnetic
domains, regions of uniform magnetic orientation, in Cr2O3.

However, despite all of these studies, there are still significant gaps in our knowl-
edge regarding the underlying magnetic structure of Cr2O3. For instance, there are no
experimental studies that have measured the nanoscale magnetic structure of Cr2O3.
Furthermore, though direct imaging of domains in Cr2O3 has been achieved [136, 137],
the boundaries between adjacent domains – the domain walls (DWs) – have remained
more or less unexplored in experiments to date. In general, DWs play an important
role in influencing advances in spintronics. Mobile DWs have, for example, been pro-
posed as a key component of novel memory devices such as racetrack memories [7].
On a fundamental level, DWs can also yield information about underlying material
properties [138], such as the presence of chiral energy terms. They may also demon-
strate unique characteristics e.g., increased electrical conductivity, in comparison to
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the rest of the material [139], which may be harnessed in applications. Thus, the
understanding and control of DWs in any material, and in particular in chromia, may
open up new avenues in AFM spintronics.

Our goal in this chapter is to address these knowledge gaps and expand our current
understanding of DWs in Cr2O3. We will begin with an introduction to the structure
and material properties of Cr2O3 before investigating the magnetic signal of bulk
Cr2O3. We then present a study of DWs, which yielded unexpected, novel results
on the DW mechanics. Finally, we will conclude by expanding into studies of thin-
film chromia, which are of interest in technological applications. The success of these
studies lies in the excellent magnetic field sensitivity and nanoscale resolution of the
NV center introduced in Chapters 2 and 3.

All the measurements shown in this chapter have been performed on a home-built
confocal NV magnetometry setup, equipped with a CW 532 nm excitation laser. Mi-
crowaves for spin manipulation are applied using a gold loop antenna. We additionally
apply a small bias magnetic field along the NV axis to ensure quantitative imaging.
For more details on this setup, see Appendix A.2.2. The majority of measurements
are performed using the truncated parabolic scanning probe (TPSP) devices charac-
terized in Chap. 3.2 and unless stated otherwise, all stray field images are obtained
using feedback tracking of the ODMR spectrum. The bulk crystal results presented
in the following chapter have been published in Ref. [140], and the submission of the
thin film results is in progress at the time of writing.

4.1. Magnetism of Chromia

4.1.1. Introduction to Magnetic Order

Before exploring the specifics of Cr2O3, we will consider a simplified magnetic system,
which we will use to discuss the three most common energy terms in any magnetic
material. This simple model will provide a framework within which to discuss the
relevance of our later results and prepare the way for a discussion of DWs. We begin
with a generic Heisenberg model, where every lattice point is occupied by a magnetic
atom, as shown in Fig. 4.1. Each atom carries a magnetic moment, m, which a
priori, can point anywhere in 3D space. To understand the magnetic structure of
such a lattice, we need to build up a Hamiltonian based on the interactions at a single
lattice site, between nearest neighbors (e.g., 1-2 in Fig. 4.1), next-nearest neighbors,
and so on.

We will restrict ourselves to three magnetic energy terms, the first being the mag-
netic anisotropy. This term describes the tendency for the magnetic moments to
align to a particular, energetically favorable direction, primarily due to spin-orbit
coupling [141]. Here we will assume a uniaxial magnetocrystalline anisotropy, as
present in Cr2O3. In this case, the crystal structure introduces a single axis along
which the lattice spins will align to reduce the overall energy, also known as the easy
axis. This energy contribution can be described as follows:

Han =
−KuS2

2

∑
i

(µzi )
2, (4.1)
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Figure 4.1.: Magnetic interac-
tions on a lattice. Each lat-
tice point (red circles) represents a
magnetic atom. Exchange interac-
tions (J ) between nearest neigh-
bors (e.g., 1-2) are AFM, and
those between next-nearest neigh-
bors are FM. Single-site uniax-
ial anisotropy leads to a preferen-
tial orientation along the easy-axis
(here, the z-axis). Dipolar inter-
actions arise due to the magnetic
fields generated by each magnetic
atom.

1

2

y

z

x

where Ku is the uniaxial anisotropy constant, S is the spin length, and µi is the unit
vector representing the direction of the magnetic moment on the i-th lattice site. In
particular, in Fig. 4.1, we select an easy axis pointing along the z-direction, Ku > 0.
For Ku < 0, the magnetic moments will tend to align to an easy-plane, in this case,
parallel to the xy plane.

The next energy term we consider is the exchange energy. This ubiquitous interac-
tion arises due to the Pauli exclusion principle in the overlapping of atomic orbitals
of two lattice sites and may be described as follows:

Hex =
J S2

2

∑
i,δ

(µi · µδ) . (4.2)

Note that the exchange interaction tends to be short-range, and so the sum is over
nearest neighbors (δ) of lattice site i. Furthermore, J is the exchange parameter. If
J < 0, then the interacting spins will align parallel to each other i.e., ferromagnet-
ically, whereas J > 0 leads to anti-parallel i.e., AFM alignment as seen in Fig. 4.1.
We highlight the AFM coupling by coloring the magnetic atoms either light red or
dark red according to their spin orientation (spin up and down, respectively).

The last energy term we will discuss here is the dipolar energy. Though weak in
comparison to the other two terms, it has a considerable long-range effect. Here, each
dipole in the lattice is affected by the magnetic field generated by the others, as shown
in the bottom left of Fig. 4.1. This interaction may be written as follows:

Hdi =
µ0g

2µ2
BS

2

8π

∑
i6=j

[
µi · µj
r3
ij

− 3(µi · rij)(µj · rij)
r5
ij

]
, (4.3)

where g is the g-factor of the atom on the lattice sites, µ0 is the vacuum permeability,
µB is the Bohr magneton, and rij is the vector connecting lattice site i to site j.
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These long-range dipolar interactions play an important role in FMs as the primary
source of stray fields; in AFMs, this term will be small and can often be ignored.

These are by no means the only interaction terms that may be present in magnetic
systems. We have, for instance, ignored the Dzyaloshinksii-Moriya interaction (DMI),
which introduces chirality [141, 142]. However, these three terms represent the most
important energy contributions and are sufficient to describe a wide range of physical
phenomena. In particular, this discussion may be applied to any uniaxial, achiral
AFM, including chromia, as we will see in Sec. 4.1.3.

4.1.2. Magnetoelectricity

As previously discussed, initial interest in Cr2O3 developed due to its magnetoelectric
properties. To understand the origin of this particular property, let us first write down
the general form of the free energy i.e., the energy stored by the magnetic or electric
field per unit volume, for a magnetoelectric dielectric medium [143]:

F = F0 +
1

2
H ·B +

1

2
E ·D −αE ·B. (4.4)

Here, F0 is the energy in the absence of external fields, and B andH are the magnetic
flux density and magnetic intensity, respectively. Similarly, E and D represent the
electric and displacement fields. The crucial component for a magnetoelectric medium
is the last term in Eq. 4.4, which involves the magnetoelectric susceptibility tensor
α. Expanding these terms (see Ref.[144]) and taking the derivative of the free energy
with respect to E and H, one obtains the typical description of the polarization and
magnetization of a linear magnetoelectric material such as Cr2O3:

Pi = − ∂F
∂Ei

= χeijEj + αijBj , (4.5)

and

Mi = − ∂F
∂Bi

= χmijBj + αijEj . (4.6)

Here, χ
m(e)
ij is the magnetic (electric) susceptibility and repeated indices represent a

sum over those terms. From these equations, we see that, as expected, the electric
field will induce a polarization and the magnetic field induces a magnetization. How-
ever, due to the presence of the magnetoelectric susceptibility, applying an electric
field to a magnetoelectric material will also induce a magnetization, and vice versa,
applying a magnetic field induces an electric polarization. This interplay of the elec-
tric and magnetic properties is particularly interesting for applications, as it enables
the switching and readout of the material’s magnetic state through the application of
electric [16, 17, 145] or magnetic [146] fields.

The key ingredient for obtaining a magnetoelectric response is the crystal symmetry,
specifically, symmetry breaking [132, 147]. Let us consider two particular symmetries
– spatial inversion and time-inversion – which will lead to a sign change in E and
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B, respectively [147]. Applying these properties to the expression in Eq. 4.4, we see
that the second and third terms remain invariant under these individual symmetry
operations, but the E ·B product in the final term will change its sign. One important
requirement for the free energy of a system is that it remains invariant under symmetry
operations corresponding to the symmetry of the crystal [148]. As such, in order to
have a non-zero magnetoelectric term in the free energy, the crystal must break both
time-reversal and spatial inversion symmetries. In magnetic crystals such as Cr2O3,
the breaking of these symmetries results from the magnetic ordering, which we will
explore in the next section.

4.1.3. Chromia

In Sec. 4.1.1, we developed a general model of AFM order in a square lattice.
Here, we will now explore how to adapt this treatment based on the specific
crystal structure of Cr2O3. On an atomic scale, Cr2O3 has a corundum-type
crystal structure with a rhombohedral primitive unit cell illustrated in Fig. 4.2a.

1

2

3
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3’

4’

O2- Cr3+

1

2 3’
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(a) (b)  Lz = +1

 Lz = -1

Figure 4.2.: Crystal and spin structure of
Cr2O3. (a) The rhombohedral primitive unit cell
of Cr2O3 showing the positions of the Cr and O
ions. Note that not all O ions in the unit cell
are shown for clarity. Instead, we show the bonds
to the next unit cell with semi-transparent lines.
The magnetic moment of the Cr ions is shown
with an arrow. (b) Simplified lattice structure
highlighting two magnetic states of Cr2O3 with
opposite Néel vectors. The numbering of the Cr
ions is used to compare equivalent atoms in (a)
and (b).

Though not all ions are shown,
each Cr3+ ion is bound to six
O2− ions, forming slightly dis-
torted octahedrons. For a [001]-
oriented Cr2O3 crystal, which will
be the focus in this chapter, the
moments of these ions are antifer-
romagnetically coupled along the
z-axis [149] as shown in Fig. 4.2a.
The unit cell picture can also be
extended to include a larger por-
tion of the crystal. In Fig. 4.2b,
we show two cross-sections of the
crystal along the (100) plane,
highlighting two potential spin
orientations in the lattice. We
will now use the hexagonal lat-
tice description of Cr2O3 and the
corresponding crystal axes, c and
a, as shown to the right. Here,
the O ions appear as single lay-
ers separating the Cr ions. We
also number the Cr ions to draw
attention to the parallels between
this atomic structure and the unit
cell in Fig. 4.2a. Importantly,
this picture highlights the devel-
opment of the up-down-up-down
structure of magnetic moments
on the Cr ions, indicative of long-
range AFM order.
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Each Cr ion in the antiferromagnetically coupled pairs (1-2 and 3-4) can be assigned
to one of two sublattices. In Fig. 4.2, we color these sublattices with different shades
to emphasize the difference between magnetic moments pointing up (light) or down
(dark). Note that within a given sublattice, the spins are ordered ferromagnetically.
Furthermore, this structure allows us to address the symmetry breaking mentioned in
the previous section. Structurally, the unit cell of Cr2O3, as seen in Fig. 4.2a, has an
inversion center in the center of the cell. However, with the magnetic ordering of the
Cr ions, inversion around this point will lead to a reversal of the magnetic moments.
Similarly, time-reversal will also lead to a reversal of each magnetic moment, and so we
see that the magnetic ordering breaks both inversion and time-reversal symmetries.

Let us now return to the general model introduced in Sec. 4.1.1. If we wish to apply
this simple, cubic model to Cr2O3, we must understand how the energy terms need
to be adapted to achieve an accurate representation. The first energy term is dom-
inated by a uniaxial, magnetocrystalline anisotropy leading to a Ku > 0. However,
magnetoelastic contributions due to tension in the crystal may modify the anisotropy
constant. As such, we account for such variations through the use of an effective
anisotropy constant K [150, 151].

The exchange mechanism in Cr2O3is less straight forward. For a long time, it was
disputed due to the complicated crystal structure [152, 153]. However, recent deriva-
tions of the magnetic structure from first-principles seem to suggest that the exchange
interaction is indeed dominated by nearest-neighbor interactions i.e., between atoms 1
and 2 as introduced in Eq. 4.2 [149, 154]. Therefore, the exchange term in Cr2O3 may
be described by the same functional form, with an effective exchange constant J ′ > 0.

Finally, the dipolar contribution in Cr2O3 is typically more than two orders of
magnitude smaller than the anisotropy [155], meaning that it can be ignored in our
description. As such, we obtain the following spin-lattice Hamiltonian:

H = Hex +Han =
J ′S2

2

∑
i,δ

(µi · µδ)−
KS2

2

∑
i

(µzi )
2, (4.7)

where the sum in the exchange term is over nearest neighbors belonging to opposite
sublattices.

For a two-sublattice AFM as Cr2O3, it is convenient to introduce two vector quan-
tities. The first is the total magnetization vector M :

M = (µ1 + µ2) /2. (4.8)

While this vector represents the primary order parameter in FMs, in Cr2O3, the two
magnetic moments are ideally equal and opposite, leading to |M | = 0. The vanishing
magnetization is one of the key properties of collinear AFMs such as Cr2O3, where the
spins point precisely opposite each other. It is this lack of overall magnetic moment
that makes AFMs robust against external magnetic fields.

Though there is no net magnetization, we can still define a second vector quantity,
known as the Néel vector or Néel order parameter, L1:

L = (µ1 − µ2) /2. (4.9)

1Typically, L may be defined as L = µ1−µ2 +µ3−µ4 [141]. However, as µ1 = µ3 and µ2 = µ4
in our case, we can simplify L to the form in Eq. 4.9.
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Analogously to M in FMs, L will be used to describe the magnetic ordering of the
Cr2O3 domains. In particular, the direction of L for the two magnetic orientations
in Fig. 4.2b is shown to the right of the figure as a bold arrow.

Up to now, we have focused on an atomic lattice model, which is useful for sim-
ulations and when addressing the magnetic structure on an atomic level. However,
when discussing magnetic structures such as DWs in the nanoscale regime, it is often
necessary to describe the system based on a micromagnetic i.e., continuum formalism.
In particular, this requires reframing Eq. 4.7 in the micromagnetic limit. Using the
Néel vector we just introduced, our Hamiltonian description will be equivalent to the
following [156]:

E = A

∫ ∑
ν=x,y,z

(∂νL)2dr +K

∫ (
1− L2

z

)
dr. (4.10)

Here, the first term is the exchange energy, and the second term here is the anisotropy.
Note that we have also introduced new constants, specifically A, the exchange stiffness
constant. Note that A and K may be related to the lattice-defined constants through
the following relations: A = J ′S2/2a and K = KS2/2a3, where a is the lattice
constant [142].

4.1.4. Surface magnetization

In Eq. 4.8, we have stated that the overall magnetization M of Cr2O3 vanishes.
However, the existence of a non-zero surface moment density is well-supported by
experiments [26, 145, 157]. Currently, there are several alternative descriptions to
describe the origin of this surface moment.

We will begin with a structural argument by considering the surface of Cr2O3.
Though the exact (001) surface termination is disputed, particularly in ambient con-
ditions [158–160], it is believed that the most stable termination is the one shown
in Fig. 4.3a. Here, the (001) surface bisects one Cr ion pair (e.g., 1-2 as shown in
Fig. 4.2a), leading to a single sublattice of spins on the top. The opposite spin sub-
lattice will be present at the bottom surface of the crystal to maintain the overall
compensation of spins. One important feature of this termination is that it is robust
against surface roughness [26, 145]. Thus, though each up-pointing sublattice site is
compensated by a down-pointing sublattice site, leading to an overall M = 0, the
spatial separation of the top and bottom surface results in a locally uncompensated
moment layer. If this is indeed the correct termination, we would expect one Cr ion
per unit cell, carrying a moment of 3µB in the fully magnetized state. As the hexag-
onal Cr2O3 unit cell has a cross-sectional surface area of 0.2 nm2 at the (001) surface,
this would give a surface magnetization of ∼ 14 µB/nm2.

Alternatively, one can apply the same symmetry properties used to motivate the
magnetoelectric properties of Cr2O3 to explain the origin of an intrinsic surface mag-
netization [161, 162]. As these arguments do not rely on a given surface termination,
a surface magnetization is expected to be present in all magnetoelectric materials.
One method is to consider the magnetic symmetry of Cr2O3 in the presence of the
surface normal vector ns. It has been argued that ns reduces the magnetic point
group analogously to an electric field [162]. In a magnetoelectric material where an
applied electric field induces a magnetization, the existence of the electric field-like
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Figure 4.3.: Origin of the surface magnetic moment. (a) The lattice structure
of Cr2O3 showing the extended lattice of O (gray) and Cr (green) ions. The struc-
ture is terminated by a spin-polarized layer, independent of steps in the (001) surface
highlighted in black. On the other hand, the bulk of the lattice hosts both sublat-
tices, which then compensate each other. Modified from [145] with permission from
Springer Nature: Nature Materials (2010). (b) The unit cell of Cr2O3 now showing
all atoms within the cell with the [001] axis shown. The moments of the Cr ions
can be represented by a negative magnetoelectric monopole moment and additional
quadrupole moments, as shown to the right [161].

surface normal should then induce an equivalent surface magnetization [162]. How-
ever, Ref. [162] provides no quantitative value for the surface moment.

A closely related but more quantitative method of arguing a surface moment was
recently given by Spaldin [161]. Recall that in Sec. 4.1.2, we argued that inversion
and time-reversal symmetry breaking is necessary to explain the existence of the
magnetoelectric effect. In Ref. [161], the same symmetry breaking arguments are
used to decompose the magnetic structure of Cr2O3 into magnetoelectric monopo-
lar and quadrupolar terms, as shown in Fig. 4.3b. When summed over a semi-
infinite plane, this multipolar expansion leads to an intrinsic surface magnetization
σm. Spaldin presents two estimates of σm depending on the surface termination,
namely 2.4 µB/nm2 for a (001) surface cleaving at the oxygen plane (see Fig. 4.2b)
or 12.0 µB/nm2 for the termination shown in Fig. 4.3a. In this description, we have
the additional effect that the quadrupolar terms cancel out, leading to no net mag-
netization on surfaces perpendicular to the (001) plane.

We can also use this multipolization technique to make a statement on the energetics
of the system. Let us shortly look back at the magnetoelectric free energy term in
Eq. 4.4, which we wrote as Fme = −αijEiBj . If we then apply, for example, parallel
electric and magnetic fields along the c axis of the crystal, the minimal Fme energy will
be achieved for a positive value of αij , corresponding in turn to one of the two order
parameters introduced in Eq. 4.9. Conversely, anti-parallel magnetic and electric fields
will favor the opposite order parameter. If this description holds, one should be able
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to use this behavior to prepare a particular magnetic state through magnetoelectric
annealing [135] and ideally relate the prepared state to one of the two possible surface
terminations mentioned above. These two points will be explored in more detail in
Sec. 4.2.2.

Regardless of the origin, two essential aspects of this surface magnetization are
maintained. Firstly, the surface magnetization is roughness insensitive. That is, the
presence of steps at the material boundary does not change the direction or magnitude
of the surface magnetization. Secondly, the surface magnetization will be intrinsically
linked to the bulk magnetic order. This second point is very relevant as it allows us
to access L through magnetometry.

4.1.5. Measuring the surface magnetization

We have now spent quite some time developing a model of Cr2O3 and explaining its
theoretical magnetic structure. After this detailed introduction, we will begin our
investigation of Cr2O3 with a pristine single crystal. All bulk Cr2O3 measurements
presented here have been performed on half of a 5 mm × 5 mm square, 1 mm-thick,
single crystal of Cr2O3 (Mateck) with (001) surface termination polished to a rough-
ness below 2 nm as verified with atomic force microscopy. Our goal here will be to
confirm the value of the surface magnetization presented in the previous section.

Unfortunately, this pristine surface poses an issue for NV magnetometry. Early
characterization of the crystal with second harmonic generation [136] indicates that
these crystals tend to form mm-sized domains. Over typical length scales for NV
magnetometry imaging (∼50 µm), the crystal will therefore appear to be uniformly
magnetized, resulting in negligibly small magnetic stray fields. One solution to this
problem is to introduce topographic steps through fabrication. Though atomic steps
provide no measurable stray field2, changes in the surface height of many 10’s of
nanometers can produce sizable fields thanks to the vertical displacement of the sur-
face moments on the top and bottom surface of the step [26]. Therefore, we pattern
a series of rectangular, 10 µm× 2 µm masks using the same FOx-based electron beam
lithography as described in Chap. 3.1.3. We then etch the surface of the crystal with
an Ar/Cl2-based RIE ICP plasma, and upon removal of the mask, are left with a
uniform grid of micron-scale mesas with a mean height t̄ = 166(4) nm and width
w̄ = 2.4(3) µm, as shown in Fig. 4.4a. Details of this etching process may be found
in Appendix A.1.2.

Similar to our discussion in Chap. 3.3.2, we model the stray field of the patterned
mesas as arising from two currents located at the top and bottom edges of the step as
shown in Fig. 4.4b. We then use this model to extract the surface magnetization σm of
the sample. Assuming a mesa oriented along the y-direction, we obtain the following
two-current description of the stray magnetic field from a single edge, projected on
the NV axis [24]:

2For a 2.5 nm step and a mean dNV =69 nm (see Chap. 3.3.2), we expect a stray field of 0.89 µT.
This value is well within our noise level.
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Figure 4.4.: Investigating the surface magnetization of Cr2O3. (a) The sur-
face of the Cr2O3 crystal following fabrication. Here, each rectangular mesa is
∼10 µm× 2 µm in size. (b) Depiction of a uniformly magnetized mesa structure with
a (001) termination showing the magnetic moments of the Cr ions. The resulting sur-
face magnetization leads to a stray field that can be modeled as four currents running
along the edges of the mesa, shown here with gray arrows. (c) Stray field and topog-
raphy of a representative mesa, measured using NV magnetometry. The stray field is
fit by Eq. 4.11 (red line) resulting in σm = 2.4 ± 0.2 µB/nm2, dNV,left = 46 ± 3 nm
and dNV,right = 53 ± 3 nm. The topography (gray area with dashed line) is scaled by
independent atomic force microscopy measurements.

BNV = sin θNV cosφNVBx + sin θNV sinφNVBy + cos θNVBz, where

Bx =
−µ0σm

2π

(
dNV

(x− x0)2 + d2
NV

− (dNV + t)

(x− x0)2 + (dNV + t)2

)
,

By = 0, and

Bz =
µ0σm

2π

(
x− x0

(x− x0)2 + d2
NV

− x− x0

(x− x0)2 + (dNV + t)2

)
. (4.11)

Here, dNV is the distance between NV and sample as before, t is the mesa thickness,
x0 is the location of the mesa edge, and θNV and φNV are the polar and azimuthal
angles of the NV axis, respectively. As this model describes only one edge of the
mesa, we can also allow for different dNV values for the left- and right-hand sides.
Such offsets may arise due to a tilting of the scanning probe away from the sample
normal [120].

Due to the many fit parameters in Eq. 4.11, faithfully extracting σm from data
is not trivial. As such, narrowing down sources of error for the other parameters,
such as the NV angles, is an important task. For a given NV center, the diamond
structure will limit the possible polar and azimuthal angles, but extracting the exact
values of θNV and φNV requires further characterization. To overcome this difficulty,
we examine the surface magnetization by measuring 29 independent line scans, all
taken with the same scanning probe across multiple mesas with different orientations
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relative to the NV axis. By changing the relative orientation between the NV axis
and mesa, we can examine different magnetic field projections, thereby helping us
narrow down the NV angles. Another source of uncertainty is the width and height
of the mesa, which are independently determined through comparison to atomic force
microscopy measurements of the topography (see Appendix A.2.2).

We analyzed these 29 line scans by fitting our model in Eq. 4.11 to the data using the
Metropolis-Hastings (MH) algorithm (see Appendix A.6 for details). The algorithm
outputs a set of likelihood distributions for each of the fitting parameters from which
we estimate σm, dNV, θNV, and φNV together with their uncertainties. The advantage
of the MH algorithm is that it allows us to easily explore a wide range of starting
parameters to ensure that we reach the overall best fit. In this way, we can also
improve our determination of dNV and σm.

An example of one such fit, performed at room temperature, is shown in Fig. 4.4c.
We repeat this procedure for each of the 29 line scans and combine the resulting
distributions for the NV angles. In doing so, we find that our NV center is described by
the following angles, θNV = 60.7◦ ± 2.9◦ and φNV = 260.6◦ ± 0.8◦. In Fig. 4.4c the fit
also yields two different values of dNV, for either side of the mesa: dNV,left = 46 ± 3 nm
and dNV,right = 53 ± 3 nm. This difference is an indication that there may indeed be
a small tilt of the pillar.

From our fits, we extract σm = 2.4 ± 0.2 µB/nm2, which agrees well with other
measurements [26, 157]. If σm is linked to the bulk Néel vector, we should also observe
that σm follows the same temperature dependence as expected for |L|. In particular,
we should see the surface magnetization disappear at TNéel ≈ 307 K and a critical
behavior mirroring that of |L| below TNéel. For this reason, the aforementioned line
scans were also taken at a range of global sample temperatures from room temperature
(∼296 K) up to ∼340 K.

The results of the stray field analysis as a function of temperature are summarized
in Fig. 4.5. Here, we plot the mean of σm for each measurement in light gray. The
gray bars show the range of potential values, extracted as shown in right-hand plot,
and based on the Gaussian likelihood distributions. In black, we give the mean and
standard deviation of the set σm measurements performed at a given temperature.
In particular, focusing on the results taken at room temperature, we observe a mean
surface magnetization σ̄m = ± (2.1 ± 0.3) µB/nm2.

To analyze the temperature-dependence of these data, we fit them with a power
law:

σm = σm0

(
1− T − T0

TNéel

)β
. (4.12)

Here, β is the critical exponent. In this case, β describes the evolution of the magnetic
order parameter near a second-order phase transition. Furthermore, σm0

is the sur-
face magnetization at low temperatures, and T0 is a temperature offset used to take
into account the temperature calibration uncertainty (see Appendix A.2.3). We have
assumed an ideal bulk TNéel of 307 K, which is reasonable in the absence of excessive
strain [163] or doping [164].

Our fit results in |σm0 | = 5.5 ± 0.9 µB/nm2, T0 = -2.0 ± 0.1 K and β = 0.24 ± 0.04.
Here, T0 falls within our temperature calibration uncertainty. Moreover, the value of
β agrees well with previous measurements performed on a similar Cr2O3 crystal [165].



56 Mechanics of antiferromagnetic domain walls in Chromia
M

ag
ne

tiz
at

io
n 

(µ
B/n

m
2 )

0

1

2

3

0.97 0.98 0.99 1
(T-T0)/TNéel

1.5 2 2.5 3
Magnetization (µB/nm2)

Figure 4.5.: Temperature dependence of σm. Measured surface magnetization
as a function of the relative temperature, fit with Eq. 4.12 in red. A solid gray
circle shows the mean at each temperature, while each measurement is presented
with a dashed gray circle. The solid error bars show the standard deviation of the
measurements at a given temperature. As each instance of σm is determined by a
fit to the Gaussian likelihood distribution arising from the MH algorithm, we also
show the maximum and minimum values of σm (measured at half max) with a gray
dashed line. The right-hand panel shows how each component is determined based
on the data points highlighted in the main figure with a black box. The normalized
likelihood distribution of each measurement is shown with colored curves, where the
mean of each is highlighted with a gray circle. As in the main figure, we highlight
the maximum and minimum values with a gray dashed line. The overall mean and
standard deviation is shown with a solid circle and black error bars.

In Ref. [165], Borisov et al. identify a bulk-defined β ≈ 0.2− 0.3. They additionally
show a cross-over regime within 1 K of the Néel temperature, where β → 0.8, which
they attribute to the surface of the crystal. As we fit our data far from this cross-over
temperature, our measured value of β supports the fact that the magnetization is
indeed linked to the bulk ordering.

As such, we have shown that we can directly measure the roughness-insensitive
surface magnetization of Cr2O3 using scanning NV magnetometry. We have identified
a room temperature value σm = 2.1 ± 0.3 µB/nm2, surprisingly close to the estimate
made by Spaldin for an oxygen-terminated (001) surface at zero temperature [161].
However, as these estimates are likely based on low-temperature approximations, a
more appropriate comparison would be σm0 = 5.5 ± 0.9 µB/nm2. Unfortunately,
this value is not consistent with any of the estimates given in Sec. 4.1.4. It is possible
though, that the Cr-terminated surface becomes disordered near room temperature,
resulting in a reduced magnetization. We will explore this further in Sec. 4.2.2.
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4.2. Domain walls in Chromia

Thus far, we have always implicitly assumed a mono-domain state with a homoge-
neous order parameter. Though this is useful for exploring the surface magnetization,
the material information we can learn from such a magnetic state is limited. Instead,
we are interested in an inhomogeneous magnetization, where the material is split into
regions of differing L i.e., magnetic domains. On a fundamental level, understanding
domain formation and domain structure can yield important information about the
exchange interactions and anisotropy of magnetic materials. Furthermore, these do-
mains are of great interest in the spintronics and magnetics community, for instance,
for their use in storing information [7]. In FM materials, the formation of magnetic
domains is a natural consequence of minimizing the strong, long-range dipolar in-
teractions that otherwise lead to a significant external stray field. There is no such
energetic advantage for an ideal AFM with no net magnetization and no stray fields.

Nevertheless, the existence of domains in Cr2O3 was established early on [134,
136, 166]. However, little experimental evidence exists on the transition between two
domains in Cr2O3. In this region i.e., the DW, the spins must rotate from one order
parameter orientation to another. We will spend this section investigating DWs in
Cr2O3, harnessing the nanoscale resolution of NV magnetometry in an attempt to
observe the internal structure of the DW.

4.2.1. Introduction to domain walls

Let us begin by looking into a theoretical description of these DWs. Due to the uniax-
ial anisotropy along the c-axis in bulk Cr2O3, L = ±ez within a domain. Therefore,
between two domains with opposite order parameters, the spins must rotate 180◦, as
shown in Fig. 4.6a. We can also use the Néel vector to provide a simplified picture
of the DW, as shown in Fig. 4.6b. In particular, we define the plane of the DW ξ, as
being the surface where Lz = 0. Generally, the spins of a 180◦ DW will rotate in a
given plane at an angle φDW relative to ξ. However, we often deal with two special
cases where either φDW = 0, such that the spins rotate within the ξ plane as shown
in the top panel of Fig. 4.6b, or φDW = π/2, such that the rotation is perpendicular
to the ξ plane as shown in the bottom panel. These two cases are known as Bloch
and Néel DWs, respectively.

To find the exact form of the rotation within these DWs, we will return to Eq. 4.10.
Here, we introduced the energy of chromia in our simple model using the Néel order
parameter:

E =

∫ [
A
(

(∂xL)
2

+ (∂yL)
2

+ (∂zL)
2
)

+K
(
1− L2

z

)]
dr. (4.13)

Let us first frame this in a local spherical coordinate system such that
L = (cosφDW sin θ, sinφDW sin θ, cos θ). For a given DW, φDW will be constant, while
θ varies across the DW. In the absence of chiral terms, which tend to prefer a Néel
DW, the DWs will be predominantly Bloch. Therefore, we will focus on the Bloch DW
as shown in the top panel of Fig. 4.6b, where ξ lies parallel to the xz plane, and the
DW extends along the x-direction. In this case, φDW = 0, and so L = (sin θ, 0, cos θ).
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Figure 4.6.: Introduction to DWs. (a) Simplified lattice illustrating the rotation
of the magnetic moments between two domains with differing Néel vectors. Here we
show a Néel DW. (b) Néel vector representations of Bloch (top) and Néel (bottom)
DWs relative to the DW plane ξ, defined as the plane in which Lz = 0. The axes
to the right show the spatial orientation of these representations. (c) DW profile
showing the change in θ for the negative solution in Eq. 4.15, as a function of position
(in units of the magnetic length `m) normal to ξ. This result is independent of φDW.
Dashed lines highlight the location of the DW surface.

Substituting this into Eq. 4.13, we find that:

E =

∫ [
A

(
dθ

dy

)2

+K sin2 θ

]
dy. (4.14)

Determining the DW form now reduces to finding the angular progression that min-
imizes this energy. Solving this energy minimization problem yields the following
angular profile:

θ(y) = 2 tan−1
(
e±y/`m

)
, (4.15)

where `m =
√
A/K is called the magnetic length and is used to characterize the DW

width. Thus, the width of the DW is determined by the exchange and anisotropy
constants, a key result that will be used throughout this chapter. We plot this result
in Fig. 4.6c. Note that the results we have shown here hold for not only both Bloch
and Néel DW cases, but any angle φDW (a more general and detailed derivation may
be found in Appendix A.5.1). The total symmetric exchange and anisotropy energies
alone will not differentiate between the two DW types. To lift the degeneracy between
these two cases, one requires the addition of strain, dipolar terms, or DMI. In FMs,
for example, it is the dipolar interaction that favors the formation of Bloch DWs.
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From Eq. 4.15, we can also extract the full spatial profile of a general DW by
calculating the x, y, and z components:

L =

[
sech

(
y

`m

)
cos(φDW), sech

(
y

`m

)
sin(φDW), tanh

(
y

`m

)]
. (4.16)

Here φDW = 0 for a Bloch wall and φDW = π/2 for a Néel wall. However, to perform
an in-depth analysis of a DW, we must first be able to localize and generate such a
structure.

4.2.2. Magnetoelectric annealing

As mentioned in Sec. 4.1.5, Cr2O3 has been shown to form mm-scale domain struc-
tures [136], and as such, searching for a single DW with NV magnetometry can be
like finding a needle in a haystack. To make this problem more tractable, we again
use the mesas patterned on the crystal surface. In addition to acting as a probe of
the surface magnetization, these structures serve as markers for localizing the DW
on the sample surface. In particular, we measure the surface magnetization at mesas
distributed across the sample surface and looking for flips in the sign of the magne-
tization, heralding the presence of a DW. Through this procedure, we find that the
sample as received, is in a mono-domain state, forcing us first to generate a DW. To
do so, we make use of magnetoelectric annealing [134, 135].

In this process, we will harness the magnetoelectric response of Cr2O3 to prefer-
ably select one of the two order parameter orientations through the simultaneous
application of collinear magnetic and electric fields while cooling the sample through
TNéel (see Sec. 4.1.2 and 4.1.4). Applying uniform fields allows us to prepare the sam-
ple in a uniform state. If instead, we apply parallel magnetic and electric fields along
one half of the sample, and anti-parallel fields on the other half, as shown in Fig. 4.7a,
we will generate two uniformly magnetized regions with a single DW between them.

To achieve this, we place the sample within a split gate capacitor consisting of two
top contacts separated by a ∼750 µm gap and a single back contact. The contacts
consist of ∼100 nm of gold evaporated onto a quartz slide. We additionally place
∼10 µm-thick flakes of mica between the contacts and the sample. We found this
procedure necessary to avoid electroplating gold onto the Cr2O3 surface. The entire
capacitor structure is then placed between two large permanent magnets, producing
a uniform field of ∼550 mT between them, measured using a teslameter (FM 302,
Projekt Elektronik). A voltage of ±750 V is applied to the top electrodes while
grounding the bottom electrode, thereby achieving an electric field of ∼0.75 MV/m
over the crystal, with opposing orientations on either side of the Cr2O3 crystal. We
then heat the sample far above its TNéel, to ∼75 °C, with a heat gun while reading the
temperature near the crystal with a local thermistor. Finally, we allow the sample to
cool to room temperature by removing the heat source before removing the electric
and magnetic fields.
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Figure 4.7.: Magnetoelectric annealing of Cr2O3. (a) Schematic of the poling
device used to anneal the Cr2O3 crystal magnetoelectrically. A uniform magnetic
field of 550 mT is achieved via two permanent magnets, and a voltage of ±750 V is
applied between the split gate and bottom gate. The (anti)aligned fields then lead
to two different orientations of the Néel parameter upon heating and subsequently
cooling through TNéel. (b) An optical micrograph of the Cr2O3 surface highlighting
the path of the DW (yellow) as determined by multiple stray field images. The inset
shows a sample stray field image of the DW far from the mesa structures, near the
top left of the main image. (c) The stray magnetic field of two mesas measured
on either side of the DW shown in (b) for an NV whose in-plane orientation points
along the long-axis of the mesa. Furthermore, while measuring, we apply a bias
field of ∼25 G along the NV axis, pointing towards the sample plane. The flip in
order parameter at the DW leads to opposite signs of σm for these two measurements
(positive for A and negative for B). (d) Two different realizations of DWs within the
Cr2O3 crystal. The approximate position of the split gate during magnetoelectric
annealing is highlighted with a thick, white line, and the final position of the DW
is given by the yellow lines. In the second writing procedure, the dashed yellow line
shows the DW position. Following a sample anneal in the absence of magnetic and
electric fields, the DW was found in the position given by the solid yellow line, also
shown in (b).
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Following this magnetoelectric annealing procedure, we re-characterize the
Cr2O3 surface and are indeed able to localize and image a single DW. Through a
series of stray field images, we see that the DW tends towards a straight path, as
shown with the yellow line in Fig. 4.7b. The smoothness of the DW is particularly
pronounced in the absence of surface topography, as seen in the inset. Due to these
observations, we believe that the DW passes through the crystal largely unimpeded
by strong crystalline defects. Furthermore, we find that we can reverse this annealing
procedure through the application of uniform magnetic and electric fields. This whole
process is repeatable and leads to different DW orientations, as shown in Fig. 4.7d,
indicating that the DWs nucleated in this procedure are not fixed by a particular
crystal direction or defects.

Repeated magnetoelectric annealing highlights a further interesting aspect. After
heating the crystal to ∼200◦C in the absence of electric and magnetic fields and
subsequent cooling back to room temperature, the sample is still in a two-domain
state. Thus, heating the sample to temperatures significantly above TNéel without
applying external fields does not seem sufficient to destroy the DW. However, following
this procedure, we observe a shift in the DW position as shown by the dashed and
solid yellow lines in the right panel of Fig. 4.7d. First descriptions of such behavior
date back to the 60s. In Ref. [134], Brown talks about a ‘memory’ effect, first observed
by Martin and Anderson [167]. He suggests that this effect could be caused by local
strain defects in the crystal, which would have a higher critical temperature, thereby
maintaining the local magnetic order.

Performing magnetoelectric annealing with uniform fields also allows us to test
some of the predictions mentioned at the end of Sec. 4.1.4. Therefore, we begin by
applying parallel magnetic and electric fields uniformly across the sample. Following
this procedure, we then scan across mesas oriented parallel to the in-plane NV orien-
tation and fit the observed stray fields to obtain the sign of the magnetic moment. In
this case, we find that this annealing procedure leads to a positive σm, i.e., a surface
magnetization pointing out of the (001) surface plane. Conversely, annealing with
anti-parallel fields results in a negative surface magnetization. This annealing behav-
ior appears to be independent of the absolute orientation of the individual fields, only
showing a change when the relative orientation of B and E are changed, as expected
from the theory [161]. In Fig. 4.7c, we present two examples of the stray field asso-
ciated with a positive (top) and negative (bottom) surface magnetization, taken on
either side of the DW in Fig. 4.7b.

Unfortunately, we do not currently know which of the two order parameters
(with a positive or negative monopolar contribution according to the definition by
Spaldin [161]) are selected by parallel or antiparallel fields. For this reason, it is also
not possible to relate our results to the expected termination of the Cr2O3 surface.
Furthermore, the magnitude of |σm| we find is still markedly different than the pre-
dicted values. It remains to be seen whether a re-ordering of the surface can explain
the discrepancy in the low-temperature values of σm presented in Sec. 4.1.5. With
this in mind, cryogenic measurements of Cr2O3 could be helpful to determine the true
low-temperature value of σm. Additionally, measuring the surface of Cr2O3 with high-
resolution atomic force microscopy and Lorentz transmission electron microscopy,
could help clear up the termination and magnetic moments at the Cr2O3 surface.
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4.2.3. Nanoscale analysis of the domain wall

At this point, we arrive at one of the most important open questions in Cr2O3: the
characterization of the DW width and the wall type. Having realized single, well-
isolated DWs as shown in Fig. 4.7b, we have an ideal starting point to investigate
these magnetic structures. To do so, we must first develop a model for the stray field
of the DW. Here, we will continue to assume a Bloch wall (φDW = 0), a reasonable
assumption in the absence of DMI or similar terms that typically induce Néel order.

We already know the profile L(r) for a Bloch wall, as derived in Sec. 4.2.1. There-
fore, we will use the forward propagation of the magnetic fields to obtain the expected
stray field from this profile [27]. For this purpose, we use the Fourier-space description
B(q, dNV) = D(q, dNV)L(q), where q is the vector in reciprocal space and L(q) is the
Fourier transform of the DW profile [168]. The propagator D(q, d) is given by:

D(q, d) =
µ0Ms

2
(e−dq − e−(d+tm)q)

− cos2(φq) − sin(2φq)
2 −i cos(φq)

− sin(2φq)
2 − sin2(φq) −i sin(φq)

−i cos(φq) −i sin(φq) 1

 .
Here, φq is the reciprocal-space azimuthal angle, tm is the thickness of the magnetic
layer, Ms is the saturation magnetization, and e−dq − e−(d+tm)q is the thickness loss
factor (TLF). As the magnetic layer is equivalent to a single layer of spins, we find
that tm · q � 1, which allows us to expand the TLF to first order in tm. Doing so,
and using σm = Ms · tm, we obtain e−qd(µ0σmq)/2.

By taking the inverse Fourier transform we then obtain the field components in real
space at a distance dNV:

Bx = − µ0σm
2π2`m

Re

[
−ψ(0)

(
2dNV + π`m + 2ix

2π`m

)
+ ψ(0)

(
2dNV + π`m − 2ix

2π`m

)]
,

By = 0,

Bz =
µ0σm
2π2`m

Im

[
−ψ(0)

(
2dNV + π`m + 2ix

2π`m

)
+ ψ(0)

(
2dNV + π`m − 2ix

2π`m

)]
.

(4.17)

Here, ψ(0) is the digamma function, and `m is again the magnetic length. Due to
the complex functional form of Eq. 4.17 and large number of fit parameters, fitting
the measured stray field is quickly plagued by large uncertainties and correlations
between variables. For this reason, we will rely strongly on our analysis of the mesa
stray field and the information we extracted there.

We measure the stray field of the DW in the same manner as the mesas. We again
use NV magnetometry to record line scans perpendicular to the DW, making sure
to capture the stray field of one or more mesas in the process. In particular, we
select sections of the DW, which are straight on length scales �dNV. This process is
repeated for 20 line scans, which form a subset of the 29 line scans in Sec. 4.1.5.
In this way, we can use the pre-characterization of the NV angles and the values of
σm and dNV extracted via the mesa stray field for each DW measurement. These
values then serve as prior information for the MH algorithm when fitting the DW. As
such, we are able to appropriately attribute a broad DW stray field to the magnetic
length rather than variations in dNV.
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Figure 4.8.: Analysis of the DW. (a) Stray field collected from a line cut across a
mesa and the DW, which is fit using Eq. 4.17 (red line). This fit results in an estimate
of the magnetic length `m ∈ [2,28]nm. Bottom left: a stray field image highlighting
the position of the line cut for this data set, with the DW portion being shown as a
dashed line. Bottom right: MH likelihood distribution showing the range of `m values
extracted from the DW stray field fit. The red bar gives the 2nd and 98th percentiles
of the distribution, yielding 2 nm and 28 nm, respectively. (b) The temperature de-
pendence of `m as extracted from stray field fits similar to that shown in (a). As in
Fig. 4.5, the mean of the combined measurements at a given temperature is shown
with a solid gray circle while each individual measurement is shown with a dashed,
gray circle. The solid error bars give the standard deviation of the measurements, and
the light gray dashed lines give the 98th and 2nd percentiles of the likelihood distri-
butions. The theoretical upper (red) and lower (blue) bounds on `m are determined
based on the temperature dependence of A and K. Here, the lower bound is given by
α = 2 in Eq. 4.18.

An example of such a line scan and the resulting DW fit is shown in Fig. 4.8a.
Despite our attempts to pre-characterize the NV and material properties, the fit still
yields broad estimates of `m ∈ [2,28] nm. The resulting MH likelihood distribution
is also strongly asymmetric, as shown in the bottom right panel of Fig. 4.8a. For
this reason, the lower and upper error bounds stated here are given by the 2nd and
98th percentiles of the likelihood distributions respectively, which we chose in order
to cover a reasonable range of potential `m values.

As these measurements were taken concurrently with the mesa measurements in
Sec. 4.1.5, they also correspond to differing sample temperatures. As such, we also
examine the change of `m as a function of temperature. The result of this analysis is
shown in Fig. 4.8b. Here, we see that the individual measurements (light gray circles)
are dominated by the large error bars arising from the likelihood distributions, shown
with gray dashed lines. The mean value of `m at a given temperature is shown with a
dark gray circle and the standard deviation with black bars. In particular, let us focus
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on the measurements taken at room temperature (295 K). Though we cannot state
an exact value for `m, which falls below our typical spatial resolution, we can place an
upper bound on this parameter. As shown in Fig. 4.8b, the likelihood distributions
we extract show that our data are consistent with a magnetic length `m < 32 nm.

Also shown in Fig. 4.8b is a comparison to theory, for which we recall that `m =√
A/K. Though the temperature dependence of the anisotropy constant K is rather

well defined and tabulated [169, 170], there is some dispute about the exact behavior
of the exchange stiffness A. To account for the discrepancy between molecular field
theory [169], which estimates a linear scaling with the magnetization, and lattice
simulations [142], which give a quadratic scaling, we write:

A(T ) = A(0)

[
µ(T )

µ(0)

]α
, (4.18)

where µ(T ) is the temperature-dependent sublattice magnetization and α ∈ [1,2].

Furthermore, A(0) = CJS2

2a , where J = 14.6 meV [154], C is a correction factor of
order 1 and S = 1. The estimates for α then yield upper and lower bounds plotted in
Fig. 4.8b as a red and blue line, respectively. We observe reasonably good agreement
between the expected theoretical range and the measured values.

In this section, we have demonstrated our ability to nucleate, measure and analyze
DWs in Cr2O3 using NV magnetometry. Furthermore, we successfully placed an
upper bound on the magnetic length of the DW of `m < 32 nm using a Bloch wall
model. Unfortunately, as the magnetic length falls below our spatial resolution, it is
difficult to narrow down the precise value. This limitation furthermore prevents us
from making concrete statements on the DW type. If we fit this same stray field with
a Néel wall profile (profile is given in Appendix A.5.2), we obtain a similarly good
fit but a smaller `m. In particular, for the data set shown in Fig. 4.8a, the median
`m extracted from the Bloch DW fit is ∼20 nm while the Néel wall shows a median
of ∼5 nm, though both give similar estimates of σm. As such, we are confident that
the Bloch wall model does indeed offer a reliable upper bound on the DW width. To
support these values, measurements performed by Wörnle et al. on similar samples
have also extracted a Bloch wall with a mean `m of 34 ± 5 nm and 45 ± 8 nm [157].

In the future, achieving a realization of DWs in Cr2O3 where `m exceeds our spa-
tial resolution should allow us to verify the DW type and magnetic length. Apart
from improving the spatial resolution of NV magnetometry (see Sec. 3.4.1), material
engineering to increase `m, through stress [171], may be helpful.

4.3. The mechanics of DWs

Originally, our approach of adding topography to the sample surface was conceived
to facilitate the analysis of the surface magnetization and DWs, as discussed in the
previous sections. However, we were not expecting the wealth of additional interesting
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Figure 4.9.: Deviations from smooth DW behavior. Stray field images showing
(a) refraction of the DW upon crossing a mesa, (b) pinning of the DW between
two adjacent mesa structures, and (c) a change in the DW direction along a mesa
structure. The latter is most likely caused by defects in the bulk.

physical effects that these structures would introduce. Recall that we showed that
the generated DW passes through the sample largely undisturbed in the absence of
surface topography, showing few deviations from a smooth curve, even over mm length
scales. We have found that this is not the case when the DW crosses or passes by a
mesa structure.

Figure 4.9 shows a few representative examples of deviations in the DW path near
mesa structures. We have observed “refractive” behavior (Fig. 4.9a), pinning to the
mesa edges (Fig. 4.9b), and even complete reversals in direction (Fig. 4.9c). While
some of these phenomena, namely that in Fig. 4.9c, can be attributed to crystal
defects, the others can be used to better understand DW mechanics and guide new
directions in AFM spintronics. In the following section, we will focus on the first two
phenomena and use the stray field images obtained through NV magnetometry to
guide a DW model based on simulations and analytic calculations.

4.3.1. Domain wall refraction at topographic features

We begin with an investigation of the behavior seen in Fig. 4.9a. In Fig. 4.10a, we
see an even clearer example of this behavior, which we will return to several times in
this discussion. Qualitatively, the change in DW orientation resembles the refraction
of a light ray when crossing through a slab with a higher index of refraction relative
to the surroundings. In geometric optics, such behavior is described by Snell’s law.
To make the comparison to Snell’s law more explicit, we extract the angle the DW
makes with the mesa edge both off the mesa (θ1) and on the mesa (θ2) as shown
in the inset. We do so by determining the slope from the stray field images. In
particular, we map 17 instances of such refraction-like behavior over a range of DW
angles spanning θ1 ∈ (20◦, 70◦). Plotting these angles, or specifically, the sine of these
angles, against each other as shown in Fig. 4.10b, we observe a linear behavior. Here,
sin θ1/ sin θ2 = 1.16± 0.04. Later in this section, we will see how this value may be
related to the geometric parameters of the mesa.
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Figure 4.10.: Refraction of a DW. (a) Stray field image of a DW passing through
a mesa. The DW is deflected from its otherwise straight path leading to a refractive
behavior. Inset: definitions of the off-mesa (θ1) and on-mesa (θ2) angles. (b) A plot
of the DW angles, extracted from 17 images (gray circles). A linear fit to the data (red
line) results in a slope of 1.16 ± 0.04. Numerical simulations (blue diamonds) and
analytic calculations (black, dashed line) show good agreement with the experimental
results for a mesa with an aspect ratio ∼ t̄/w̄.

This behavior can be explained using an analogy to classical optics combined with
an intuitive picture of the DW energy. If we consider the total DW energy obtained by
integrating Eq. 4.10 over all space, the largest energy contributions will arise within
the volume of the DW. As such, we can define a surface energy density associated
with the DW surface. Though the mesa is small compared to the bulk of the crystal,
the change in sample topography induced by the mesa will increase the DW energy,
proportional to the added DW surface area within the mesa volume. If we now treat
the DW analogously to a ray of light passing from a low index (bulk Cr2O3) to a high
index (mesa) material, Fermat’s principle of least time will require the ray (DW) to
refract. Similarly, to reduce the additional energy cost induced by the mesa, the DW
will assume a refractive path leading to this magnetic equivalent of Snell’s law.

To obtain a more comprehensive understanding of the observed interactions be-
tween DW and mesas, we will have to expand our toolbox to include simulations and
analytical descriptions of the DW. We begin by presenting the results of spin-lattice
simulations based on the Hamiltonian described in Eq. 4.7 and performed by col-
leagues at the HZDR in Dresden using the SLaSi [172] package. In these simulations,
we initialize the DW in a trajectory passing undisturbed through a mesa at a given
angle relative to the mesa edge. Here, the angle is set using notches at the bound-
aries of the simulated volume, and the mesa is fixed to lie along the lattice planes
for simplicity. The magnetization is then allowed to relax into the equilibrium state
from which we extract the DW angles. We plot the results in Fig. 4.10b as blue dia-
monds and observe excellent agreement between the measured data and simulations,
particularly for small angles.

Here, we have set J = 14.6 meV and K = 1.6 meV. Furthermore, we select a lattice
constant a = 0.277 nm, giving us `m = a

√
J /K = 0.83 nm. The down-scaling of `m,
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which we achieve by scaling K accordingly, keeps simulations to a reasonable size
while reproducing the observed DW behavior. Under the assumption of negligible
dipolar interactions, our model will scale with the magnetic length, allowing us to
choose the aforementioned scaled-down parameters.

To ensure that this assumption is reasonable and to ensure that we do not bias our
results due to our choice of lattice or geometry, we also perform several sanity checks.
To address the influence of dipolar interactions, we include a dipolar term in the
simulations that may be turned on and off using a control parameter. Comparisons
of the simulation results with and without the dipolar terms show little change, and
so our assumption of negligible dipolar contributions appears to be justified. We
also ensure that the orientation of the simulated mesas relative to the lattice axes
shows no significant effect on the DW behavior. Furthermore, we do not specify
a particular DW type in our simulations, as this is determined based on the initial
magnetic state. Variation of these initial conditions also shows no influence of the DW
type on the relaxed DW path. Finally, we test the symmetry of our chosen lattice.
In particular, we simulate a system with lower symmetry by shifting one of the two
magnetic sublattices by half a lattice constant along the z-axis, with no significant
effect on the DW behavior. This set of tests supports our choice of model and shows it
to be an accurate representation of the Cr2O3 system and robust against variations in
the model parameters. Not only is this simple model sufficient to explain the observed
behavior, but it is also general enough that it should apply to any uniaxial AFM in
the absence of chiral terms such as the DMI.

More than just reproducing the behavior of the DW observed through NV magne-
tometry, these simulation results also offer insights into the DW trajectory in the bulk
of the sample. In Fig. 4.11a, we show cuts through the DW surface, which form the
3D morphology of the DW below the mesa. We note two points of interest. Firstly,
the DW shows a smooth transition between its position on the mesa and bulk sur-
faces. The resulting twist of the DW propagates into the bulk below the mesa, but
remains localized near the surface of the Cr2O3 crystal. Secondly, the simulations
show bending of the DW at the edges of the mesa towards the normal axis of the side
wall, resulting in the s-shaped distortion highlighted in Fig. 4.11a with a black box.
This same distortion is visible at the sides of the mesa in Fig. 4.10a. These results
give an important insight into the behavior of the DW. However, we can extend this
further through an analytical, micromagnetic analysis performed by our colleagues in
Dresden.

We begin this analytical analysis by returning to Eq. 4.10, where we described the
effective energy for the Cr2O3 spin system, assuming uniaxial anisotropy and nearest-
neighbor exchange interactions. We have one additional factor to introduce here: the
boundary condition for the Néel vector at the Cr2O3 surface. As the surface topog-
raphy plays an important role in this analysis, a description of the DW at the sample
boundary will be necessary. A careful evaluation of the Landau-Lifschitz equations of
motion for an achiral antiferromagnet (see Ref. [142]), leads to the following boundary
condition for the Néel vector:

L× (ns · ∇)L = 0, (4.19)

where ns is the surface normal. This condition will be fulfilled, for example, when
the derivative of L along ns is zero at the crystal surface. As the derivative of DW
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Figure 4.11.: Simulations of DW refraction. (a) 3D representation of the DW
surface. Here, we observe the twisting of the DW surface below the mesa and an
s-shaped distortion of the DW at the mesa surface. tB characterizes the depth to
which the twist of the DW propagates in the bulk. (b) Comparison between analytic
results from Eq. 4.21 and 4.22 and simulations of the DW. We compare the profiles
at the mesa surface (black line/ squares), bulk surface (blue, dashed line/ diamonds),
and deep in the bulk (red, dot-dashed line) given a t/w ratio of 0.064. The s-shaped
distortion of the DW on the mesa surface in (a) and (b) is highlighted with a black
box.

is only non-zero perpendicular to the DW surface, this condition requires the DW
surface to lie perpendicular to the mesa side wall. In particular, this leads to the
s-shaped distortion seen in simulations and measurements.

We now assume a semi-infinite sample with a mesa of width w and thickness t such
that t/w > 0.01, consistent with the fabricated structures. We set the bulk surface to
be at a height z = 0, with the top surface of the mesa occurring at z = t. Finally, we
set the equilibrium, bulk DW position to be the plane y = kx, specifically for small
values of k. To describe the DW behavior within and below the mesa, we begin with
a general DW profile modified from Eq. 4.15:

θ =

2 tan−1
[
exp

(
y−yb0(x,z)

`m

)]
, z < 0,

2 tan−1
[
exp

(
y−ym0 (x,z)

`m

)]
, z ≥ 0.

(4.20)

Here, y
b(m)
0 describes the DW profile in the xy plane of the bulk and mesa respec-

tively.3 Comparisons to the 3D simulations of the DW provide the following Ansatz
for the DW in bulk:

yb0(x, z) = (k0 − k)b sech
(x
b

)
tanh

(x
b

)
e
− z2

2t2
b , (4.21)

3Note that we in fact use rotated axes x′ and y′ in the definition of yb0. Here, (x′, y′) =
Rez (ϕ)(x, y), and Rez (ϕ) represents a rotation about the z-axis by an angle ϕ. In this way, the
x-axis always lies along the DW, simplifying the description of the wall profile relative to the y = kx
axis.
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where b = w
2 sinh−1(1)

and tb =
√

5/14b. This equation holds everywhere where z ≤ 0.

In particular, we see that the twist of the DW into the bulk decays exponentially
over a characteristic length scale tb ≈ 0.34w. Using typical values for our mesas, we
find tb ≈ 0.82 µm. Therefore, we expect that these modifications of the DW profile
discussed in this section exist only within the top few micrometers of the surface.

Continuing our analysis, we obtain a description of the DW profile within the
volume of the mesa by minimizing the energy functional in Eq. 4.10 together with
the boundary conditions described above. Such an energy minimization yields the
following form for ym0 (x, z):

ym0 (x, z) =
4k0

w

∞∑
n=0

[sech (λnt) cosh (λn(t− z)) sin (λnx)] . (4.22)

Here, λn = (1+2n)π
w . More details are provided in the SI of Ref. [140]. At this point, it

is more informative to plot the resulting DW profiles. Shown in Fig. 4.11b is Eq. 4.21
at z ≈ 0 (blue, dashed curve) and Eq. 4.22 at z = t (black curve). Here, we consider
a mesa with a t/w = 0.064, similar to those in our experiments. The analytically
derived curves are compared to simulations at the same points (blue diamonds and
black squares, respectively), showing excellent agreement between these two methods.
We additionally show the slope of the DW deep in the bulk in red. In Fig. 4.11b, we
see the s-shaped distortion that results at the mesa surface and the gradual twist of
the DW.

Now to relate these expressions to the Snell’s law-like behavior we have observed
in our experiments, we first need to define the orientation of the DW relative to a
mesa oriented along the x-direction as shown in Fig. 4.11b. Specifically, we define
three values – k, k0, and k1 i.e., the slope the DW takes in the xy plane deep in the
bulk, at the bulk surface, and at the mesa surface, respectively. Note that far from
the mesa, k = k0. From these terms, we can extract the angle of the DW, as in our
analysis at the beginning of this section. In particular, we let θ1 = arctan(k) and
θ2 = arctan(k1). Inserting these angular forms into the typical Snell’s law equation,
we obtain:

sin θ1

sin θ2
=

k

k1

√
1 + k2

1

1 + k2
.

We can use this form to provide an analytic expression for the Snell’s law-like behavior
of the DW with respect to the geometric parameters of the mesa. Based on the DW
profiles in Eq. 4.21 and Eq. 4.22, for small values of t/w, the expression above yields
the following approximation:

sin θ1

sin θ2
≈ 1 + 3.1 (cos θ1)

2 t

w
(4.23)

As our analysis is based on a small angle approximation, cos θ1 ≈ 1, and so we find
that sin θ1/ sin θ2 ≈ 1 + 3.1(t/w). For our typical mesa geometry, this yields a value
of sin θ1/ sin θ2 ≈ 1.21, which agrees reasonably well with our experimental value of
1.16 ± 0.04. We also plot Eq. 4.23 as a dashed black line in Fig. 4.10b. While the
agreement between Eq. 4.23 and the experimentally obtained data is excellent for
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small values, we do see deviations from the linear behavior for larger angles, where
the cos θ1 ≈ 1 approximation breaks down. However, the form in Eq. 4.23 agrees
very well with simulations and still provides a reasonably good fit to the data. This
form also highlights one significant difference to Snell’s law. While the expression
in geometric optics is solely a consequence of the principle of least action, the DW
trajectory on the mesa is additionally constrained by the bulk DW position and the
boundary condition for L, hence the higher-order contributions of θ1.

To summarize the results of these simulations and analytical calculations, we focus
on two points. The first is that we have not only been able to reproduce the DW
behavior observed with NV magnetometry but have expanded our model, provid-
ing a complete 3D description of the morphology of the DW as it passes through a
mesa. Secondly, the close agreement between simulations, analytics, and experimen-
tal data allows us to conclude that the DW physics in this sample are dominated
by exchange and anisotropy. Other effects, including dipolar interactions and mag-
netoelasticity, can therefore either be neglected or are already incorporated into the
effective anisotropy and exchange constants. Therefore, our next goal will be to use
the knowledge acquired through this analysis to explain other phenomena, such as
the pinning shown in Fig. 4.9b.

4.3.2. Elasticity of the DW

Let us consider the case of a DW passing close to the corner of a mesa. Rather than
intersecting the mesa, as we have seen in the previous section, it can be energetically

2 µm

Stray Field (µT)
-100 100 -1 1

Bulk DW

 Lz  

Figure 4.12.: Pinning of the DW and its
elastic behavior. Stray field image of the DW,
pinned around the corner of a mesa, highlighted
with a black dotted line. Right: simulation re-
producing this kind of pinning at a corner of the
mesa.

favorable for the DW to avoid
crossing the mesa by rounding
the corner instead. An excel-
lent example of this is shown in
Fig. 4.12. Just as in the previous
section, we can reproduce this be-
havior in simulations by initializ-
ing a DW close to the corner of
the mesa, as shown in the inset.

Such observations indicate that
the mesa edge acts as a pinning
site for the DW. In this section,
we will explore this pinning more
closely with the use of simula-
tions. In Fig. 4.13a, we consider
a DW initialized near a square
mesa and with endpoints fixed at
a position xDW using notches in
the simulated volume. We once
again allow the simulated magne-
tization to relax and observe the
steady-state position of the DW.
In Fig. 4.13a, we plot the result-
ing energy of the DW (in units of
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√
JK) as a function of the DW endpoint position. By varying the location xDW

relative to the mesa, we observe two different DW behaviors.
In the first instance, a straight DW is brought near and on top of the mesa, resulting

in the energy shown in Fig. 4.13a with a red line. As the path length is already
minimized by going straight through the mesa, we observe no deflection of the DW.
However, we observe an increase in energy when the DW is initialized on the mesa
versus off the mesa. In the second case, shown in Fig. 4.13a in blue, we initialize the
DW to either side of the mesa, labeled as “right pin” or “left pin”. As we move the
DW endpoints past the mesa, we observe that the DW remains pinned to the side of
the mesa it was initialized to, despite the increase in DW energy resulting from the
deflection of the wall. Each of the scenarios discussed here is also shown graphically
in Fig. 4.13b. In particular, we find that the energetically favorable path, that is,
whether the DW crosses the mesa or follows the edge of the mesa, depends on the
mesa geometry and the location of the DW relative to the mesa. These two aspects
will define the energy penalty incurred by the increase in DW surface area. This
pinning behavior also reveals an important aspect of the DW physics in this sample:
elasticity. Based on our observations, it appears as though the DW acts as an elastic,
deformable surface. To expand on this picture, we use lattice simulations to express
the tension energy of the DW surface ξ, defined in Sec. 4.2.1, as a function of the
extension of the wall.

We show the result of these simulations in Fig. 4.13c, where we see a linear increase
of the tension energy with the increasing DW area. Furthermore, repeating this
analysis for two different values of `m, we see that the slope of this response depends
on the magnetic length of the DW, shown here with blue circles for `m = 3a and
red diamonds for `m = 6a, where a = 0.277 nm is the lattice constant. This slope
provides the tension coefficient of the DW. As such, the steeper the slope, the higher
the tension of the DW surface and the more energy is required to extend the DW
by a given amount. This is very much in line with the intuitive picture of an elastic
sheet. What this observation also tells us is that in our simulations, the wider the
DW, the softer (more elastic) it will be. The elasticity plays an important role when
considering the pinning and deformation of a DW.

We can also describe the elasticity of the DW analytically. In particular, we use
the description of the DW in Sec. 4.3.1 to determine the increase in DW area A of
a pinned DW relative to an unpinned DW. We then calculate the increase in energy,
resulting in the following description of the mechanical tension of the DW:

ρ = E/A = 4
√
AK, (4.24)

where ρ is the tension coefficient. Here, both the anisotropy and exchange contribute
a factor of 2A

√
AK. This behavior is also plotted in Fig. 4.13c as solid lines using

values of A and K corresponding to the value of `m used in simulations.
We now examine the effect of the DW elasticity on the pinning we have observed.

In Fig. 4.13d, we show the energy of the DW extracted from simulations as a function
of the DW endpoint position. Instead of comparing different initial conditions of the
DW as in Fig. 4.13a, we keep the DW orientation the same but compare the outcome
for two different magnetic lengths. The blue curve, simulated for `m = 3a, shows
similar behavior to Fig. 4.13a, in which the DW is strongly pinned to one edge of the
mesa.
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Figure 4.13.: The elastic DW surface. (a) The simulated energy of the DW
(`m = 3a) as a function of the DW endpoints. Here, the DW is initialized either to
the right of the mesa (blue, dashed line), to the left of the mesa (blue, solid line), or
straight between the endpoints (red line). The gray, shaded area denotes the width
of the mesa in units of `m. (b) Simulations of the DW showing three (meta-) stable
DW states near a mesa, as labeled in the top plot. (c) The energy of the DW arising
due to the extension of the DW upon pinning along a mesa corner. We denote this
energy as the tension energy and plot it as a function of the increase in DW area for
two different `m values, as shown in the legend. Simulations (symbols) and analytics
(lines) show good agreement. (d) Tension energy of the DW as a function of the
endpoint position for two different values of `m, extracted from simulations. The blue
curve (`m = 3a) is very similar to that in (a). The red curve (`m = 6a) shows a
jump in the DW, from being pinned to lying on top of the mesa, as highlighted by
the simulations in the insets.

However, for the second simulation where `m = 6a (shown in red), we see very
different pinning behavior. While the DW remains pinned to the left edge of the
mesa for some time, once the energy cost exceeds that of the straight configuration,
the DW can rapidly relax to the lower energy state. In experiments, such a sudden
relaxation can be triggered by the addition of an external stimulus such as local heat-
ing or magnetoelectric pressure. In simulations, this depinning is achieved through
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the excess energy in the starting conditions. Further increasing xDW, we see that the
wall again becomes pinned at the left-hand edge of the mesa. The steady-state DW
configuration is shown in Fig. 4.13d for several points along the curve.

In the case of lower `m, as well as in Fig. 4.13a, we see that though the DW
may be strongly pinned to the mesa edge, at some point, the added DW surface
energy will exceed that of the unpinned case. In this scenario, the DW will be in
a metastable configuration. Therefore, similar to the jump seen in the red curve of
Fig. 4.13d, applying a stimulus may cause a sudden relaxation of the DW position.
This hysteretic process can be tuned by the mesa geometry, namely the mesa height,
which gives the energy difference between on-mesa and off-mesa for the unpinned case.
However, to test this simulated behavior, we must first determine a way of applying
the stimulus mentioned above, which we will address in the following section.

4.3.3. Domain Wall Dragging

The first indication that we might be able to control the DW position was
seen when heating the sample. In measuring the data presented in Fig. 4.5
and 4.8b, we noticed that changing the global sample temperature also occa-
sionally led to changes in the DW position. To understand why, we return
to Sec. 4.2.3, where we saw that raising the global temperature leads to a
change in the exchange energy and anisotropy in the crystal. This will, in turn,
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Figure 4.14.: DW tension under heating.
Tension coefficient ρ of the DW, shown as a func-
tion of the relative temperature. The upper (red,
dashed line) and lower (blue, dot-dashed line)
bounds are obtained from the temperature depen-
dence of A and K (see Sec. 4.2.3).

change the elastic properties of
the DW discussed in the previ-
ous section. In Fig. 4.14, we show
the bounds on the expected value
of the tension coefficient ρ plotted
as a function of the relative tem-
perature. As in Sec. 4.2.3, these
bounds are determined based on
the temperature-dependent be-
havior of A and K. Here, we see
that for increasing temperatures,
ρ decreases. This decrease implies
a softening of the DW and in-
creased mobility, which could ex-
plain the movement of the DW we
have observed. Based on these
observations, the natural conse-
quence is to determine whether
we can use local heating to move
the DW in a given direction.

To address this question, we focus the 532 nm laser used to excite the NV center on
the sample surface in the absence of the scanning probe and scan the beam across the
DW. Prior to and following each laser scan, we image the DW with NV magnetometry.
Scanning the laser while at room temperature shows very little response in the DW
position. However, by raising the global sample temperature to ∼304.5 K, we were
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Figure 4.15.: Laser dragging of the DW. (a) Stray field images showing the DW
being dragged from the corner of a 2 µm× 10 µm mesa to on top of the mesa. This
dragging is achieved by moving a focused 532 nm laser beam of ∼135 µW across
the surface. (b) Stray field images showing the position of the DW relative to a
set of 1 µm× 1 µm mesas prior to (top) and following (bottom) laser dragging with
∼1.4 mW. In each of the images, the green circle and arrow represent the direction
of the laser dragging.

able to repeatedly move the DW, as shown in Fig. 4.15a, using a laser power of
∼135 µW.

Here, we show the direction of the laser scanning with a green spot and a black
arrow. We scan the laser perpendicular to the DW and, through this, move the DW
from lying near the mesa corner (left) to lying on the mesa (right). However, the
large extent of this mesa prevents us from dragging the DW completely from one side
of the mesa to the other. Therefore, in a second round of fabrication, we pattern
square mesas approximately 1 µm× 1 µm in size (Fig. 4.15b) and similar in height to
the previous structures. In Fig. 4.15b, we show two realizations of the domain wall,
first lying along the base of a series of mesas (top panel). Scanning across the DW at
a power of ∼1.4 mW, then results in the DW being dragged across the entire width
of the mesas and becoming pinned at the top edge of three of the four mesas (bottom
panel). Based on the location of the DW before and after dragging, it is clear that
though the laser is tightly focused, the motion of the DW takes place on a ∼12 µm
range. These results are consistent with simulations and with our picture of the DW
as an elastic surface, where pulling one section of the surface results in a deformation
of a much larger area.

The mechanism behind this laser dragging is likely similar to that in thin-film
FMs [82]. Introducing the laser to a system already near the Néel temperature leads
to a local increase in temperature, equivalent to reducing the DW energy. As such,
the laser produces a local potential well for the DW. This is consistent with theoretical
models of AFM DWs in temperature gradients, which suggest that the laser should
induce an attractive potential for the DW [173, 174]. However, once the heating is
removed, tension causes the DW to return to its original position unless it can be
pinned along the way.
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Unfortunately, this procedure is not as controlled as we would like. Though the
DW may be dragged by the laser, the final location of the DW is often far from the
end position of the laser. As our magnetometry images only provide snapshots of the
start and end conditions, they are not sufficient to obtain an image of the pinning
landscape of the crystal. To better understand this pinning process, we repeat our
dragging experiments with the NV scanning probe in place. In this way, we hope
to localize the DW based on its magnetic field during the dragging procedure. In
Fig. 4.16, we show the results of dragging experiments performed at a global sample
temperature of 304.5 K for two different realizations of a DW. Rather than plotting
the stray field, we show the raw NV ODMR frequency data. Here, we compare the
signal measured at a 532 nm laser power of 9.6 µW and 86 µW. We refrain from using
excessive excitation powers to avoid damage to the NV center.
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Figure 4.16.: Probing the DW pinning landscape. (a) Line scans showing the
change in NV center ODMR frequency due to the measured stray magnetic field.
These curves are measured with excitation powers of 9.6 µW (blue) and 86 µW (red).
Here we plot the frequency of the low-frequency ODMR line, which we determine by
feedback tracking, as a function of the position. The gray arrow shows the scanning
direction. (b) A similar plot to (a), taken for a second DW nucleation and at a differ-
ent position in the crystal. Here, we see jumps in the measured NV ODMR frequency
at high powers, which we associate with pinning of the DW during the dragging pro-
cess. All measurements are performed at a global sample temperature of 304.5 K.
Note that the shift in frequency between the low and high power scans is primarily
due to the adjusted feedback parameters to account for the power broadening of the
ODMR line as we record only the frequency at the left flank of the ODMR line.
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Beginning with Fig. 4.16a, we see the now familiar DW profile, taken at low excita-
tion power. However, at high powers, this line shape becomes considerably broadened
and distorted. Fig. 4.16b shows another instance of the same experiment, taken at a
different location, where we observe DW dragging over a more extensive scan range
(red), whereas the low power measurement (blue) shows only the local DW profile.
Interpreting these data, is rather difficult. The broad peak in Fig. 4.16a could indicate
an increased DW mobility resulting in dragging the DW for a short distance as the NV
center passes over the wall. The additional steps in the NV signal in Fig. 4.16b, on the
other hand, suggest that the DW may be dragged over larger distances, experiencing
pinning along the way. If the distance between the NV center and DW changes when
the DW is pinned, we could explain the changing field the NV experiences. Without
a better understanding of the extent of the dragging, a quantitative analysis of ob-
servations will be difficult. Nonetheless, they are consistent with a movement of the
DW and indicate that the DW can undergo pinning during the dragging process.

While laser dragging has allowed us to realize the first steps towards the type of
DW manipulation necessary for AFM memory devices, future devices would likely
require all-electrical switching to realize the advantages of AFM memories over their
FM counterparts. In particular, we would like to use the magnetoelectric proper-
ties of Cr2O3 to move the DW through the application of local magnetic or electric
fields [175]. This would also allow us to move the DW independently of our measure-
ment of the stray field, thereby helping us to obtain a clearer picture of the dragging
process and the pinning landscape. Currently, we cannot determine the exact DW
position or orientation throughout this dragging procedure. As such, it is unclear
which area of the DW is being pinned. Depending on the elasticity of the DW, we
could be dragging a large portion of the wall, all of which may contribute to the
observed signal.

The first tests we conducted with the application of local magnetic fields through
a magnetically-coated, tapered quartz capillary showed no effect. For this reason,
manipulation via electric fields would be preferable. This process will require the
presence of local gates. However, one must apply a large voltage to achieve sufficiently
large electric fields across the entire thickness of a bulk crystal. In his 1969 thesis [134],
Brown gives a switching product |E|·|B| = 2 · 105 T V/m to achieve domain switching
at room temperature. Assuming a magnetic field of 0.55 mT achievable in our current
switching setup and an electrical breakdown in air of ∼1000 V/mm, one would have
to place gates at least 360 µm apart to prevent sparking between contacts. These
restrictions are prohibitive for the local generation and manipulation of DWs with
surface gates. Therefore, the ultimate goal will be to move towards thin-film samples,
where the thickness of Cr2O3 may be as low as a few tens of nanometers, allowing us
to work with smaller voltages, hence, more densely-packed gates.

4.4. Thin Films

In the previous sections, we have explored the mechanics of DWs in a pinning land-
scape fabricated on the surface of a pristine, single crystal of Cr2O3. Through this
process, we have learned much about the elastic properties of the DW and have been
able to demonstrate controllable pinning of the DW at the edges of fabricated surface
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mesas. However, when considering potential technological applications, these large
crystals are at a distinct disadvantage due to their large size, thickness, and lack of
a scalable fabrication technology. In this regard, thin films of Cr2O3 could be very
beneficial. These films have already proven useful in magnetic order switching ex-
periments [17], where they were used to demonstrate all-electrical AFM memory bit
operation.

However, one of the drawbacks of thin-film Cr2O3 for applications is the Néel tem-
perature. Though Cr2O3 became very popular due to its room temperature ordering,
the critical temperature is still far below the temperature rating of typical consumer
memory devices. As such, an important aspect of materials research in Cr2O3 is find-
ing ways to increase the critical temperature. In this section, we will discuss efforts
by our collaborators in Dresden to do just this, where NV magnetometry helped to
characterize TNéel.

4.4.1. Raising the Néel Temperature

The question of how to raise the critical temperature of Cr2O3 is by no means a
new one and has already been addressed using several different methods. The Binek
group, among others, has realized increased TNéel through doping [164, 176, 177],
where replacing a portion of the oxygen atoms with boron increases the exchange
energy felt by the Cr ions. This increase in exchange energy then results in a higher
critical temperature. Others have focused on achieving a similar increase through
elastic deformations [163, 178]. Here, a reduction in the lattice constant a due to
lateral compressive strain also increases the exchange interaction between Cr ions.

In the Makarov group, efforts have yielded increased TNéel through strain generated
during the film growth process. In the past, these samples were grown epitaxially via
thermal evaporation of Cr2O3 onto a [001]-oriented Al2O3 substrate. This process
results in the formation of ∼50 nm-sized columnar grains of [001]-oriented Cr2O3,
which extend the entire thickness (∼ 200 nm) of the film, as shown in the bottom-left
inset to Fig. 4.17 [26]. In contrast to these evaporated samples, recent developments
have moved towards deposition of Cr2O3 via RF magnetron sputtering at 700 °C.
This procedure yields low roughness and highly uniform layers, as shown in the top-
right inset to Fig. 4.17. As the sample is cooled, a mismatch in the in-plane thermal
compression of Al2O3 and Cr2O3 leads to epitaxial strain in the Cr2O3 layer. Close
to the Al2O3 surface, the crystal uniformity prevents the relaxation of this strain.
However, further from the substrate, partial relaxation can be achieved. In particular,
X-ray diffraction measurements show that the c/a ratio can increase by up to 8.5%
relative to bulk values depending on the sample thickness. This strain then leads to
an increase in TNéel.

To characterize the resulting Néel temperature TNéel in these samples, we again turn
to the excellent magnetic stray field sensitivity of NV magnetometry. In Fig. 4.17,
we show a series of stray field images, presented as a function of temperature for four
different thin film samples: a thermally evaporated, 200 nm film and three sputtered
films with thicknesses of 200 nm, 50 nm and 25 nm. While the 200 nm evaporated film
becomes PM around 33 °C, each of the sputtered films shows stray fields that persist
far beyond the bulk TNéel of 34 °C.
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Figure 4.17.: The phase transition from AFM to PM in thin films. Series
of stray field images from various thin Cr2O3 films taken at increasing temperatures
(noted to the side of each image). The details of each thin film are noted at the
end/beginning of the column. Insets show the crystal structure of the respective
films taken by TEM. Whereas the old evaporated thin film (bottom) exhibits a very
granular structure, highlighted with white, dashed lines, the new, sputtered films
(top) show much more uniform growth. The new films also show a much higher TNéel,
resulting in measurable stray fields up to and exceeding 80◦C for the thinnest (25 nm
and 50 nm) films. The scale bar in each stray field figure is 500 nm.
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We recall from Fig. 4.5 that one can extract TNéel through a study of the surface
magnetization as a function of temperature. However, extracting σm relies on a
knowledge of the orientation of the Néel vector. Ideally, a [001]-oriented thin film
Cr2O3 should exhibit an out-out-plane magnetization much as we have seen for
single crystal Cr2O3 thus far. However, it is unclear whether this will be the case for
the 50 nm, and 25 nm films shown in Fig. 4.17 as they exhibit strong epitaxial strain,
which has been shown to change the anisotropy leading to an in-plane component of
the magnetization [141]. Without prior knowledge of the orientation of the magnetic
moments, performing reverse propagation to extract the magnetization amplitude is
not possible. Nonetheless, we can estimate TNéel by imaging the stray fields from
the sample as a function of temperature and relying on the fact that the surface
magnetization vanishes above TNéel.

These results are very promising though unexpected when compared to measure-
ments made with zero-offset Hall magnetometry. This technique relies on the spin
Hall magnetoresistance, which induces a transverse resistance within a platinum Hall
bar patterned on the top surface of the Cr2O3 film [16]. Therefore, the transverse
resistance acts as a probe for the presence of magnetization at the interface between
Cr2O3 and the Pt layer. In Fig. 4.18a, we compare the TNéel measured via NV mag-
netometry and zero-offset Hall magnetometry for three sample thicknesses. Though
both techniques show an increased TNéel, the values found by NV magnetometry are
consistently higher.

We believe that this discrepancy arises due to the strain gradient in the films. As
the strain, and correspondingly TNéel, increases closer to the substrate, it is possible
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Figure 4.18.: The effect of strain on the TNéel. (a) A plot of the approximate
TNéel, estimated by the loss of signal in NV magnetometry (triangles) and zero-offset
Hall magnetometry (squares) as a function of the change in the c/a ratio for different
samples thicknesses shown in the legend. We see a distinct discrepancy between the
two measurements, which we attribute to a difference in the surface and bulk TNéel.
(b) A schematic showing the expansion of the Cr2O3 lattice towards the sample
surface resulting from a relaxation of the induced strain. The strain gradient leads
to a gradient in TNéel, leading to a PM surface (white circles) while the bulk remains
AFM.
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that the film’s surface becomes PM while AFM ordering persists deeper into the film,
as shown in Fig. 4.18b. As the Hall technique is only sensitive to magnetization at
the Pt/Cr2O3 interface, the signal is lost when the surface becomes PM. NV magne-
tometry, on the other hand, can still measure the stray fields produced at the AFM
surface, which now lies in the bulk of the film. This makes estimating TNéel diffi-
cult. To obtain the critical temperature from a measurement of the stray field, one
must consider not only the general power-law dependence of the magnetization with
temperature but also the increasing distance between NV and AFM “surface”.

Overall, these films are much more compatible with typical industrial devices in
terms of the critical temperature and the sample thickness. However, in contrast to
the clean, mono-domain state of the bulk, stray field images of the thin films reveal
much smaller domains on the order of 150 nm. On the one hand, this granular AFM
structure could be used similarly to the granular FM films in magnetic recording [179]
but would require much smaller domain sizes to be comparable to these technologies.
Going in the other direction, applications such as AFM-based racetrack memories
rely on our ability to controllably generate and shift DWs. Achieving this control
in thin-films would first require us to reproduce the ideal DW behavior seen in bulk
Cr2O3. In either case, further material development of Cr2O3 thin films and AFM
materials for spintronic applications will continue to be an important research field
and will strongly influence the direction of AFM applications in the future.

4.5. Outlook and Conclusions

Throughout this chapter and in motivating our study of Cr2O3, we have often alluded
to AFM memory devices. However, current realizations of AFM memories show
rather large bit sizes, and as such, do not come close to the bit densities achieved
in modern FM memories [13, 17, 180]. While experiments showing memories with
single antiferromagnetically coupled atoms exist [181], these are extremely difficult to
produce and control, and therefore, are not yet technologically viable.

To bring together all the aspects we have studied in this chapter, we propose a new
form of DW-based AFM memory. We have shown that we can engineer a controlled
pinning landscape for the DW through the patterning of topographical structures.
Additionally, through laser dragging, we have shown that we can reproducibly move
the DW from one side of a mesa to the other, thereby flipping the order parameter
at the location of the mesa. As such, we have realized topographically defined bits
i.e., the mesas, whose bit value is defined by the order parameter measured on the
mesa and switched through local dragging of a DW. Each of these aspects should also
translate to thin film Cr2O3, where we have been able to show critical temperatures
consistent with those required for technological applications. The resulting design,
shown in Fig. 4.19, has been submitted for patenting. Not only would this memory
benefit from the fast switching inherent to AFMs, but the topographical bit size
would be limited only by the magnetic length of the DW and our ability to fabricate
such structures. As the DW width could be further reduced, for example, through
strain [171], we should be able to reach similar bit densities as in current FM memory
devices.
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Though we have shown each of the individual elements needed for such
a memory, further improvements and demonstrations will be required be-
fore we can realize a proof-of-concept device. In particular, we need to
develop better methods for the local generation and manipulation of DWs.
While magnetoelectric annealing has successfully generated a single DW in a
bulk Cr2O3 crystal, a memory device would require multiple, parallel DWs.
However, as we have already discussed, achieving this in bulk is difficult.

1

0

0 0

110

1

0

0

Figure 4.19.: Proposed AFM memory de-
vice. Proposal for an AFM memory device based
on Cr2O3. Here, the mesas define the bit location.
We simulate two DWs lying between the bits such
that the bit value is defined by the order param-
eter orientation on the mesa. The DW is held in
place by pinning to the mesa edges and may be
shifted by the local application of magnetoelectric
pressure or thermal dragging.

One would require an electric or
magnetic field alternating on the
length scales of the DW pattern
we wish to generate but strong
enough to select a given order pa-
rameter. The simplest method
would involve a series of electric
gates on the Cr2O3 surface. How-
ever, as mentioned at the end of
Sec. 4.3.3, electrical breakdown
would hinder such a nucleation
pattern in the bulk crystal. For
this reason, it would be advan-
tageous to realize such a mem-
ory in thin-films, where the re-
quired electric fields would be sig-
nificantly reduced. In the absence
of sufficiently pristine thin films,
one can also explore the interme-
diate case of a thin bulk crystal.
Future experiments will address the domain structure and DW mechanics in ∼100 µm-
thick Cr2O3 crystals. Electric gates could furthermore allow us to realize a more
reliable method of DW motion than laser dragging. By applying a magnetoelectric
pressure to the DW, one should be able to move the DW [175], but this has yet
to be shown on single-crystal samples. As such, one avenue of future research into
Cr2O3 will be to realize and characterize such electric field-based DW motion.

Next to such application-driven motivations, there is also a wide range of funda-
mental physics to explore in Cr2O3. For example, there is the question of the DW
type. There is also the question of the surface magnetization of Cr2O3. In Sec. 4.1.4,
we introduced a few of the theories currently used to explain the existence of the sur-
face magnetization that we observe. While we have confirmed some of the predictions
made in the section, the measured and theoretical surface magnetization amplitudes
still show some discrepancies. In Ref. [161], Spaldin also provides a method for cal-
culating the magnetization of non [001]-oriented surfaces, which would be a further
test of the magnetoelectric multipolization theory. In particular, we have received a
[104]-oriented crystal, on which we have performed initial measurements. As shown in
Fig. 4.20a, we have etched the surface of this sample and performed magnetoelectric
annealing, allowing us to realize DWs much like in the [001]-oriented crystal.
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Figure 4.20.: Summary of existing questions. (a) Stray field image of a DW
in Cr2O3 with a (104) surface. We see qualitatively similar behavior of the DW as
with the [001]-oriented sample. (b) Crystal structure of Cr2O3 showing the cut along
the (001) (dash-dotted line) and (104) surfaces (dotted line). (c) Stray field image
of a DW in the [001]-oriented Cr2O3 lattice showing a kink or ‘break’ in the DW,
highlighted with a black dashed square, created after high power laser dragging. (d)
Top: Schematic showing the rotation of the magnetization in a Bloch point [182].
Bottom: Detailed scan of the DW break shown in (c), illustrating the discontinuous
DW stray field, which could indicate a Bloch point.

While we observe stray fields on this sample, it is a priori not clear in which direction
this magnetization points, making the analysis more difficult. One possible path to
answering this question is to look at the crystal structure of Cr2O3 shown in Fig. 4.20b.
Here, we see that the spins orient perpendicular to the (001) surface, leading to a
canting relative to the (104) surface shown with a dashed line. However, whether this
canting is maintained at the surface is unknown. Here, the multipolization method
presented by Spaldin could provide helpful and interesting results.
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There is also the question of DW dynamics. One possibility is to examine the
motion of the DW itself. For example, one could investigate DW velocities in the
presence of various stimuli such as electric and magnetic fields [175] or thermal gra-
dients [173, 174]. Such experiments would also allow us to extract information about
the pinning landscape of these bulk, single crystals. Alternatively, one can also inves-
tigate dynamics within the DW. Recent results on synthetic AFMs have shown how
NV magnetometry may be used to image magnetic fluctuations at the DW through
PL reduction of the NV [183]. To our knowledge, no such magnetic fluctuations have
been seen in true AFM DWs to date.

Yet another, even more exotic research direction has presented itself through our
laser dragging experiments. When scanning across the DW with high laser powers,
we have occasionally observed the generation of small, apparent “breaks” in the DW,
as shown in Fig. 4.20c and d. Though it is by no means clear what these magnetic
signatures are, one possible explanation could be the formation of Bloch points. These
are defects within the DW, in which the rotation of the magnetic moments changes
direction, as shown in the top panel of Fig. 4.20d [182, 184]. As these structures have
yet to be shown in experiments, this could be another exciting avenue of research.
Adding to the list of potentially exotic physics in Cr2O3, another exciting possibility
is the generation of a magnetic monopole at the Cr2O3 surface due to a nearby electric
charge, presented in the recent proposal by Meier et al. [185]. Needless to say, we
have only just begun to scratch the surface of the interesting physics to be explored
in this system.

4.5.1. Summary

Finally, let us summarize the results of this chapter. We began in Sec. 4.1 with a gen-
eral introduction to magnetic ordering and magnetoelectric susceptibility, touching
upon the most important energy contributions in any magnetic system - exchange,
anisotropy, and dipolar interactions. We then applied this general discussion to the
atomic and magnetic properties specific to Cr2O3. In doing so, we developed a sim-
ple model of the material based on the exchange and anisotropy contributions. We
also discussed how symmetry breaking in the crystal leads to the magnetoelectric
properties that make it so attractive for applications. This latter point then brought
us to the surface magnetization of Cr2O3, which we proceeded to characterize using
NV magnetometry performed on topographic steps on the Cr2O3 surface. Here, the
fabricated mesas played a key role as they serve as a source of stray magnetic field
in an otherwise uniformly magnetized surface. In particular, we observed an average
surface magnetization of 2.1 ± 0.3 µT/

√
Hz consistent with earlier measurements. We

also showed the power-law temperature dependence of this magnetization with a crit-
ical temperature around 307 K, thereby verifying the connection between the surface
magnetization and the bulk magnetic order.

Then in Sec. 4.2, we turned our attention to the DWs themselves. After an intro-
duction to the structure of the DWs, we demonstrated the ability to nucleate these
structures in the Cr2O3 crystal through magnetoelectric annealing. We showed that
we could reproducibly and controllably select a desired order parameter of the crys-
tal, based solely on the relative orientation of the applied magnetic and electric fields.
With the aid of the mesas introduced in the previous section, we were then able to
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locate and image the resulting DWs. What we found were very smooth DWs that
extended over multiple millimeters, showing pristine behavior. An in-depth analysis
of the DW stray field allowed us to extract an upper bound on the magnetic length
of 32 nm at room temperature under the assumption of a Bloch wall. Unfortunately,
with our current spatial resolution, we could not quantify the magnetic length or DW
type with more precision.

This investigation of the DW was extended in Sec. 4.3, where we focused on devia-
tions from the otherwise smooth behavior observed thus far. In doing so, we realized
that the interaction between the DW and the surface topography led to a Snell’s
law-like refraction of the DW. This refraction was explained through minimization
of the energy cost arising from the additional DW area under the mesa. We also
used simulations and analytic analyses to develop a 3D model of the DW in the bulk.
Not only were we able to reproduce the Snell’s law behavior, but we were success-
ful in explaining and predicting further phenomena based on our model of the DW
as an elastic surface. In particular, we investigated the pinning of the DW to the
mesa edges. We again used simulations to define a tension energy arising from the
increased DW area. To further explore this pinning, we demonstrated DW motion
through local heating with a 532 nm laser at global sample temperatures near TNéel.
In doing so, we were able to realize pinning on alternating sides of a mesa structure.
First steps towards characterizing the pinning landscape of the Cr2O3 crystal were
made by scanning across the DW with the NV center at increased powers. The ability
to repeatably drag and pin the DW not only verifies the simulated behavior of the
DW but also acts as a stepping stone to DW-based AFM memory devices.

Finally, in Sec. 4.4, we moved from the bulk Cr2O3 to thin films. While the step
to thin films is somewhat application-driven, these systems are interesting in their
own right. In particular, we discussed several realizations of thin film samples ex-
hibiting increased critical temperatures. These films were grown using a new method
that induces up to 8.5% strain in the film. We summarized our NV magnetometry
measurements on these films, where we observed stray fields exceeding 85 °C. We
were also able to explain the discrepancy seen between the critical temperature mea-
sured using Hall magnetometry and NV magnetometry through the development of
a strain-dependent Néel temperature gradient.

In this chapter, our goal was to address some of the open questions surrounding
the magnetic structure of Cr2O3, in particular, its DWs. Throughout this chapter,
not only have we demonstrated the nucleation and control of DWs, but we have also
presented the building blocks of a novel form of AFM memory. Our results open up
new avenues for investigating DW dynamics in AFM and magnetoelectric systems.
Of course, this was only made possible through our measurement technique – NV
magnetometry. Throughout Chapters 2 and 3, we have repeatedly touted the benefits
of this technique and now have finally been able to use all these benefits to investigate
the non-trivial system that is Cr2O3. Thanks to the nanoscale spatial resolution
achieved through scanning NV magnetometry, we were able to image the deviation
of DWs when crossing a micron-scale mesa. Through the high stray field sensitivity,
we could perform scanning measurements even close to the Néel temperature where
the magnetization vanishes. These results cement the NV center as a versatile tool
for investigating the magnetic properties of AFM systems and will continue to play
an important role in future studies of DWs.
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The rapid exchange of information has become a fundamental part of daily life. How-
ever, this development has caused the energy requirements for data centers worldwide
to surpass the yearly energy consumption of many countries [186]. This issue is one
of the motivating factors in developing new computing and memory technologies. In
particular, throughout this thesis, we have focused on efforts in the field of spintron-
ics, where the development of magnetic memories based on AFM materials promises
to provide fast, energy-efficient alternatives to modern FM memories [13, 17, 180]. Of
course, fundamental to this process is the characterization of potentially interesting
materials and their magnetic structures, which requires an appropriate toolset.

Here, we have presented one such tool, the NV center in diamond, which has
been established as a highly competitive sensor in a broad range of scientific fields.
Over the last years, the NV center has found its place in range of fields including
magnetometry [27, 28, 31], electrometry [37, 187], and thermometry [40, 43], and in
systems ranging from biological cells [42] to geological studies [188]. This success can
be attributed to its versatility, high sensitivity, and spatial resolution. It is these same
properties that allow us to use NV magnetometry to answer open questions in the
AFM spintronics community, inaccessible by other methods.

With this thesis, our goal was to further develop our understanding of DW me-
chanics in Cr2O3, a magnetoelectric AFM. In addressing this goal, the key outcomes
of this thesis were two-fold. Firstly, we developed a novel form of truncated parabolic
scanning probes, improving on the state-of-the-art diamond scanning probes. These
devices were then used to realize the Cr2O3 studies presented later in this thesis. In
particular, we demonstrated the ability to generate and control single DWs in Cr2O3,
ultimately laying down the building blocks for a novel AFM memory device.

5.1. Summary

Central to any discussion of NV magnetometry is, of course, an understanding of the
NV center itself. As such, we began in Chap. 2 with an introduction to the structure
and electronic energy levels of the NV center. We saw that we can initialize and read
out the spin state of the NV center through optical excitation while manipulating the
spin state with MW excitation. We followed this up with a discussion of a second
degree of freedom - the charge state. Specifically, we explored how the NV center’s
neutral charge state creates a significant background when measuring the NV spin
state. With these building blocks in hand, we were then able to discuss the basics
of NV magnetometry. We examined the magnetic field dependence of the NV energy
levels and how the splitting of the |±1〉 levels may be used to determine the magnetic
field. Though several different techniques exist, we focused here on ODMR as a mea-
sure of static fields. We also highlighted some variations on the method which reduce
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the otherwise long measurement time. We then concluded our discussion of NV mag-
netometry with a discussion of sensitivity and spatial resolution, two parameters that
define the performance of any magnetometer. In particular, we saw the importance
of having high PL collection efficiencies while simultaneously bringing the NV close
to the diamond surface.

In Chap. 3, we then addressed both of these requirements in developing a new form
of NV scanning probe. Though the high index of refraction of diamond makes collect-
ing PL from the NV within a bulk diamond difficult, we could use it to our advantage.
In particular, we used the total internal reflection of a truncated parabolic pillar to
guide the PL towards the collection optics. Through simulations, we demonstrated a
considerable improvement in both collection efficiency and angular emission of these
truncated parabolic pillars. We then outlined the steps necessary to fabricate such
structures before discussing the results of an extensive characterization of the result-
ing devices. We observed a highly directional emission with an NA of ∼0.44 and, to
our knowledge, the highest recorded PL rates for single NV, diamond scanning probes
to date of 2.1 ± 0.2 MHz. We also characterized the radiative lifetime of the NV cen-
ters as well as their steady-state charge state, using the latter to finally provide an
estimate of 57% for the collection efficiency of our devices. The improvements that
we saw in the pillar performance allowed us to realize a DC ODMR sensitivity of
up to 1.22 ± 0.07 µT/

√
Hz. This value represents a factor of >two improvement on

prior pillar designs [92]. At the same time, we achieve an average spatial resolution
of 69 ± 13 nm.

This excellent performance allowed us to realize the investigation central to this
thesis – a measurement of DW mechanics in AFM Cr2O3– as presented in Chap. 4.
We began with a general introduction to magnetic ordering and magnetoelectricity
before exploring the specific magnetic properties of Cr2O3. Through this discussion,
we developed a simple model of this material. One feature of importance is the pres-
ence of a surface magnetization, whose theoretical origin we discussed and which we
measured using NV magnetometry. The key to these measurements was patterning
the Cr2O3 crystal surface with mesas. These acted as markers and as a source of stray
magnetic fields in the uniformly magnetized sample. We then moved to a theoretical
description of DWs and demonstrated the ability to nucleate single, isolated DWs
through magnetoelectric poling. In the subsequent analysis of the resulting DWs, we
could place an upper bound of 32 nm on the magnetic length used to characterize
the width of the DW. Finally, we explored the unexpected interactions between the
DW and the surface topography that we had observed. We showed several differ-
ent behaviors of the DW depending on the relative location of the DW and mesa.
These included a Snell’s law-like refraction of the DW and pinning of the wall to the
edges of the mesas. We were able to explain both scenarios through simulations and
analytical calculations. In doing so, we modeled the DW as an elastic film whose tra-
jectory results from the minimization of the DW surface energy. Simulations further
suggested an ability to pin and move the DW. We were later able to confirm this
behavior experimentally through dragging of the DW using local heating with a fo-
cused laser. These bulk crystal realizations show great promise and formed the basis
of a proposal for a novel AFM memory device presented later in the chapter. Finally,
we presented first results on thin-film Cr2O3, demonstrating the ability to raise the
Néel temperature through strain introduced during the film growth. Additionally,
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we observed a deviation between measurements of the Néel temperature with Hall
and NV magnetometry, which we explained based on a strain-induced gradient in the
critical temperature.

In conclusion, through all of these measurements, we have highlighted the versa-
tility of the NV center as a sensor and have shown that NV magnetometry is a very
promising technique for addressing AFM materials. At the same time, our obser-
vations of the mechanics of AFM DWs have revealed a number of exciting research
directions, which will guide future research into the dynamics of DWs and how they
may be harnessed for future memory applications.

5.2. Outlook

Throughout this thesis, our focus has been on two complementary developments. In
the future, this two-pronged approach will continue to drive our research. While our
goal is to explore new, interesting physics, improving our measurement technique is
crucial to achieving this.

In Chap. 3.4.1, we have already explored some avenues for improving the design and
performance of the diamond scanning probes. However, many of these aspects require
further tests. For example, the reason for the larger-than-expected NV-to-sample
distances is still unknown. A measurement of the NV depth prior to fabrication would
be beneficial here. A distance determination is particularly important if we consider
new pillar designs [124] where a sharp apex could help us avoid larger distances due
to topography.

Improving the scanning probes is not the only approach one can take. The room
temperature confocal scanning setup suffers from some drawbacks, the largest of which
is the scanning method. We have mentioned the importance of characterizing the
motion of the piezo, which we explore in more detail in Appendix A.2.2. To address
this issue, we have developed a closed-loop scanning solution, which uses a commercial
interferometry system (IDS 3010/SMF, Attocube) to obtain the real-space position of
the piezo scanners. In this way, we can use the signal to controllably and repeatedly
move our scanner to the desired position. The IDS can also help us determine the
true length scales of structures, which is critical when fitting the stray fields. This
implementation has only very recently been realized and is still under development.
However, it promises to significantly improve the uncertainty in our analyses of stray
magnetic fields. Such improvements to the scanning setup, magnetometry techniques,
and NV center performance are vital stepping stones for future studies.

The second part of our two-prong approach focuses on new physics. The field of
AFM spintronics is broad, and besides the many promising experiments proposed for
Cr2O3, there are many other interesting systems that one could explore. FeRh is one
such system. This material undergoes a phase transition from AFM to FM around
300-400 K [189], as shown in Fig. 5.1a. It also shows great promise for spintronic
applications and has been used in a proof-of-principle AFM memory device [180].
Still, as with Cr2O3, many open questions exist, in particular, concerning the physics
at the phase transition. Real-space imaging with PEEM-XMCD, shown in Fig. 5.1b,
has already proven helpful in providing a clearer picture of this transition [190].
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Figure 5.1.: Summary of interesting AFM systems for future study. (a)
Phase diagram of FeRh as a function of temperature (vertical) and Rh concentra-
tion (horizontal). Around 50% Rh content, the material undergoes a transition from
AFM (red) to FM (blue) ordering. Adapted with permission from [191]: Bul. Alloy
Phase Dia., 1984. (b) PEEM-XMCD images showing the transition from AFM (top
left) to FM (bottom right) in FeRh. Adapted with permission from [190]. (c) Crystal
structure of Mn3Sn with two different AFM orders shown. Reprinted with permission
from [192]. Copyright 2017 by the American Physical Society. (d) MOKE imaging of
the domain structure of Mn3Sn in varying external magnetic fields, showing the flip-
ping of the AFM order. In particular, the light gray represents the order AFM1 shown
in (c), with the dark gray having all spins flipped 180◦ along their axis. Reproduced
with permission from [193]:Nature Photonics, 2018.

However, this study was unable to address the behavior in the presence of external
magnetic fields. Here, NV magnetometry could be a vital asset. Recently, first mea-
surements of this transition using NV magnetometry have been performed, showing a
reorientation of the DWs [194]. Furthermore, this material has been shown to exhibit
unique spin phenomena at the phase transition [195], where the AC magnetometry
capabilities of the NV center could provide local detection of these spin dynamics.

Another potentially interesting AFM system is the class of Mn3X materials,
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where X commonly refers to Sn or Ge. Unlike Cr2O3, Mn3X materials are non-
collinear. These materials exhibit a hexagonal lattice, in which the Mn atoms form a
honeycomb-like structure with multiple possible in-plane spin orientations, as shown
in Fig. 5.1c [192]. Interest in this material first developed due to observations of a
large anomalous Hall effect [196]. However, there are still multiple open questions re-
garding the magnetic structure of these materials. Theoretical descriptions of Mn3Sn
expect a 60◦ Bloch wall with a magnetic length of over 1 µm though measurements
using MOKE (see Fig. 5.1d) seem to indicate Néel walls [193]. Here, the NV center
could be helpful, specifically for resolving the DW structure. These are just two of
the many potential material systems to be explored.

With all the interest in AFM systems, both in terms of technological applications
and the interesting physics they are host to, these systems will likely prove quite
fruitful in the near future. At the same time, NV magnetometry is uniquely poised
to answer the questions surrounding these materials and will continue to be a highly
effective tool in these studies. In the end, this thesis represents just a small drop
in the much larger bucket that is the joint journey of NV magnetometry and AFM
spintronics.





A. Appendix

A.1. Fabrication

A.1.1. Diamond fabrication

The basic fabrication procedure for achieving NV scanning probes in the group has
mainly remained the same for the last years [62, 80, 92]. However, optimization of
the process and design is constantly taking place. As discussed in Chap. 3, the most
recent innovation has been the addition of truncated parabolic portions at the tip of
the scanning probes. Here, we will outline the fabrication procedure for these devices.
Many of the details here have been modified from the SI of Ref. [32].

We begin with a bulk, type-IIa diamond plate (Element Six) with a (100) sur-
face. The type-IIa classification indicates that the diamond is low in impurities, with
a natural nitrogen concentration of less than 5 ppb. We prepare the diamond for
fabrication as follows.

1. The diamond is sliced and polished to a thickness of 50 µm by an external
provider (Almax).

2. We remove ∼3 µm of diamond from the top surface via an inductively coupled
plasma reactive ion etch (ICP-RIE, Sentech), alternating between Ar/Cl2 and
O2 chemistries, as shown in Fig. A.1a, and as described in [29]. The goal of this
step is to relieve stress within the diamond to prevent breaking in later stages.

3. The diamond is implanted with 2 · 1011 cm−2 14N at 12 keV and 7° tilt to the
sample normal (Innovion), resulting in an estimated N depth of 20 nm (see
Fig. A.1a).

4. We anneal the diamond in a vacuum to a maximum temperature of 1200 °C
following the procedure outlined in [197].

Following this diamond preparation, we pattern the diamond surface, beginning
with an array of cantilever structures and holding bars. In contrast to previous meth-
ods, we opt for patterning the entire diamond surface with multiple 1 mm × 1 mm
write fields (WFs), each containing 328 20 µm× 40 µm structures. We begin by
mounting the diamond on a larger silicon substrate using an adhesive (Crystalbond,
Pelco) and spinning a mask onto the diamond surface using the following recipe:

1. Spin Ti-based primer (Ti-Prime, MicroChemicals GmbH) onto the surface at
6000 rpm with a 3-second ramp for 40 seconds. This primer can help with
adhesion between the mask and diamond.

2. Spin the flowable oxide resist (FOX-16, Dow-Corning) onto the surface at 6000
rpm for 60 seconds. This recipe should form a ∼300 nm-thick mask.
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3. Spin a conductive coating (Elektra 92 - Allresist) onto the surface at 2800 rpm
for 60 seconds. This coating helps combat charging effects during patterning.

At the very beginning and following each step, the diamond is heated to 120◦C for 2
minutes. The aforementioned structures are then written into the mask via electron-
beam lithography (60 µm aperture, 30 keV energy, base dose of 600 µC/cm2) and
developed in TMAH for 30 s. The resulting mask is then transferred into the diamond
via an ICP-RIE etching process outlined in Table A.1. This process is repeated twice,
resulting in structures with a height of 2 µm, as shown in Fig. A.1b. Following this,
we remove the remaining mask with a 40% buffered oxide (HF) bath.
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Figure A.1.: Fabrication procedure for a diamond sample. (a) The diamond
is prepared using an Ar/Cl2 and O2-based etch to relieve stress and is subsequently
implanted with 14N. (b) A FOx-16 mask is patterned on the diamond to define the
holding structure and cantilever array. The mask is then etched into the diamond
with an O2/CF4 plasma. (c) A second FOx-16 layer is patterned to achieve a pillar
mask (shown in the inset, scalebar = 300 nm) and holding structure, and then etched
according to the recipe outlined in Table A.2. (d) The diamond is etched from
the reverse side with an Ar/Cl2 plasma to release the structures. (e) SEM images
highlighting the development of the parabolic pillar tip. (i) After the first stage of O2

etching, the mask is eroded at the edges, leaving a trapezoidal cross-section. (ii-iv)
Subsequent etching steps with increasing CF4 flow, resulting in a controlled mask
erosion and a parabolic diamond surface. (f) Etch rates of diamond (gray squares)
and FOx mask (cyan circles) vs. CF4 concentration, with linear fits (solid lines).
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O2 Flow CF4 Flow Pressure ICP RF Time
(sccm) (sccm) (Pa) (W) (W) (s)

50 0 0.5 500 110 390
50 2 0.5 500 40 20

Table A.1.: Summary of the plasma parameters for etching the cantilever and holding
bar structures.

In the next step, we wish to create a mask for the pillars. To do so, we use the same
spinning recipe as before and proceed by defining 1 µm-diameter circular masks. These
are written with electron beam lithography by aligning to the pre-etched cantilevers
based on markers place in the corners of each WF. One common problem we have
experienced in the past is the adhesion of the mask to the diamond surface. Recently,
the use of an evaporated Si layer, which acts as an adhesion promoter, has proven
quite successful in overcoming this problem [198]. However, instead have focused on
obtaining an optimal exposure of the FOx mask. Therefore, we write the pillar masks
as two concentric circles. In this way, the center of the mask is thoroughly exposed,
resulting in excellent adhesion to the diamond. At the same time, by making the
inner, double-exposed region smaller than the desired mask size, we can establish
sharp mask edges. Specifically, we write the masks with a 30 keV energy electron
beam, using a 30 µm aperture, base dose of 600 µC cm−2, and a dose factor of 3.4.
The inner mask is set to be 80% of the outer one.

The pillars themselves are etched in two stages. We begin with a tapered pillar
etch as summarized in the first section of Table A.2. Here, short O2 /CF4 steps are
used to remove resputtered material, arising from the alumina mounting wafer and
mask, from the device walls [108]. The final two etch steps of stage 1 are repeated a
total of 6 times to achieve a ∼6 µm tapered pillar. At the end of this stage, the mask
has a trapezoidal cross section with a base diameter of 900 nm, as seen in Fig. A.1ei.

Stage O2 Flow CF4 Flow Pressure ICP RF Time
(sccm) (sccm) (Pa) (W) (W) (s)

50 10 0.5 500 50 10
50 0 0.5 500 110 240

1
50 2 0.5 500 40 4
50 0 0.5 500 110 240

50 2 0.5 500 40 120
50 4 0.5 500 40 2×60

2 50 6 0.5 500 40 2×45
50 8 0.5 500 40 30
50 10 0.5 500 40 10

Table A.2.: Summary of the plasma parameters used for etching the truncated
parabolic pillar.
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In the second stage, we finally introduce the parabolic nature of the pillar using
the preferential etching of the mask by CF4. By varying the CF4 concentration, we
control the relative etch rate of the mask and diamond, as summarized in Fig. A.1f.
In this way, we also control the angle of the diamond wall. The etch consists of
several steps in which we introduce successively higher flow rates of CF4 to achieve
increasing diamond wall angles, as shown in Fig. A.1e(i–iv). The details of these
stages are outlined in Tab. A.2. Following the final etch step, the remaining mask
is removed with an HF bath. A typical final device (see Fig. 3.4b) then consists of
a ∼500 nm parabolic tip section with a ∼ 200-nm flat end facet and a ∼6 µm-long,
tapered pillar with a ∼2 µm base diameter.

Following the pillar etch, the pillar side of the diamond is coated with a 10 nm layer
of titanium and 100 nm gold to act as a protection layer. The diamond is then etched
from the opposite side using an Ar/Cl2 etch plasma until the cantilever structures
are free-standing and held in place only by a thin, diamond holding bar, as shown in
Fig. A.1d. The diamond is then cleaned using gold etchant and a tri-acid clean [60].
Finally, the devices may be assembled into scanning probes as described in Ref. [29].

A.1.2. Chromia fabrication

Even before patterning the mesas, initial measurements of the Cr2O3 surface showed
a magnetic signal. However, we believe that this signal arose due to magnetic con-
tamination rather than topography due to the large signal strength [157] and the fact
that it persists far beyond the expected bulk Néel temperature, as shown in Fig. A.2.
Etching of the surface through 50 repeats of a 1s Ar/Cl2 plasma removed the top
layers of the sample, at which point the magnetic signal disappeared completely.

The subsequent fabrication of the mesas on the Cr2O3 surface relies on many of
the same techniques as introduced in the previous section. Unfortunately, the mesa
writing process initially showed significant difficulties with adhesion. This difficulty
was overcome by evaporating a 2 nm Ti layer onto the Cr2O3 instead of Ti-prime when
spinning the FOx mask. Following this, we continue with the recipe as stated. The
mask is written with electron beam lithography (30 kV energy and 30 µm aperture
with a 630 µC cm−1 base dose) and developed using 30 s of TMAH.
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Figure A.2.: Contamination of the Cr2O3 surface. Full-field images taken on the
unetched surface of the Cr2O3 sample at increasing temperatures. The signal persists
far above the Néel temperature and was removed through etching with an Ar/Cl2
plasma.
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Ar Flow Cl2 Flow Pressure ICP RF Time
(sccm) (sccm) (Pa) (W) (W) (s)

25 40 1 400 20 100

Table A.3.: Summary of the plasma parameters for etching ∼160 nm mesas in Cr2O3.

The etching is carried out using an Ar/Cl2 ICP-RIE process, whose parameters are
outlined in Table A.3. Following the etch, the mask is removed with 5 minutes in
an HF bath, and the sample is cleaned with three solvent baths: first acetone, then
isopropyl alcohol, and finally ethanol. To remove any remaining particulate matter, we
also find First Contact (Photonic Cleaning Technologies), an optics-cleaning polymer,
to be quite effective.
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A.2. Setup details

In this section, we will describe the two homebuilt confocal microscopes used in this
thesis. Sec. A.2.1 is modified from the SI of Ref. [32], while Sec. A.2.2 is largely
modified from the methods section and SI of Ref. [140]

A.2.1. Characterization setup

We will begin with the characterization setup used in Chap. 3. Though this setup
exhibits functionality exceeding that which will be described here, we will focus on
the aspects relevant to the measurements provided in this thesis.

The confocal microscope is equipped with CW excitation lasers at 532 nm and
594 nm, and one can additionally couple in a tunable supercontinuum picosecond
pulsed laser (SuperK Extreme, NKT Photonics). We use a 100×, 0.8 NA microscope
objective (Olympus) to illuminate the sample and collect the PL of the NV center.
The collected light is filtered by a 635 nm dichroic filter before being coupled through
an f = 18 mm objective (Attocube) into an 8.2 µm core diameter fiber (SMF-28, Thor-
labs). This arrangement provides good mode matching to the observed NA ≈ 0.45
output mode of our devices. The fiber output is further filtered by a 594 nm long-pass
filter (Semrock) before being focused onto one of two avalanche photodiodes (APDs)
(ARQH-33, Excelitas).

The objective is mounted on a scanning stage (P-562.3CD, PI), with a range of
200 µm× 200 µm. The sample is placed below the objective, on a Newport M-562
stage with a 13 mm range, allowing us to access the entire 5 mm × 5 mm diamond
sample. Microwave excitation is provided by a 30 µm-diameter gold wire formed into
a simple loop and soldered across the outer and inner conductors of a coaxial cable.
A permanent magnet mounted on a moveable stage allows us to realize an adjustable
bias magnetic field. Furthermore, a camera (WAT 910HX, Watec) near the objective
with adjustable tubing allows us to image the sample surface and the BFP. Pulsing
is controlled by an FPGA (MyRIO, NI) with custom LabView software developed by
Lucas Fisher, Brendan Shields, and Oliver Frei.

In Chap. 3.2.4, we discuss the collection efficiency of our TPSP devices. To do so,
we must examine the PL losses from each optical element between the NV center and
the APD. For the majority of elements (e.g., mirrors and filters), we take the specified
transmission over the range of wavelengths between 630 nm and 800 nm to determine
the transmission efficiency. For the coupling into the SMF-28 fiber, we measure the
attenuation of the supercontinuum source tuned to a band around 635 nm, which is the
cutoff of our dichroic mirror. At this wavelength, the source can be coupled into the
scanning probe device such that the reflection off the device is partially transmitted
by the dichroic. In this way, the fiber coupling attenuation can be directly measured
for the output mode of the device. The efficiencies of all components are summarized
in Tab. A.4. The overall efficiency listed under total then gives us εsetup and is used
to determine the collection efficiency of our device in Chap. 3.2.4.
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Component Efficiency

Olympus LM PLAN FL N 100× microscope objective 0.85
Newport ultrabroadband mirror (x4) 0.99

Dichroic 1000 nm longpass (DMLP1000, Thorlabs) 0.99
Semrock FF635 Di01 0.94

Semrock 647 nm edgebasic longpass 0.82
Fiber coupling 0.50

Semrock 594 nm edgebasic longpass 0.99
Thorlabs E02 mirrors (x2) 0.99

Thorlabs AC254-060-B ML lens 0.99
Excelitas SPCM ARQH-33 0.67

Total 0.21

Table A.4.: Summary of setup losses at the characterization setup at the time of
measurement.

A.2.2. Room-temperature NV magnetometry setup

For all magnetometry measurements shown in this thesis, the data were taken with
a confocal microscopy setup similar to that of the characterization setup discussed in
the previous section. It is equipped with a single CW 532 nm laser source (GEM-532,
Laser Quantum), allowing us to realize several mW of excitation power measured
at the objective. However, apart from the laser dragging experiments, all measure-
ments were performed with /10 µW of excitation, a factor of two smaller than typical
saturation powers for NVs in the TPSP devices (see Chap. 3.2.1). The laser passes
through a laser line filter (FL532-10, Thorlabs) and subsequent polarization optics
before reflecting off a 552 nm dichroic (LM01-552-25, Semrock) towards a fixed objec-
tive. The PL collected through the objective then passes through this dichroic and is
measured at an APD (SPCM CD3531, Excelitas).

The microwave for manipulating the NV is again provided by a 30 µm-diameter gold
wire in the form of a loop antenna with a typical effective driving strength of 0.25 G at
the NV as determined through Rabi measurements [92]. These low excitation powers
(both microwave and laser) ensure that we do not disturb the magnetic ordering of
the sample. A small bias magnetic field (<60 G) is applied along the NV axis using
a permanent magnet to allow for a sign-sensitive measurement of the stray magnetic
fields.

Both sample and NV are mounted on piezoelectric scanners (ANS(xyz)100, At-
tocube) placed on top of additional stepping modules (ANP(xyz)101, Attocube).
These provide a total range of 5 mm in all directions through stepping, with an ad-
ditional ∼40 µm in x and y through the scanners. When heating of the sample is
needed, we mount the sample on a small Peltier element (TEC3-2.5, Thorlabs) with
thermally conductive adhesive tape. The Peltier is then placed on top of one of the
two scanners and controlled via a PID unit (TTC001, Thorlabs), allowing us to reach
temperatures of ∼360 K during the scanning process.

As we are using open-loop piezo scanners, we need to calibrate their physical dis-
placement and determine the piezo non-linearity to achieve an accurate representation
of distances in our stray field images. To do so, we perform atomic force microscopy
measurements of a section of the patterned Cr2O3 sample on a commercial system
(Bruker Dimension 3100), as shown in Fig. A.3a (left).
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Figure A.3.: Calibration of the piezo position. (a) Atomic force microscopy
(left) and NV magnetometry (right) images used to compare length scales and obtain
the conversion factor from applied voltage to real distance. Error bars are estimated
from the images in (a). (b) The conversion factor from applied voltage (V) to dis-
placement (µm) as a function of the applied voltage for the x (top) and y (bottom)
axes. (c) A plot of the position (as determined by integrating the conversion fac-
tor in (b) as a function of the voltage applied in the x-direction (blue squares) and
y-direction (red circles). The fit parameters are given in the top right inset. The
bottom-right inset shows the resulting deformation of equally spaced lines in a 2D
plot, with dark gray arrows shown for emphasis. (d) Topography images taken with
scanning NV magnetometry over a test grating (TGT1, NT-MDT) pre- (left) and
post-calibration (right). The insets show a 2D Fourier transform of the pattern.

If we assume the topography there is primarily sample topography and not due
to the tip geometry, then we can use this as a calibration for our piezo. To do so,
we compare the lengths and widths of the same structures measured in our confocal
setup, as shown in Fig. A.3a (right). Rather than using the topography measured in
our system, which is convolved with our very blunt TPSP tip, we use the magnetic
field data, as the stray fields we measure arise from the very edge of the mesas. A few
points of comparison are shown in Fig. A.3a. This procedure allows us to determine
the conversion factor from the applied voltage (V) to physical piezo displacement (µm)
for a reasonably wide range of piezo voltages, as shown in Fig. A.3b. Note that these
data points are based on previously measured stray field images and, for this reason,
do not represent an exhaustive study of the range of applied voltages. However, this
subset should be sufficient to extract the non-linearity. Errors on individual points
are calculated based on a readout error of ±300 nm and ±0.02 V for the AFM and
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magnetometry data, respectively. The error on the x−axis is below the marker size.
We integrate the fitting functions given in the legends to convert from our system
coordinates (in applied voltage) to real coordinates (in µm) as shown in Fig. A.3c.
We then obtain a non-linear conversion, which corrects for deformations arising from
the piezo non-linearity. The non-linearity is clearly seen in the 2D topography images
of a regular grid of sharp, silicon pillars shown in Fig. A.3d. Here, the original
image (with scale in applied voltage) is shown in the left panel and the adjusted
scaling conversion in the right panel. Though the improved regularity of the grid is
somewhat difficult to see from the images themselves, taking a 2D Fourier transform
of the image as shown in the inset aids the comparison. Here, the sharpness of the
peaks reflects the regularity of the topographical pattern.

Through this characterization, the absolute position is calculated assuming that
0 V→0 µm and 4 V→40 µm. However, we have additionally investigated the motion
of the piezos using an interferometer system (IDS 3010/SMF, Attocube), and found
that this is not necessarily the case. By mounting small mirrors off the side of the
piezo scanner, we can measure the absolute displacement relative to the IDS sensors
in the xy plane. Through this, we found that the piezos not only move more than
the 40 µm in total but also that once it reaches a given position (where the ideal
position by given in the applied voltage), the piezo will exhibit an additional creep of
100-200 nm over the first 90 s, which decays logarithmically. This creep is problematic
for ensuring that we can repeatedly measure the same area of the sample. While we
believe that the creep within a single scan is accounted for by our calibration, it is
a likely source of drift between subsequent measurements. Another source of drift
could be temperature fluctuations, though these have not yet been quantified. Most
recently, the IDS measurement process has been used to create a closed-loop scanning
mode, where the position of the piezos is read out via the IDS and used to modify
the next voltage step in order to reach or remain at a given position. Unfortunately,
this was not completed for the measurements shown in this thesis.

A.2.3. Temperature calibration

Many of our magnetometry results in Chap. 4 rely on heating the sample, which we
achieve with a Peltier element described in the previous section. In this system, the
temperature is regulated with a feedback cycle, where the feedback parameter is the
resistance of a thermistor placed in contact with the Peltier surface. Though these
thermistors (TH10K, Thorlabs) have been calibrated, we wish to verify the calibration
for ourselves. In particular, as the temperature value registered by the thermistor
depends on the thermal connection with the Peltier, we need to make sure that we
are not biasing our results. To calibrate the measured resistance, we use a secondary
thermal probe (Steinacher) placed in contact with the Peltier and near the sample.
In Fig. A.4b, we summarize the result of the temperature measurements performed
with the thermal probe (blue diamonds) and the TH10K (red squares), where we
see good agreement, with slight deviations at lower temperatures. In an independent
confirmation on a controlled heating plate (HP-155-T, UniTemp), the thermal probe
showed a higher accuracy than the TH10K, showing that the pre-defined calibration
can not always be trusted.
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Figure A.4.: Calibration of the temperature. (a) Series of normalized, pulsed
ODMR curves taken when in contact with the sample surface (here a 200 nm
Cr2O3 film) for a Peltier temperature increasing from top (blue) to bottom (red).
The ZFS of each ODMR curve is shown with a gray circle. We see a clear shift to-
wards lower frequencies, consistent with an increase in temperature. (b) Temperature
measured using a secondary thermal probe (blue diamonds) and the supposed value
as measured by the thermistor (red squares) as a function of the thermistor resistance
used to control the Peltier feedback loop. The temperature dependence, based on
the ZFS extracted in (a) and converted according to Ref. [199], is shown with gray
circles for a d0 = 2.876 87 GHz. The error bars show the change in the ZFS-based
temperature estimate if d0 varies by 1 MHz. The blue dashed line shows a logarithmic
fit (a log(x) + b, where a = −24.7± 0.3 and b = 82.5± 1.1) to the thermal probe data
used to calibrate the temperature.

In these measurements, we are assuming that the sample is in thermal equilibrium
with the Peltier. We believe this to be reasonable considering that the sample is
mounted on the Peltier with thermally conductive tape. Furthermore, the entire
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scanning system is placed inside a protective case to reduce thermal fluctuations and
drafts that could cause rapid heat dissipation at the surface. We also attempted to
verify this assumption quantitatively using the ZFS of the NV center as introduced
in Chap. 2.2. We perform a series of pulsed ODMR measurements with our scanning
probe in contact with the sample surface, in this case, a thin-film Cr2O3 sample. Here,
rather than using continuous optical and MW excitation, we alternate the optical
excitation and MW through short pulses. With these pulsed ODMR measurements,
we can resolve the hyperfine structure of the NV center [85], which we fit to extract
the ZFS. We repeat this procedure for different temperatures by setting the desired
thermistor resistance. The pulsed ODMR measurements are summarized in Fig. A.4a,
where we observe a shift of the ZFS, highlighted with black circles.

As discussed in Chap. 2.2, the NV ZFS depends linearly on the temperature (near
room temperature) [54]. However, for broader temperature ranges, as shown in
Fig. A.4, we need to examine the full temperature dependence, which can be de-
scribed as a 5th order polynomial [199]:

D0 = d0 + d1T + d2T
2 + d3T

3 + d4T
3 + d5T

5.

To convert the ZFS to a temperature, we use the values extracted in Ref. [199] but
allow the d0 term to vary. The results of this measurement series are summarized in
Fig. A.4b (black circles) for a d0 = 2.876 87 GHz present excellent agreement with the
other measurements. However, even a 1 MHz shift in d0 can lead to drastic differences
in the extracted temperature. We show this shift with the error bars in Fig. A.4b.
Without better characterization of our NV center, it is difficult to use this method
to determine the temperature. Furthermore, we have observed ODMR measurements
that yield ZFS shifts corresponding to a temperature shift of multiple degrees despite
the temperature of the Peltier not having changed. It is possible that the thermal
contact between the diamond and the sample surface is considerably changed by the
presence of contamination, which is extremely difficult to control. For this reason, we
continue to rely on the thermal probe temperature calibration, which we fit to obtain
a temperature calibration (blue dashed line).
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A.3. Poissonian analysis of NV number

In Chap. 3.2, we found that scanning devices showing only a single pair of ODMR
lines may still contain multiple NV centers. Based on our measured ODMR line
statistics, let us perform a short analysis of the expected number of NVs per pillar.
We will assume that the number of NVs per pillar follows a Poissonian distribution
and that the orientation of the NV centers in the diamond is uncorrelated. In this
case, the distribution of NV centers in a pillar is given by PPoiss(nNV, n̄NV), where
nNV is the number of NV centers, and n̄NV is the average value. Then the probability
of measuring nODMR resonance pairs is given by:

P(nODMR = 0) = PPoiss(0, n̄NV) = e−n̄NV , (A.1)

P(nODMR = 1) =
∞∑
i=1

PPoiss(i, n̄NV)(1/4)i−1 = 4e−3n̄NV/4
(

1− e−n̄NV/4
)
, (A.2)

P(nODMR > 1) = 1− P(nODMR = 0)− P(nODMR = 1). (A.3)

Note that in Eq. A.2, we are summing over the probability of having any number
NVs oriented in the same direction, where the (1/4)i−1 factor appears due to the four
possible NV orientations in the pillar. If we now solve these equations for n̄NV based
on the observed ODMR lines, we obtain n̄NV = 0.89±0.05 NVs per device.

Based on this value, we are now able to determine the probability of a pillar con-
taining a single NV center, given that we measure only one pair of ODMR lines. If
we apply Bayes’ Theorem and assume P(nODMR = 1|nNV = 1) = 1, then we obtain:

P(nNV = 1|nODMR = 1) =
P(nODMR = 1|nNV = 1)P(nNV = 1)

P(nODMR = 1)
(A.4)

=
n̄NVe

−n̄NV

4e−3n̄NV/4
(
1− e−n̄NV/4

) . (A.5)

By substituting the n̄NV found above, we see that P(nNV = 1|nODMR = 1) = 0.89.
Of the 36 devices selected in Chap. 3.2, only 25 were verified to contain a single NV

center via correlation measurements, thereby confirming the presence of multiple NVs
with identical orientations, which cannot be distinguished by the ODMR spectrum
alone. With these numbers, we find P(nNV = 1|nODMR = 1) = 0.69, which is
considerably smaller than the expected value. These skewed statistics could arise from
NV centers whose position in the pillar leads to unfavorable coupling, and therefore
a weak ODMR spectrum. For this reason, though the ODMR spectrum is useful,
further characterization is necessary to ensure the presence of a single NV.
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A.4. Approach curves

Throughout this thesis, we have repeatedly discussed the importance of determining
the distance between NV and magnetic field source as this defines our spatial reso-
lution and is also an important fitting parameter. For this reason, techniques to aid
with the characterization of this quantity are of great interest. Here, we will explore
the use of the NV PL drop upon approaching the sample to estimate dNV [28, 118].
An example of such an approach curve is shown in Fig. A.5a. In Chap. 3.3.2, we have
briefly discussed the origin of both the oscillations and the drop in the PL.

To use these approach curves as a way of determining the NV-to-sample spacing,
we will first need to understand this behavior in more detail. The method used in
the Reinhard group [118], which provides only a rough estimate, will not work well in
this case as the oscillations they observed and analyzed far from contact (extending
beyond what is seen in Fig. A.5a) are no longer visible within the noise level of the
measurement.

Instead, we attempt to reproduce this behavior through simulations. Here, we use
the parabolic pillar simulations discussed in Chap. 3.1.2 as a basis, and introduce a
dielectric material near the end facet of the diamond pillar. In particular, we use
a dielectric with an n = 2.551, corresponding to that of Cr2O3. We then vary the
distance between dielectric and diamond while recording Ina/Ibd. We integrate this
value over the cone of the objective (NA = 0.8) and average over six wavelengths
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Figure A.5.: Approach curve over the Cr2O3 surface. (a) The PL rate (black),
normalized to a value far from contact, and plotted as a function of the distance
between the diamond tip and sample surface, as controlled using an ASC500 (At-
tocube). The simulated power collected within an NA = 0.8, is plotted in red as a
function of the distance from the surface of a dielectric (n = 2.551). The power has
been averaged over the 630 nm to 800 nm range and normalized. (b) PL rate (black)
and topography (blue) when scanning over a topographic feature on the surface of
Cr2O3. The three points in the inset to (a) are highlighted here with red circles and
labeled accordingly. Based on the change in PL between points A and B, we estimate
a mesa height of 160 ± 20 nm, which is slightly smaller than shown in topography.
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between 630 nm and 800 nm. The resulting curve, normalized to the value far from
contact, is shown in Fig. A.5 in red. Here, we assume that the contact point in exper-
iments corresponds to the dielectric being in direct contact with the entire diamond
end facet as in the simulation.

In general, we observe a very similar behavior with weak oscillations up to ∼250 nm,
where the collected power increases before rapidly dropping off. However, for small
distances, we see that the decay of the power and the in-contact values are quite
different from the measured ones. This discrepancy hints towards additional factors
not taken into account in these simulations. For example, these simulations assume
perfect excitation of the emitter, which in reality, will vary depending on reflections
within the pillar and from the dielectric surface.

However, we can still learn something about relative distances from the approach
curve. As shown in the inset to Fig. A.5a, the distance between NV and the sample
surface will change as one scans across a topographical structure. As the NV-to-
sample distance increases, so should the measured PL rate. In Fig. A.5b, we show an
example of the change in PL rate when scanning over a Cr2O3 mesa, normalized to
the out-of-contact rate. In this figure, we also show the topography which we would
like to characterize. For this measurement, the step height was calibrated based on
previous comparisons to atomic force microscopy measurements as in Sec. A.2.2. We
can then use the sharp drop-off of the PL rate in the approach curve to estimate the
change in height required to obtain the observed change in PL. Using this technique,
we extract a step height of 160 ± 20 nm, which is slightly smaller than what is shown
in Fig. A.5b. Here, we use the left-hand side of the mesa, though we see that the
right-hand side would give a much smaller estimate. The difference in the PL shift
between these two sides could indicate a tilt in the pillar or an off-center NV center.
Both cases would result in the NV center being closer to one edge of the mesa than
the other. Though this technique is useful to gain a general sense of the distance
between NV and sample, it requires further development to provide a quantitative
value for dNV or the height of topography on the sample surface.
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A.5. Domain wall theory

A.5.1. Angular Profile Derivation

In Chap. 4.2.1, we introduced the angular profile of a 180◦ Bloch DW, with a surface
ξ parallel to the xz plane. For posterity, we will derive the form given in Eq. 4.15.

To first see that the expression in Eq. 4.14 holds for any DW orientation
(not just a Bloch DW shown in Sec. 4.2.1), let us insert the general form for
L = (cosφDW sin θ, sinφDW sin θ, cos θ) into Eq. 4.13. Assuming a DW where ξ lies
parallel to the xz plane and with a constant φDW, we find that ∂xL = ∂zL = 0. The
remaining terms are then:

E =

∫ [
A

(
cosφDW cos θ

dθ

dy
, sinφDW cos θ

dθ

dy
, sin θ

dθ

dy

)2

+K(1− cos2 θ)

]
dr.

Taking the dot product of the vector with itself, we then find:

E =

∫
A

(
cos2 φDW cos2 θ

(
dθ

dy

)2

+ sin2 φDW cos2 θ

(
dθ

dy

)2

+ sin2 θ

(
dθ

dy

)2
)

dr

+

∫
K sin2 θdr

=

∫ [
A

(
cos2 θ

(
dθ

dy

)2

+ sin2 θ

(
dθ

dy

)2
)

+K sin2 θ

]
dr

By combining the θ terms, we then finally arrive back at Eq. 4.14:

E
(
θ(y),

dθ(y)

dy

)
=

∫ [
A

(
dθ

dy

)2

+K sin2 θ

]
dr,

where A is the exchange stiffness constant and K is the uniaxial anisotropy. In
particular, this formulation of the problem satisfies the requirements for the Euler-
Lagrange formalism. Therefore, to find the form of θ(y) that minimizes the total
energy, we will need to solve the following:

∂E
∂θ
− d

dy

∂E
∂θy

= 0, (A.6)

where θy = ∂θ
∂y . Inserting the form of E above, we obtain

−2A
d2θ

dy2
+K sin(2θ) = 0. (A.7)
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Now, to solve this second-order differential equation, let us introduce a new function
f(y) where

∂

∂y
f(y) =

∂

∂y

[
−Aθ2

y +K sin2 θ
]
,

= −2A
d2θ

dy2
θy + 2K sin θ cos θθy,

=

[
−2A

d2θ

dy2
+K sin(2θ)

]
θy,

= 0. (A.8)

Here, in the last step, we have applied Eq. A.7. As such, we can now solve this simple
but equivalent problem instead. Let us integrate both sides of Eq. A.8:∫ ∞

−∞
dy

(
d

dy
f(y)

)
=

∫ ∞
−∞

0dy,

→
[
−Aθ2

y +K sin2 θ
]∞
−∞ = [C]

∞
−∞ . (A.9)

Far from the DW, we assume a homogeneous magnetization, such that θy = 0. Fur-
thermore, as θ(−∞) = 0 and θ(∞) = π and so, applying these boundary conditions,
we find that C = 0. Thus,

θ2
y =

K sin2(θ)

A
,

→ dθ

dy
= ±

√
K

A
sin θ,

→
∫

dθ

sin θ
= ±

∫
dy

`m
. (A.10)

(A.11)

Here, we have introduced `m =
√
K/A, as in Chap. 4. Therefore, solving this simple

integral problem, we find that the form of θy that minimizes the total energy is indeed
given by

θ(y) = 2 arctan
(
e

±(y0−y)
`m

)
, (A.12)

where y0 is the position of the DW center. As we have made no assumptions about
φDW here, in the absence of dipolar or DMI terms, this form will hold for any DW
type.

A.5.2. Domain Wall Stray Field

Following the derivation of the DW profile, in Chap. 4.2.3 we gave the components of
the stray field arising from the magnetization profile of a Bloch DW. In general, there
are four additional terms that should be added to account for a general DW profile,
which we outline here:
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Bx,N =
µ0σm
8π2`m

sinφDW Re

[
−ψ(0)

(
2d+ π`m + 2ix

4π`m

)
+ψ(0)

(
2d+ 3π`m + 2ix

4π`m

)
− ψ(0)

(
2d+ π`m − 2ix

4π`m

)
+ ψ(0)

(
2d+ 3π`m − 2ix

4π`m

)]
,

and

Bz,N = − iµ0σm
8π2`m

sinφDW Im

[
−ψ(0)

(
2d+ π`m + 2ix

4π`m

)
+ψ(0)

(
2d+ 3π`m + 2ix

4π`m

)
+ ψ(0)

(
2d+ π`m − 2ix

4π`m

)
− ψ(0)

(
2d+ 3π`m − 2ix

4π`m

)]
. (A.13)

Recall that here, ψ(0) is the digamma function, i.e., the first derivative of the log
gamma function, σm is the surface magnetization and dNV is the distance between NV
and surface. We do not fix φDW, thereby allowing for any mixture of Néel and Bloch
DWs. As such, we see that the fitting function for a Néel wall, where φDW = ±π/2,
is much more complex than that of a Bloch wall (φDW = 0). To ensure that these
analytic forms are indeed reasonable, we verify their form against micromagnetic
simulations of the DW. The following discussion has been adapted from the SI in [140].

We simulate the DWs in MuMax3 [200] by approximating the surface magnetization
of Cr2O3 as a thin slab, 1 nm thick, and with a magnetization |M | = 10 kA/m,
exchange stiffness A = 0.423 pJ/m and uniaxial anisotropy of K = 215.86 J/m3.
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Figure A.6.: Verification of analytical stray field form. (a) Bloch wall stray field
components Bx (black circles) and Bz (red squares) simulated for a 20 nm distance
from the sample surface and compared to the calculated stray fields according to the
analytical model (black and red lines, respectively). (b) The same plot as in (a), but
for the Néel wall. We see excellent agreement between simulation and analytics in
both cases, verifying the validity of our analytical stray field equations.
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The total dimensions of the simulated sheet are 4096 nm× 32 nm× 1 nm, discretized
to a grid of 1 nm × 2 nm × 1 nm cells. We additionally include periodic boundary
conditions to minimize artifacts.

To nucleate a DW in simulations, we start with a magnetization pointing upwards in
one half of the simulation volume and downwards in the other. We allow the energy
of the system to relax and simulate a time span of about 1 µs to ensure a static
equilibrium. We then extract the magnetization profile of the DW and fit it with the
profile described in Eq. 4.16, allowing us to obtain `m. By introducing DMI into the
simulated system, one can also select between the Bloch and Néel configuration.

In the next step, we extract the stray field at a distance of 20 nm from the surface
and compare this with the appropriate DW stray field equation given the `m obtained
previously. For both the Bloch and Néel walls, we find excellent agreement between
the numerical estimates and analytical approximations, as shown in Fig. A.6. We
believe the analytical description to be more accurate in capturing the full extent of
the sample as it considers an infinitely extended magnetic system, without the need
of periodic boundary conditions as in the simulations.
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A.6. Metropolis-Hastings algorithm

Here, our goal is to shortly describe the MH algorithm, which we use to fit the stray
fields of both the mesa structures and the DW in Chap. 4. We have adapted this
discussion from the SI of [140].

This algorithm is particularly useful for inferring the probability distributions of
fit parameters in difficult-to-sample data sets [201, 202]. Therefore, it is appropriate
for our analysis where the models involve many correlated parameters and exhibit
multiple, local, good fits to our data. Such conditions make it difficult for gradient
descent methods to determine a global minimum based on the mean squared error
(MSE). Additionally, the analysis via the MH algorithm allows us to better estimate
the uncertainty on the involved parameters by combining several datasets. For all
analyses of the magnetic and sensor properties (parameters p) discussed in the main
text, we fit the recorded stray field (data D) with a theoretical model using the
following implementation of this iterative algorithm (with n steps):

1. A set of starting model parameters (pcurr) are defined together with a step size
(di) for each parameter.

2. A new candidate set of parameters pnew is drawn from a set of proposal distri-
butions. We use symmetric normal distributions centered around the current
values pcurr, with a width = 2di. As the values are drawn randomly from these
distributions, we realize a random walk over a range of reasonable starting pa-
rameters.

3. The model function is then computed for both parameter sets and compared
with the measured data D to estimate the likelihood rcurr and rnew of the
data, given pcurr or pnew, respectively. In particular, the likelihood is given by
rnew(curr) ∝ (R + 1)−(ν+1)/2 ≈ R−(ν+1)/2, where ν = |D| − |pnew(curr)| (| · |
is the size of the set) and R is the MSE of our model. Often, additional prior
knowledge is available on certain parameters (e.g., typical upper or lower bounds
on parameters based on previous measurements), in which case, we multiply
these to r following the Bayesian rule for the posterior. The probability for
accepting pnew is then realized as follows:

• Select a random value a uniformly distributed between 1 and 0.

• If (rnew/rcurr) ≥ a: Accept the new parameters pnew and set pcurr = pnew.

• Else: Keep the parameter set pcurr.

4. We draw a new candidate set based on pcurr and repeat this procedure n times.

In particular, our selection criteria prevent us from getting trapped in a given local
minimum as we randomize the selection of better parameter sets through a. At the
same time, we continuously improve the fit as better candidates, where (rnew/rcurr) ≥
1, are always accepted.

The typical evolution of a single parameter, normalized to its starting value, is
shown in Fig. A.7 as a function of the iteration number. In the initial period, the pa-
rameters evolve quickly as the fit improves before settling to a stochastic walk around
a particular value in a process known as thermalization. The iteration steps before
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Figure A.7.: Typical single parameter evolution in the MH algorithm The
parameter values relative to its starting value as a function of the iteration steps of
the algorithm. The initial burn-in period is shown by the shaded area. The inset
shows the histogram of values taken after the burn-in period, fitted with a Gaussian
distribution, with the mean and FWHM shown with red bars.

reaching this point, shown in gray in Fig. A.7, are dropped when later examining the
distribution of values and are referred to as the “burn-in region” [202]. Furthermore,
we test for an underlying correlation of the steps by only considering every jth value.
The remaining steps are then processed into histograms for each parameter. In the
last step, the resulting distributions are approximated by Gaussians to estimate a
mean and a standard deviation for a given parameter based on the data and model
used.
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A.7. Error Analysis

In this section, we wish to summarize the various discussions of the error analyses
throughout this thesis. We begin in Chap. 3, where the typical values we state for the
TPSP parameters are given by the median of the measurement results that we have
shown in histogram form throughout the chapter. The confidence intervals are taken
to be the 1σ band, containing 68% of the data. As we have low statistics, choosing
larger intervals will simply cover all the measurements. The errors on individual
measurements are given by the uncertainties on the fitting parameters extracted in
Matlab using the covariance matrix.

The majority of our analysis in Chapters 3 and 4 relies on the fitting of stray field
data arising from magnetic textures such as DWs or at the edges of raised, topo-
graphical structures. For this reason, we have developed an analysis based on the
MH algorithm that allows us to extract the uncertainty on our fitting parameters.
The algorithm and how we extract these uncertainties are outlined in Appendix A.6.
For individual stray field measurements, we state the mean and standard deviation
extracted from Gaussian fits to the resulting probability distribution for each param-
eter. However, for magnetization measurements at room temperature, the value we
state is the mean of all measurements taken under identical conditions, with the error
stated being the standard deviation of these measurements. For the magnetic length,
we take the 98th and 2nd percentile range extracted from the MH results for each
measurement. The maximum of these bounds then gives the upper limit on `m.
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Figure A.8.: Determining the error for the
DW angle. Stray field image of two mesas to-
gether with the DW plotted with the position in
applied voltage (left) and the converted position
in µm (right).

One critical aspect in the stray
field analysis, as discussed in Ap-
pendix A.2.2 is the characteri-
zation of the piezo non-linearity.
This non-linearity plays a par-
ticularly important role in deter-
mining the angle of the DW in
Sec. 4.3.1. In particular, to es-
timate the error, we compare the
corrected mesa dimensions mea-
sured in our setup to those taken
with AFM. On average, we ob-
serve a 10% error in the length
and width of the mesas. There-
fore, we take this value to be the
uncertainty in the lateral posi-
tion. This error was independently confirmed by measurements of the piezo dis-
placement for a given applied voltage using the Attocube IDS. Through simple error
propagation, we then obtain δk(1) =

√
2k(1)∆x. Here, k (k1) is the slope of the

DW far from the mesa (on the mesa) to maintain consistency with the definitions in
Chap. 4.3.1. Note that we assume k = k0 far from the mesa. This δk(1) can then be

converted to an error on sin
(
θ1(2)

)
through further error propagation. This results in
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δ sin
(
θ1(2)

)
=

√
2 cos

(
tan−1(k(1))

)
k(1)

1 + k2
(1)

∆x, (A.14)

which is plotted as the error bars in Fig. 4.10b. We then use linear regression to obtain
the final estimate of nmesa. In experiments, the slope of the DW is determined by hand
using the positions extracted from the stray field image. Independent confirmation
of these slopes indicates that the readout error is small compared to the systematic
error introduced through the calibration of the piezo motion.

The piezo non-linearity and the accuracy of our calibration will also play a role in
the analysis of the stray fields as it defines the length scales of the magnetic systems
and plays a role in the angle between NV center and DW, for example. However, we
believe that these are well accounted for in the MH analysis by allowing for broad
priors on these parameters. In general, based on experience, we believe that these
systematic errors are small compared to the statistical error we state.

In Appendix A.2.3, we also discussed the calibration of the temperature in our mea-
surement setup. We found that the secondary thermistor provides the more accurate
representation of the temperature and therefore used these readings to calibrate our
temperature. Though each measurement of the temperature shows a low readout
error, the discrepancy between the methods shown in Fig. A.4 suggests a reasonable
error on the absolute temperature of ∼2 °C, which is reflected in our measurements
of the magnetic length and surface magnetization as a function of temperature.



B. Additional Measurements

Throughout this thesis, we have focused on only one of several magnetic systems
investigated over the last four years. Though our investigations of Cr2O3 represent
the most prominent of these systems, for posterity, we would like to highlight two
further magnetic studies. These are interesting systems in their own right and ex-
pand on different NV techniques while highlighting possible future avenues for NV
magnetometry.

B.1. Artificial Spin ice

Students are generally introduced to the concept of electric charges or monopoles
early on in their education. On the other hand, magnets are always taught as having
a dipolar form due to the vanishing divergence of the magnetic field. Though the
Maxwell equations preclude the existence of magnetic monopoles, they have long been
theorized to exist. To date, no experimental evidence of true magnetic monopoles has
been found.

Nonetheless, monopolar-like fields have been shown to exist in solid state systems,
most famously in spin ice [203]. Spin ice materials such as dysprosium titanate
(Dy2Ti2O7) most commonly exhibit pyrochlore-like lattices consisting of interlinked
tetrahedra with a magnetic ion at each vertex of the tetrahedron. They derive their
name from water ice, which exhibits a very similar molecular structure. Just as in wa-
ter ice [204], spin ice has a highly degenerate ground state, leading to many interesting
properties.

More recently, there has been a move towards engineering systems that mimic these
spin ices. Such systems, also called artificial spin ice (ASI), are a form of metamaterial
in which the properties of the system are governed by the form rather than the
underlying material properties [205, 206]. ASIs have been successfully engineered
to reproduce all the relevant properties of natural spin ice and expand upon that
observed in nature. This versatility has allowed researchers to explore interactions
that are otherwise impossible to realize. ASIs have also drawn the attention of the
spintronics community as promising structures for realizing complex computing due
to their diverse ground state [207, 208].

In this section, we introduce the basic concepts of ASI, including the dynamics of
these systems. To date, techniques such as MFM [209], SQUID [210], and XMCD [211]
have been used to image the static magnetic structure of ASIs and their dynamics.
Here, we explore these materials with NV magnetometry, using the stray field imaging
techniques presented throughout the thesis. We harness the excellent spatial resolu-
tion and spin relaxation time of the NV center to explore the changes in the ASI
behavior and investigate dynamics in ASIs on the nanoscale.
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B.1.1. Introduction

As with any metamaterial, ASI is an engineered system whose magnetic prop-
erties are primarily defined by the fabrication parameters. In particular, ASI
systems consist of micro- to nano-meter scale magnetic islands (most commonly
permalloy, consisting of ∼80% nickel and ∼20% iron), fabricated on a non-
magnetic substrate such that they form a lattice. One of the strengths of ASI
is that it can be used to realize a wide range of lattice structures [206, 212].
Some of the first realizations, and still some of the most widely-studied lat-
tices, are the Kagome and square geometries shown in Fig. B.1. Here, the
magnetic islands are fabricated with a stadium shape, placed in close proximity.

(a) (b)

Figure B.1.: Two common ASI lattices. One
possible, low-energy configuration of a (a) square
ASI and (b) Kagome ASI. Each of the permalloy
islands (gray) exhibits a macroscopic dipole be-
havior with a positive (red) and negative (blue)
pole or charge. We associate this with an overall
magnetic moment (black arrows).

In Chap. 4.1.1, we introduced
three of the most common mag-
netic energy terms. These same
terms will apply to ASI. How-
ever, as mentioned before, the
magnetic properties of the whole
are no longer determined by the
permalloy itself. Due to the spa-
tial dimensions of the permalloy
islands, the magnetic orientation
of these structures will be domi-
nated by their shape anisotropy.
Due to the flat elongated struc-
ture of the islands, the anisotropy
will lead to an in-plane easy-axis
lying along the long axis of the
island. This strong anisotropy
and the FM nature of permalloy
lead the entire island to act as a
single, macroscopic magnetic mo-
ment [205]. In this configuration, dipolar interactions between the effective moments
will play an important role. In particular, due to the long-range nature of the dipolar
interaction, the island moment experiences contributions from a large portion of the
system. These contributions are the primary driving force for the large number of
equivalent ground states and result in a complex phase diagram [213].

With this in mind, we can explore the basic magnetic structure of these ASIs. Let us
begin with the square lattice. We model each island as a dumbell-like dipole [203], with
a positive magnetic charge (red) at one end and a negative one (blue) on the other,
as shown in Fig. B.1. Ideally, the system would like to minimize the global dipolar
interactions. This minimization is achieved with a “two-in, two-out” orientation,
where two spins point towards the vertex and the remaining two point away. This
“two-in, two-out” rule is also seen in water ice when one considers the orientation
of the water molecules within the tetrahedron, hence the name spin ice. As many
energetically equivalent magnetic configurations exist, the lowest energy state will be
highly degenerate. However, even such a state will not produce the minimum dipolar
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interaction between every pair of elements [205], a situation known as geometric
frustration.

For the Kagome lattice, the geometric frustration is even more evident. In
the square lattice, we see that the given magnetic configuration leads to zero
net magnetic charge at any one lattice site. If we try to realize such a 0
net charge vertex in the Kagome lattice, we will see that with only three mo-
ments, this is impossible. If we arrange any two of the three spins, the
third spin will always lead to a net +1 or -1 charge. Though this struc-
ture can not realize a 0 charge vertex, the next-most favorable configuration
is alternating +1/-1 charges, leading to overall neutrality. These lowest-energy
magnetic configurations are those commonly said to satisfy the spin ice rules.

(b)(a)

Figure B.2.: Monopoles in ASI lattices. Ex-
citations of the ASI where the islands flip their
orientation (dark gray with white arrow), result-
ing in an overall charge resembling a monopole at
either end of the flipped chain, shown here for a
(a) square ASI and (b) Kagome ASI. The result-
ing chain of flipped elements is known as a Dirac
chain.

In motivating the interest
in ASIs, we mentioned that
they have been shown to ex-
hibit pseudo-monopoles. It is
important to emphasize once
more that these are not “true”
monopoles as they only exist
within the solid-state system
and are not an isolated source
(or sink) of magnetic fields as
with electric charges [203]. How-
ever, for simplicity, we will call
them monopoles. As shown in
Fig. B.2a, in the ground state,
a square ASI lattice will exhibit
zero net charge at each vertex.
However, if one of the islands
flips its orientation, we see that
one vertex will then exhibit a
-2 charge, while the neighboring
vertex has a charge of +2. These
regions of excess magnetic charge are then what is referred to as the magnetic
monopoles. Such excitations may be achieved through the application of an external
stimulus, such as magnetic fields. In particular, by applying a magnetic field, these
excitations have been used to demonstrate a complete flip of the magnetic state of
a lattice [211]. Further flipping of moments as shown in Fig. B.2a can result in the
monopoles splitting apart, becoming spatially isolated in the crystal and forming
what is known as a Dirac chain.

For the Kagome lattice, we have already seen that the vertex charge is ±1. However,
as the charge does not exceed that at any other point in the lattice, we do not consider
these to be monopoles. Instead, we typically consider the total charge per island by
summing the charge at the vertices on either end, which in the low energy state is 0.
Flipping a single element as shown in Fig. B.2b leads to two regions with an excess
charge of ±2, i.e., magnetic monopoles. Note that unlike in the square lattice case
where the charge at the monopole vertex is always the same, as the monopoles
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(a) (b)

Figure B.3.: Spin wave modes in an ASI. (a) Simulated spin wave spectra of
a square ASI containing 112 elements and a 6-island Dirac chain with associated
monopole pair. The bottom spectrum shows the resonances of a single island. The
top three curves show the shift in frequency as a function of the lattice spacing.
The edge mode at 1.4 GHz is blue-shifted, as shown by the squares. Additional
resonances showing oscillations of the monopole pair (G) or Dirac string (DS) also
arise. Reprinted from [214] with permission from PRL 2013. (b) Spatial profiles
of the magnetization dynamics in individual islands of a square ice lattice at given
magnetic fields. The field direction is shown with the arrow. The frequencies of the
modes increase towards the right. Here, the 1 refers to horizontal islands and 89
to vertical ones, and n-EM (n-DE) refers to an edge (Damon-Eshbach [215]) mode
with n nodes, respectively. F is the fundamental mode. Reproduced with permission
from [215].

propagate in the Kagome lattice, the vertex charge may change. However, the total
charge is always the same.

While the ASI can be flipped by applying a magnetic field, single elements may flip
spontaneously due to the temperature of the system. The flipping time tf of an ASI
moment will be described by the Arrhenius law:

1

tf
=

1

ta
e
− KV

kBT , (B.1)

where 1/ta is the attempt frequency, K is the shape anisotropy constant, V is the
volume of the macrospin, kB is the Boltzmann constant, and T is the temperature.
If the measurement time exceeds tf , then the system is said to be thermally active or
superparamagnetic [206]. This phenomenon is only observed in ferro-(ferri-) magnetic
nanoparticles and depends very much on the shape parameters [216]. One may there-
fore tune between a static and a superparamagnetic regime not only by temperature
but also geometry.

Understanding the collective behavior of an ASI is complicated but represents an
active field of research. In addition to these single spin flips, simulations have identified
many collective spin wave modes [214, 217]. Spin waves are magnetic excitations
resulting in a collective precession of the spins. In typical ASIs, these spin wave
modes tend to fall in the 1-100 GHz regime. Fig. B.3 shows a few examples of such



B.1. Artificial Spin ice 117

spin wave modes both for the collective lattice (a) and single islands (b) [215, 218].
These modes are, in part, in the 2-3 GHz regime and so may be resonant with the NV
center spin transitions. As such, the spin noise-dependent T1 time of the NV center
may be used to access and directly image these spin modes.

B.1.2. The Samples

Let us now turn to a discussion of our investigations in ASI. We will introduce two
samples provided to us by Naemi Leo and Kevin Hofhuis during their time in the
Heydermann group at the ETH/PSI. In both samples, the ASI consists of permalloy
islands fabricated on a silicon substrate and covered with a ∼10 nm layer of Al. In
particular, the structures are patterned into a permalloy wedge in which the thickness
gradually decreases, as shown in Fig. B.4a. The sample from Kevin Hofhuis consists
solely of square ASIs.

In the following sections, the focus will be on the sample received from Naemi Leo,
on which the majority of measurements were performed. Here, several ASIs have been
patterned, with different lattices and island separations, as shown in Fig. B.4b. An
example of such an ASI WF, here with an element separation D =66 nm, is shown
in Fig. B.4c. This sample structure gives us access to several valuable parameters.
For instance, the varying thickness and island separation allow us to probe different
regimes of the Arrhenius law in Eq. B.1 by tuning the volume and interaction strength
of the islands, respectively.
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Figure B.4.: ASI sample. (a) Schematic of a wedged permalloy ASI sample. The
permalloy is evaporated on a Si substrate and patterned into 40 WFs (along the x-
direction), exhibiting different element separations in the y-direction. The permalloy
is then capped with a ∼10 nm Al layer to prevent degradation. The entire sample
contains multiple lattices, but we will focus on the Kagome lattice. (b) Further
schematic highlighting the WF layout. The element separation D is given to the left,
and the WF number is written on top. Each WF is 50 µm× 50 µm. (c) An SEM
image showing the structure of the D = 66 nm Kagome spin ice. Here, we highlight
the definition of D. Each island has dimensions of l ≈ 470 nm and w ≈ 160 nm.



118 Additional Measurements

B.1.3. DC magnetometry

We will begin with some basic magnetometry images taken in our confocal scanning
setup (see Appendix A.2.2) with single NV, tapered scanning probes.

We begin with measurements on a Kagome lattice taken on WF 14. Here the
numbering refers to the WF position relative to the left-hand side of the sample in
Fig. B.4a,b. Based on the approach curve technique outlined in Appendix A.4, we
expect the permalloy thickness to be on the order of 10 nm. Here we focus on the
WF with an island separation D ≈ 205 nm. In Fig. B.5a, we show a map of the NV
center PL while scanning across this WF.

We also make use of the iso-B imaging described in Chap. 2.2.2, with one addition:
we use two MW driving frequencies to measure two different magnetic fields simulta-
neously. In particular, we apply a 3 mT bias field along the NV axis and drive with
two MW sources set to 2.87 GHz and 2.7 GHz, corresponding to a ±3 mT magnetic
field along the NV axis relative to the bias field. Throughout the scan, we alternate
between the two driving sources while simultaneously recording the corresponding
PL with two counter windows. When subtracted from one another, the two result-
ing stray field images yield a map of the iso field lines at ∼ ±3 mT, as shown in
Fig. B.5b. In this image, we see regions of alternating positive and negative fields
concentrated near the end caps of the magnetic islands. This results is consistent
with the macroscopic dipole behavior of the islands. The inset to Fig. B.5b shows the
expected stray field for ideal dipoles oriented as shown with black arrows. We obtain
reasonable agreement with the iso-B imaging, verifying that we observe the expected
spin ice rules seen in Fig. B.1a.

As we continue to thinner structures in the higher numbered WFs, we eventually
reach WF 23, where we no longer see any magnetic contrast (see Fig. B.5d). How-
ever, we continue to see a drop in the NV PL over the islands, as seen in Fig. B.5c.
Due to the strong magnetic moment of permalloy, it is unlikely that the stray fields
would drop below the NV sensitivity even for a few nm thicknesses. Unfortunately,
characterizing the exact height of the structures in this WF is made difficult by the
Al capping layer. One possible explanation for this reduction in PL and simultaneous
lack of stray magnetic field is the transition to superparamagnetic behavior. Due to
the rapid flipping of the moments in time scales shorter than the measurement time,
we would expect to see no DC stray field. We will try to verify this hypothesis with
further measurements.

Switching now to full-field magnetometry, we observe one of the major difficulties
when working with strong stray magnetic fields. In Fig. B.6a, we take a full ODMR
curve at each point in a scan of WF 14 and plot the components parallel (left) and
perpendicular (right) to the NV axis. Though we indeed obtain a general image of
the stray fields arising from these permalloy structures, we see that at the caps of
the stadium-shaped islands, the contrast drops, resulting in poor ODMR fits and
incorrect pixels. As such, fully quantitative images on thick permalloy layers prove
difficult. However, if we look at the perpendicular field strength at these points, they
seem too small to explain such a drastic drop in contrast [31]. It is possible that
additional factors, specifically having to do with the spin coherence time of the NV
center, which we will explore in more detail in the next section.
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Figure B.5.: Iso-B imaging of the Kagome spin ice. (a) NV PL measured while
scanning over WF 14 (with D = 205 nm) shows the position of the individual elements,
highlighted in part by black outlines. (b) Iso-B imaging resulting from the difference
of the PL measured when driving with two different MW frequencies. The blue (red)
curves correspond to a field parallel to the NV of −27 G (30 G). We again highlight
the corresponding island positions in gray. (c) A PL image taken over WF 23. We
observe a faint drop in PL over the islands, but the lighter rings surrounding the
islands, arising from the topography have nearly vanished. This suggests structures
only a few nm in height. (d) Iso-B image of the area shown in (c). We see no
stray fields, suggesting that these elements may be superparamagnetic. All scale bars
represent 1 µm.

Moving again to the WFs with thinner structures, we observe a drastic change in
behavior. In our measurements, the applied magnetic field has an in-plane component
of ∼1.5 mT. Under these conditions, we see that the islands in WF 22 now seem to be
magnetized in the externally applied magnetic field direction, as shown in Fig. B.6b.
Here, the direction of the in-plane component is shown by black arrows. In this
regime, the magnetic moment of each island no longer lies along the long axis of the
island, meaning that we are able to overcome the shape anisotropy through the applied
field. However, even though we observe reasonable stray fields in Fig. B.6b, the same
conditions produce no stray magnetic field in the next WF (23). By increasing the
in-plane field even further, perhaps we could reach a regime where even WF 23 is
magnetized along the field direction. If this is possible, we could perhaps narrow
down the source of the reduction of PL on this WF. Nonetheless, we see that through
the change in thickness, we can tune between different magnetic behaviors.

Though we have successfully imaged the spin ice rules in the Kagome lattice, we
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Figure B.6.: Full-field imaging of the Kagome lattice. (a) Full-field images of
WF 14 (D = 205 nm) obtained by recording a full ODMR at each point and fitting
the resonances to extract the field parallel (left) and perpendicular (right) to the NV.
The island positions are highlighted in black. (b) Full-field feedback images of WF 22
(D = 205 nm) with an applied in-plane field (>1.5 mT), whose direction is shown with
black arrows. We see that the elements all become magnetized in the same direction,
along the magnetic field.

have not yet observed any monopoles. At this point, let us discuss the second sample,
where we believe that we are indeed able to identify monopoles. Furthermore, scan-
ning over the thick permalloy layers in this sample lead to difficulties in our ODMR
imaging. Therefore, we switched to an NV scanning probe with an unusually deep NV
in order to measure further from the sample where the field magnitude has dropped.
Feedback imaging with this tip yielded the stray field image seen in Fig. B.7.

Figure B.7.: Observation of
Dirac chains. Full-field feedback
image taken over a square ASI.
The position of the elements and
assumed spin orientation is shown
in black. One element at the
left, shown with a dashed line
and white arrow, appears to have
switched, resulting in a monopole
pair. There appears to be a
second such flip in the same line,
to the right side. The inset shows
an SEM image of the sample.
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Due to the small islands and island separation, obtaining a clear image of the
topography is difficult. However, as we have imaged the edge of one of the WFs, we
can overlay the island pattern based on atomic force microscopy measurements of the
lattice (see the inset of Fig. B.7) to make sense of our observations. We highlight
the most likely island configuration with black outlines. Here, we observe a sudden
increase in the stray field at the left-hand side of this image. More importantly, if
we examine the stray field produced by the nearby structures, it appears as if the
horizontal island, highlighted with a dashed line and white arrow has flipped, leading
to two monopoles. A second instance of this structure appears on the right-hand side
of the same line of lattice elements. However, repeated measurements have shown no
growth of the associated Dirac chain.

Thus far, we have successfully shown that the static magnetic structure of ASIs may
be measured through NV magnetometry. Unfortunately, in the presence of strong
magnetic fields, the NV center is at a disadvantage compared to many other imaging
techniques, including MFM [209] and XMCD [211], which have been used to image the
magnetic structure of ASIs in the past. On the other hand, the non-invasiveness of the
technique allows us to access a wide range of magnetic behavior without influencing
it. Specifically, near WF 22, where the thin structures are characterized by weak
anisotropy, NV magnetometry has the potential to provide new insights. In particular,
the question of superparamagnetic behavior remains to be answered.

B.1.4. AC magnetometry

Though other techniques may be better suited to measuring the strong stray fields
and slow (order of seconds) flipping of moments in ASIs [211], NV magnetometry
has the distinct advantage of being sensitive to high-frequency oscillations while si-
multaneously achieving nanoscale resolution. In particular, we will utilize the spin
relaxation time of the NV center, which is affected by the spectral noise density reso-
nant with the NV spin transitions [219]. This technique has successfully been used to
characterize and image spin noise in permalloy [73] as well as yttrium iron garnet [220]
and artificial AFM systems [183].

Our measurements consist of three stages, beginning with the initialization of the
NV spin into the |0〉 state through a 2500 ns, 532 nm excitation pulse. The NV center
is then allowed to evolve without any optical or MW driving for a time τ . Following
this, the NV PL is read out with a 300 ns counter pulse before re-initializing the spin,
as shown in Fig. B.8b. The resulting measurement is shown in Fig. B.8a, taken far
from the sample surface (circles) and in contact over a permalloy island (squares).
We additionally measure the NV PL at the end of the initialization to obtain the
|0〉-state PL level, which we use as a reference. Fitting the two PL decay curves with
an exponential decay (∝ e−t/T1), we obtain the corresponding spin relaxation time,
T1 of the NV center. The T1 time decreases strongly in contact, from 1.3 ± 3.0 ms to
100 ± 20 µs.

While measuring the PL decay curve is by far the most accurate measure of the spin
relaxation time, scanning an area of only a few µm2 can take on the order of a day
or more. Instead, we measure at a single time point yielding high contrast between
the in-contact and out-of-contact T1 measurements while short enough to guarantee
reasonable scanning times. In our measurements, we repeat the pulse sequence shown
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Figure B.8.: Measuring spin noise with the spin relaxation time of the NV
center (a) Measurements of the NV PL as a function of time. When out of contact,
the NV PL drops off exponentially with a T1 = 950 ± 260 µs (dark gray circles).
However, when scanning over an ASI island (dark gray squares), the T1 time drops
to 120 ± 10 µs. The light gray squares and circles represent a reference measurement
taken after re-initializing the NV. (b) Pulse sequence used to measure the curves in
(a). The top line is the 532 nm initialization of the NV before and after a wait time
τ . The NV PL is then measured using two 300 ns counter windows at the beginning
and end of the initialization pulse, resulting in the dark gray and light gray curves
in (a), respectively. (c) PL images of the WF 21 Kagome lattice (D = 205 nm)
measured by the signal and reference counter windows following a fixed τ = 150 µs.
(d) The ratio of the two PL measurements in (c), showing a drop in relative PL at
the edges of the islands, suggesting a drop in T1 resulting from resonant spin noise.
(e) Representative T1 measurements taken at the approximate positions shown, fit
with T1 times of 100 ± 20 µs (top) and 1.3 ± 3.0 ms (bottom).

in Fig. B.8b with a τ = 150 µs, while scanning the NV across the sample. We then
integrate the PL collected over repeated 300 ns counter windows. The resulting PL
image is shown in Fig. B.8c (left). The reference image, based on the PL measured
at the end of the optical initialization pulse, is shown in Fig. B.8c (right). Finally,
we take the ratio of the values in these images to obtain qualitative maps of the NV
spin relaxation time.

Shown in Fig. B.8d is the result of this single point T1 imaging taken on the WF
21 of the D = 205 nm Kagome lattice, where we still expect to see static spin ice
behavior. What we observe is a distinct drop in the PL ratio at the edges of each of
the islands. We have also performed representative, full T1 measurements at selected
points around the islands, as shown in Fig. B.8e. Here, we see a clear distinction in
the PL decay near the element cap and when far from the island.

These observations hint towards an oscillating magnetic field, resonant with the NV
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spin transitions, located near the edges of the islands. There are a number of published
discussions of the spin modes of very similar Kagome and square ASIs [215, 221, 222]
(just to name a few) that show edge modes in the 2-10 GHz regime that we are
interested in. However, these lowest frequency modes are typically localized near
the end-caps of the islands where the interactions are the strongest, as shown in
Fig. B.3b (top left). These modes are very different from our observations, which
show a reduction in T1 around the entire island. One possibility is that this reduction
may not be due to spin wave modes but rather a decay of the magnetic properties of
the islands near the edges following the lift-off procedure in fabrication. However, this
drop in the T1 time at the end caps of the islands could explain our loss in contrast
seen in Fig. B.6a.

1 µm

WF 21 WF 23

0.7 0.8 0.9 1
PL Ratio

0.6

1 µm

Figure B.9.: Comparing spin noise on WF
21 and 23. Comparison of PL ratio images (ob-
tained as shown in Fig. B.8c,d) for WFs 21 and
23 on the D = 205 nm Kagome lattice. We see
a clear shift in the PL reduction from the island
edges to lying on the islands, which we associate
with the shift to a superparamagnetic behavior.

We have already seen a transi-
tion in the DC field behavior of
the spin ice around the WF 22
mark, so let us examine this using
our AC sensing. In Fig. B.9, we
repeat the one-point T1 PL imag-
ing discussed above on WF 23.
Now, rather than seeing contrast
at the island edges, the strongest
PL contrast is found at the center
of each island. Again, this could
be an indication that what we ob-
serve indeed comes from super-
paramagnetic behavior. If the Ar-
rhenius law-based flipping of the
magnetic moment of each island
would be resonant with the NV
transitions, we could explain the
behavior we have observed - a re-
duced T1 and PL on the islands as well as a lack of DC fields. Therefore, let us look
into this in more detail.

In Eq. B.1, we give the general form of the flipping rate. If we approximate our
structures as very flat ellipsoids, then we can make use of some common tricks for
calculating K. In particular, K = 1/2µ0M

2
s∆N , where Ms is the saturation magne-

tization and ∆N is the difference in the demagnetizing factors for the ellipsoid. The
latter may be calculated using elliptical integrals following Ref. [223]. Therefore, we
calculate the demagnetizing factors corresponding to the a and b axes of our ellipsoid
shape (assuming a =470 nm, b =160 nm, and c =3 nm) and obtain ∆N = 0.0114.
Taking µ0Ms =0.8 T [224], we then find K = 29 N/m2. Using the dimensions of
the stadium shape to calculate the volume, and assuming an attempt frequency of
10 GHz [225], we obtain a flipping rate of 2.3 GHz at 23 °C, which is close to our typical
measurement temperature. The flipping rate we extract here is quite close to resonant
with our NV spin transitions. Of course, as we do not have an exact characterization
of the permalloy thickness in this WF, we have assumed a thickness of 3 nm, which
would need to be confirmed. In comparison, if we assume a thickness of 10 nm as we
believe we have in WF 14, we would obtain a flipping rate of ∼600 Hz. Unfortunately,
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this is far too high to expect to see a static stray field, indicating that the thickness
dependence in our estimate is not quite correct. A proper characterization of the
permalloy thickness would be necessary for a confident statement.

In trying to make sense of our results, we also performed similar measurements
while applying in-plane fields as in Fig. B.6c,d. According to simulations, the in-plane
magnetic field should allow us to tune through any possible magnetic resonances. We
could expect to see a change in the T1 behavior once the assumed spin wave modes
exceed the NV resonances or vice versa. Alternatively, if we manage to sufficiently
raise the superparamagnetic energy barrier on WF 23, we would expect to see behavior
more like that seen on WF 21. Unfortunately, up to in-plane fields of ∼3.5 mT, we
see no change in behavior.

Many questions still exist surrounding these measurements. Though they could not
be answered within the scope of my Ph.D., these are interesting problems that could
help us understand not only ASI systems but potentially also the NV center itself.

B.1.5. Conclusions

In our investigation of ASIs, we have explored two ASI lattices: the honeycomb-like
Kagome lattice and, briefly, the square lattice. We used NV magnetometry to image
the stray fields of the individual, permalloy lattice elements and observed that they
do indeed follow the spin ice rules. In the square ASI, we additionally identified two
pairs of magnetic monopoles.

We then discussed how the spin relaxation time of the NV might be used to identify
spin noise in magnetic systems and applied this to the Kagome lattice. A reduction
in the T1 time, which changed depending on the thickness of the magnetic islands,
was observed. However, the origin of this reduction is still unclear. For the thinner
islands, we believe that the lack of magnetic moment and localized drop in T1 time
could indicate superparamagnetic behavior in the islands.

Unfortunately, a lack of simulation expertise made a theoretical explanation of
difficult. Though initial steps were carried out with the help of Dr. Sebastian Gliga,
reprioritization of other projects on both sides prevented any results from nucleating.
Furthermore, unclear whether the T1 reduction is indeed probing the desired physics.
Additional influences on the T1, such as the charge state, have not been taken into
account here [110]. Generally, more care should be taken to account for the NV charge
state and compare the T1 decay of each of the spin states [62]. A comparison with
recent T1-based studies of spin noise at DWs [183] could also help in this regard.

Moreover, the spin ice community already has access to many excellent techniques
for investigating static magnetization and large-scale dynamics, including MFM, Bril-
louin light scattering, and PEEM-XMCD. Nonetheless, the NV still exhibits the ad-
vantage of being sensitive to both DC and AC fields at the nanoscale. As few experi-
mental verifications of spin modes on the level of individual spin ice islands exist, this
is an area where NV magnetometry could prove useful.

The 2D imaging of spin wave modes through T1 techniques with the NV is also
an attractive avenue of research in systems other than ASIs. For example, first steps
towards imaging FM resonances in isolated permalloy disks were conducted early
on in my Ph.D. Fig. B.10 shows the results of full T1 decay curves measured while
scanning across a 5 µm permalloy disk. Here, we see a pattern emerge in the disk,
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Figure B.10.: T1 imaging over a permalloy disk. (a) PL image of a permalloy
disk taken concurrently with the T1 image. (b) Image of the permalloy disk taken
by performing a full T1 measurement at each pixel. Here, we see a clear change in
the length of the T1 time (though the fitting is often poor due to a low number of
measurement points per T1 curve) over the disk. The structure in the top left appears
to have some correspondence to a slight change in PL in (a), but otherwise, there are
no apparent changes in PL or topography that would lead to this change in T1 time.

again hinting towards some magnetic influence. Though a bias field was applied, it
is unclear whether the field was sufficient to remove the magnetic vortices known to
inhabit such permalloy disks. Apart from creating strong field gradients that could
influence our measurements, these magnetic vortices are also known to produce spin
waves of their own [226]. To narrow down the origin of this signal in the future,
T1 measurements could be combined with additional measurement techniques [73].
Additionally, driving the system, whether it be an ASI or a permalloy disk, can be
a valuable tool for controlling the behavior of the system. Most importantly, any
experimental results should be combined with support from simulations, which has
been missing thus far.
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B.2. Skyrmions

Within the rapidly growing field of spintronics, one avenue of great interest involves
magnetic skyrmions [2]. These are nanoscale magnetic textures characterized by their
spiral magnetism and topological properties [227]. The interest in skyrmions has
been driven in part by the fact that they may be generated and moved through the
application of spin currents or electric fields [8] and can exist in a number of materials
and at a range of temperatures and magnetic fields. As such, the use of skyrmions in
computing applications has recently been proposed, where they may be used as logical
bits for storing and transferring information. Moreover, they show unique transport
phenomena such as the skyrmion Hall effect [228, 229].

However, due to their tiny spatial extent, imaging these magnetic structures can
prove quite challenging. Here, NV scanning magnetometry again proves valuable due
to its nanoscale spatial resolution. In the last years, following the measurements we
present here, multiple nanoscale studies of skyrmions using scanning NV magnetom-
etry have been published, characterizing fluctuations of the skyrmion boundary [22],
identifying the chirality (the rotation direction) of skyrmions [77] as well as identify-
ing the effect of disorder on skyrmions in ultrathin films [23]. Through these studies,
NV magnetometry has been established as a useful technique in this field.

B.2.1. Introduction

Magnetic skyrmions belong to the same class of magnetic defects as DWs and, there-
fore, we can use much of what we have learned about DWs in Chap. 4 also to discuss
skyrmions. Let us consider a 180◦ DW, which we wrap around such that the ends
of the wall touch. In this way, we would form a “bubble” domain with the spins
pointing in one direction inside the bubble and the opposite direction outside the
bubble. If we now shrink the bubble until only a single spin in the center points op-
posite to those on the outside, we find that we obtain the magnetic structure shown
in Fig. B.11. However, just as there are multiple types of DWs, there can be multiple
types of skyrmions. Fig. B.11a shows a Bloch skyrmion, but one can also define a Néel
skyrmion with either right-handed or left-handed chirality (see Fig. B.12b). Though
the boundary between a bubble domain and a skyrmion is a disputed topic, one com-
mon definition is that a true skyrmion will contain only a single central spin pointing
opposite to its boundary [8, 230]. An additional defining feature of a skyrmion is
that its magnetic structure can be mapped onto the entirety of a sphere, as shown in
Fig. B.11c for the Néel case.

This mapping can be understood by only considering the orientation of the magnetic
moments. If we then assign the top of the sphere to moments pointing along +z and
the bottom to moments along −z, we can match each arrow in Fig. B.11b to a point
on this sphere. In particular, we see that the magnetic moments of a skyrmion cover
the sphere exactly once. This property is also known as the topological charge or
winding number of a skyrmion. Mathematically, this is given by the following [8]:

N =
1

4π

∫
µ ·
(
∂µ

∂x
× ∂µ

∂y

)
dxdy, (B.2)



B.2. Skyrmions 127

Bloch Type Néel Type
(a) (b) (c)

Figure B.11.: Skyrmion structure. A simple schematic of the magnetic moments
that build up a (a) Bloch skyrmion and (b) Néel skyrmion. (c) Spins of a Néel
skyrmion projected onto a sphere where the top of the sphere has the magnetic mo-
ment pointing up and the bottom has the magnetic moment pointing down. In this
way, we see that we can cover the entire sphere exactly once. Adapted with permission
from [231]

where µ is the unit vector of the magnetization. Using this definition, each of the
structures in Fig. B.11 has an associated winding number |N | = 1. Most importantly,
this topological charge is quantized, and moving from one N to another requires us
to overcome a large energy barrier [232]. For this reason, the skyrmion is said to be
topologically stable. This is one of the properties that make skyrmions so attractive.

However, if the transformation of a skyrmion is so energetically expensive, one could
ask how skyrmions can form in the first place. If we look back at our description of
magnetic energy terms in Chap. 4.1.1, we realize that the highly localized twist of
the spins in a skyrmion is energetically unfavorable when considering exchange and
out-of-plane uniaxial anisotropy. Instead, in FMs, this would favor a uniform, out-
of-plane orientation. Therefore, there must be a missing element, which leads to a
rotation of the spins. Dipolar interactions will favor an antiparallel alignment of the
spins and so, will play a role here. However, most commonly, this missing element
is the Dzyaloshinskii-Moriya interaction or DMI. In particular, we will consider DMI
arising from the interface between two materials.

Interfacial DMI comes from a breaking of inversion symmetry at the interface be-
tween, for example, a magnetic layer and a heavy metal layer [233]. The resulting
interaction term can be described using the following Hamiltonian form:

HDM = −D12 · (S1 × S2) , (B.3)

where D12 is the DMI vector resulting between two spins S1 and S2, as shown in
Fig. B.12a. One way in which this interaction term appears is due to superexchange.
Superexchange is an angle-dependent exchange interaction between two magnetic
spins and mediated by a secondary atom, commonly a nearby metallic atom. This de-
scription additionally requires the metallic layer to exhibit a strong spin-orbit coupling
(SOC) and inversion symmetry to be broken, the latter of which is easily achieved at
an interface [234]. The form in Eq. B.3 then leads to a preference for the two spins
to lie perpendicular to each other through a rotation around the D12 vector [233].
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Pt 1 nmCo 0.6 nm
Ir 1 nm

(a) (b)

Figure B.12.: Achieving DMI-stabilized skyrmions. (a) Schematic showing
how the interaction between two atoms belonging to a magnetic material (gray),
and mediated by a third metallic atom (blue), leads to a DMI between the mag-
netic moments. S1 and S2 will rotate around the DMI vector to achieve an angle as
close to 90◦ as possible. Reproduced from [235] with permission from Springer 2016.
(b) The sample provided to us by the Hug group, consisting of five repetitions of
Ir1/Co0.6/Pt1, where the subscripts refer to the thickness of the layer in nm. Here,
Ir is shown in green, Co in gray, and Pt in blue. The stack is capped by two thicker
Pt layers and grown on a sapphire substrate

For sufficiently strong DMI, therefore, the rotation of spins in a skyrmion (typically
Néel skyrmions) will be energetically favorable.

B.2.2. Imaging skyrmions

For our study of skyrmions, we focus on multilayer materials; specifically, Ir/Co/Pt
stacks, where Ir and Pt are heavy metals with large SOC and Co is a common FM.
We received a multilayer stack from colleagues at EMPA in the group of Hans Hug,
consisting of five repetitions of 0.6 nm of Co, sandwiched between 1 nm of Ir and Pt
as shown in Fig. B.12b. Due to the asymmetry of the interfaces (Ir on one side, Pt
on the other), the resulting DMI at the two interfaces does not cancel out, leading to
an overall DMI term [236]. The entire sample is grown on a sapphire substrate with
thick Pt capping layers on either end of the stack.

However, without prior magnetic preparation, the sample will be in a magnetic do-
main state. Therefore, to generate the expected Néel skyrmions at room temperature,
one must first saturate the Co layers by placing the sample in an out-of-plane mag-
netic field exceeding 100 mT, and then slowly reduce the field amplitude [237]. We
achieve this by bringing the sample to within ∼5 mm of a large, 5 cm× 5 cm× 2 cm
permanent magnet and then carefully removing the magnet without changing its ori-
entation relative to the sample. All this is done with the sample mounted in our room
temperature, confocal scanning NV magnetometry setup (see Appendix A.2.2). We
then apply a bias field along the NV axis of ∼2.2 mT to perform quantitative imaging.

Following this preparation process, we perform iso-B imaging of the sample by
setting the MW driving to 8.4 MHz and 9.8 MHz from the lower NV spin resonance,
corresponding to a field of 3 mT and 3.5 mT respectively, relative to the bias field. We
then measure the corresponding NV PL while scanning the sample and upon subtract-
ing the resulting two PL images, we obtain the image seen in Fig. B.13a. Here, we see



B.2. Skyrmions 129

-20

0

20

PL
 d

iff
er

en
ce

 (k
H

z)

-2 0 2

-0.4

0

0.4

200 nm

500 nm

Stray Field, B|| (mT)

St
ra

y 
Fi

el
d,

 B
|| (

m
T)

-40

0

40

PL
 d

iff
er

en
ce

 (k
H

z)

2 µm

2 µm

(a) (b)

(c) (d)

2.46 mT2.23 mT 2.56 mT

Figure B.13.: Imaging skyrmions and bubble domains. (a) Iso-B image show-
ing the difference in PL measured after magnetizing the multilayer sample, showing a
single contour corresponding to 3 mT. (b) Full-field images taken by measuring pixel-
by-pixel ODMR curves, showing a small, magnetic structure. By applying increasing
magnetic fields (noted above each image), the shape of the structure changes. Due to
the size and field dependence, this is likely a bubble domain. (c) Iso-B image taken
after a second initialization. Here, the iso-B lines should be at 2.7 mT and 1.5 mT,
but unfortunately, we do not see clear lines but rather a continuous background with
localized disturbances. (d) Full-field image taken at the position highlighted with a
dashed box in (c).

a single field line, approximately 500 nm in diameter. Following a second preparation
round, and measuring fields of 2.75 mT and 1.57 mT, we observe considerably more
magnetic structures, as shown in Fig. B.13c.

In the next step, we perform quantitative imaging of selected regions of these iso-
B images, highlighted here by dashed boxes. The resulting stray field images were
obtained by measuring a full ODMR trace at each point and plotting the stray field
components parallel to the NV axis as shown in Fig. B.13b,d. We observe compact
magnetic structures, again approximately 500 nm in extent. Furthermore, these struc-
tures tend to be quite asymmetric, a property which has also been shown in other
NV magnetometry studies, where these distortions are attributed to disorder in the
magnetic system. The disorder may, for example, stem from thickness-dependent
variations in DMI [23] observed in our samples [237].

In Fig. B.13b, we image the same structure in three different external applied fields
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and observe a distinct change in the shape and size of the texture. Together with the
larger extent of these structures, the magnetic-field dependence hints towards a bubble
domain rather than a skyrmion. However, comparing the structure in Fig. B.13d to
other observations of skyrmions with NV magnetometry in a similar material, we
observe a generally similar stray field pattern [22]. Further measurements of other
areas in the same sample preparation iteration yield similar structures, though the
shape may change. However, based on MFM measurements [237], we expect the
skyrmion radius to be around 10-20 nm. To explain such a broadening of the skyrmion
stray field, we would require an NV center hundreds of nm from the sample surface.
While this is not impossible, based on our characterization of typical NV-to-sample
distances in Chap. 3.3.2, it is improbable. For this reason, even these structures may
be bubble domains rather than true skyrmions. While we are near the level of spatial
resolution one would need to resolve such 20 nm-radius skyrmions, these studies would
still benefit from further improvements in the NV spatial resolution.

B.2.3. Conclusions

In this section, we have explored skyrmions and how the NV center may be used
to image these nanoscale structures. We targeted Néel skyrmions, hosted in five
repetitions of an Ir/Co/Pt stack. We performed both iso-B and full stray field imaging
of skyrmion-like magnetic structures, though based on their large radius and magnetic
field behavior, we believe they might be bubble domains. However, they may still be
exhibit skyrmionic properties. Therefore, confirming the skyrmionic nature of these
structures would be an important step for the future. To do so, one can map out
the spin structure using vector magnetometry [22], or one can use the skyrmion Hall
effect. This effect leads to skyrmion motion perpendicular to an applied current [228,
229]. In particular, one could use current pulses and take NV magnetometry-based
“snapshots” following each pulse to visualize the motion of the skyrmions.

Of particular interest for future studies are skyrmions in even ultra-thin film sys-
tems. Moving to a single repeat of the Ir/Co/Pt would allow us to reach a regime of
magnetic imaging where, for example, the magnetic properties of the MFM tips could
cause changes in skyrmions while imaging. Not only this but such single repeat ma-
terials are much closer to what one would expect to use in technological applications.
For this reason, many recent investigations of skyrmions have focused on ultra-thin
film systems [23, 238]. Furthermore, using the AC magnetometry capabilities of the
NV could also be of interest. Already PL measurements have yielded information
about the dynamics of skyrmions [22]. Expanding on these measurements with more
sophisticated techniques such as those touched upon in Sec. B.1 could allow us to
learn more about these technologically relevant structures. Here, NV magnetometry
would allow us to access these skyrmion dynamics on the relevant nanoscale.
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son, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and
R. Ramesh, Room-temperature antiferromagnetic memory resistor, Nature Ma-
terials 13, 367–374 (2014).

[181] S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Bistability
in atomic-scale antiferromagnets, Science 335, 196–199 (2012).

[182] R. Cheng, M. Li, A. Sapkota, A. Rai, A. Pokhrel, T. Mewes, C. Mewes, D. Xiao,
M. De Graef, and V. Sokalski, Magnetic domain wall skyrmions, Physical Re-
view B 99, 184412 (2019).

http://dx.doi.org/10.1103/physrev.130.183
http://dx.doi.org/10.1103/physrev.130.183
http://dx.doi.org/10.1103/physrevapplied.11.034051
http://dx.doi.org/10.7567/apex.10.013002
http://dx.doi.org/10.1103/physrevlett.117.107201
http://dx.doi.org/10.1103/physrevlett.117.107201
http://dx.doi.org/10.1103/physrevb.92.020410
http://dx.doi.org/10.1063/1.4944996
http://dx.doi.org/10.1063/1.4880938
http://dx.doi.org/10.1038/s41467-021-21872-3
http://dx.doi.org/10.1063/1.4917263
http://dx.doi.org/10.1557/mrs.2018.5
http://dx.doi.org/10.1557/mrs.2018.5
http://dx.doi.org/10.1038/nmat3861
http://dx.doi.org/10.1038/nmat3861
http://dx.doi.org/10.1126/science.1214131
http://dx.doi.org/10.1103/physrevb.99.184412
http://dx.doi.org/10.1103/physrevb.99.184412


145

[183] A. Finco, A. Haykal, R. Tanos, F. Fabre, S. Chouaieb, W. Akhtar, I. Robert-
Philip, W. Legrand, F. Ajejas, K. Bouzehouane, N. Reyren, T. Devolder, J.-P.
Adam, J.-V. Kim, V. Cros, and V. Jacques, Imaging non-collinear antiferro-
magnetic textures via single spin relaxometry, Nature Communications 12, 767
(2021).

[184] J. C. Slonczewski, Theory of Bloch-line and Bloch-wall motion, Journal of Ap-
plied Physics 45, 2705 (1974).

[185] Q. Meier, M. Fechner, T. Nozaki, M. Sahashi, Z. Salman, T. Prokscha,
A. Suter, P. Schoenherr, M. Lilienblum, P. Borisov, I. Dzyaloshinskii, M. Fiebig,
H. Luetkens, and N. Spaldin, Search for the magnetic monopole at a magneto-
electric surface, Physical Review X 9, 011011 (2019).

[186] N. Jones, How to stop data centres from gobbling up the world’s electricity
(2018).

[187] E. H. Chen, H. A. Clevenson, K. A. Johnson, L. M. Pham, D. R. Englund,
P. R. Hemmer, and D. A. Braje, High-sensitivity spin-based electrometry with
an ensemble of nitrogen-vacancy centers in diamond, Physical Review A 95,
053417 (2017).

[188] D. R. Glenn, R. R. Fu, P. Kehayias, D. Le Sage, E. A. Lima, B. P. Weiss,
and R. L. Walsworth, Micrometer-scale magnetic imaging of geological samples
using a quantum diamond microscope, Geochemistry, Geophysics, Geosystems
18, 3254 (2017).

[189] J. B. McKinnon, D. Melville, and E. W. Lee, The antiferromagnetic-
ferromagnetic transition in iron-rhodium alloys, Journal of Physics C: Solid
State Physics 3, S46 (1970).

[190] S. O. Mariager, L. L. Guyader, M. Buzzi, G. Ingold, and C. Quitmann, Imag-
ing the antiferromagnetic to ferromagnetic first order phase transition of FeRh,
arXiv:1301.4164 [cond-mat] (2013).

[191] L. J. Swartzendruber, The Fe-Rh (iron-rhodium) system, Bulletin of Alloy Phase
Diagrams 5, 456 (1984).

[192] M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory
for anomalous Hall effect in antiferromagnets, Physical Review B 95, 094406
(2017).

[193] T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koretsune, O. M. J. van ’t Erve,
Y. P. Kabanov, D. Rees, Y. Li, M.-T. Suzuki, S. Patankar, M. Ikhlas, C. L.
Chien, R. Arita, R. D. Shull, J. Orenstein, and S. Nakatsuji, Large magneto-
optical Kerr effect and imaging of magnetic octupole domains in an antiferro-
magnetic metal, Nature Photonics 12, 73–78 (2018).

[194] G. Nava Antonio, I. Bertelli, B. G. Simon, R. Medapalli, D. Afanasiev, and
T. van der Sar, Magnetic imaging and statistical analysis of the metamagnetic
phase transition of FeRh with electron spins in diamond, Journal of Applied
Physics 129, 223904 (2021).

http://dx.doi.org/10.1038/s41467-021-20995-x
http://dx.doi.org/10.1063/1.1663654
http://dx.doi.org/10.1063/1.1663654
http://dx.doi.org/10.1103/physrevx.9.011011
http://dx.doi.org/10.1103/physreva.95.053417
http://dx.doi.org/10.1103/physreva.95.053417
http://dx.doi.org/10.1002/2017gc006946
http://dx.doi.org/10.1002/2017gc006946
http://dx.doi.org/10.1088/0022-3719/3/1s/306
http://dx.doi.org/10.1088/0022-3719/3/1s/306
https://arxiv.org/abs/1301.4164
http://dx.doi.org/10.1007/bf02872896
http://dx.doi.org/10.1007/bf02872896
http://dx.doi.org/10.1103/physrevb.95.094406
http://dx.doi.org/10.1038/s41566-017-0086-z
http://dx.doi.org/10.1063/5.0051791
http://dx.doi.org/10.1063/5.0051791


146 Bibliography

[195] Y. Wang, M. M. Decker, T. N. G. Meier, X. Chen, C. Song, T. Grünbaum,
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