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Band bending is a central concept in solid-state physics and is 
the result of local variations in charge distribution, especially 
near semiconductor interfaces and surfaces1–3. Its precise 

determination is vital in a variety of contexts, including the devel-
opment of optimized field-effect transistors (FETs)4–6 and the engi-
neering of qubit devices with enhanced stability and coherence7–9. 
However, existing measurement methods are surface sensitive1,10–12 
and are unable to probe band bending at a depth from the surface. 
Measuring the precise spatial extent of band bending, which is 
linked to important quantities in FETs, such as the size of the deple-
tion region, is therefore challenging since it depends not only on 
surface charge traps but also on bulk crystal defects and dopants.

Semiconductor-based quantum sensing technologies that can 
probe the behaviour of spins and charges have given rise to new 
opportunities in a range of areas across physics, materials science 
and biology13,14. At present, most applications employ sensors that 
are external to the target sample15,16. For instance, quantum sensors 
based on defects in diamond are routinely used to detect static or 
fluctuating magnetic signals from ferromagnets17,18 and from mov-
ing charges in conductive materials19,20. However, in situ quantum 
sensors are also a valuable tool to study the sample itself and could 
enable three-dimensional (3D) mapping of internal quantities such 
as the magnetic field, electric field or temperature14. For semiconduc-
tor materials, these capabilities could, in particular, be used to gain 
information on the interaction between surface and bulk defects.

In this Article, we demonstrate a method based on in situ quan-
tum sensors that can be used to spatially map the electric field near 
a semiconductor surface; this electric field () is related to band 
bending via the standard relation

 = ∇
q

r E r( ) 1 ( ) (1)V

where E r( )V  is the energy of electrons at the valence band maxi-
mum relative to the Fermi level (q is the electron charge). We use, 
specifically, the nitrogen–vacancy (NV) centre in diamond21,22, a 
well-established atomic-sized quantum sensing system, which was 
recently shown to be a sensitive electrometer22,23. NV centres can 
be positioned with a resolution of less than 1 nm in one dimension 
and 20 nm in the other two24–26, which makes them ideal candidates 
for mapping built-in electric fields in three dimensions. As shown 
recently, it is possible to measure the electric field inside a diamond 
diode using single NV centres27. In this Article, we engineer arrays 
of NV centres near the diamond surface to map the electric field 
associated with surface band bending. This concept can, in prin-
ciple, be applied to other semiconductor systems that host quan-
tum defects exhibiting the Stark effect, with promising candidates 
recently found in silicon28 and silicon carbide29,30.

Electric field near the diamond surface
The principle of the experiment is depicted in Fig. 1a. At the dia-
mond surface, the bands bend to neutralize any surface charge due 
to ionized adsorbates or surface defect states, resulting in an electric 
field perpendicular to the surface with a magnitude E z( )z  =​ 

q
E
z

1 d
d

V . To 
probe this electric field, nitrogen ions were implanted to form NV 
centres31, following a spatial distribution that can be approximated 
as uniform over the depth range d =​ 0–2 d , where d  is the (tun-
able) mean implantation depth32. To estimate Ez, we first consider 
the case of commonly used oxygen-terminated diamond. It was 
recently found33 that such samples typically host surface defects that 
introduce an acceptor level into the bandgap, with densities (Dsd) as 
high as 1 nm−2. An example of a calculated electric field profile for 
this scenario (with parameters representative of our implanted sam-
ples) is plotted in Fig. 1b, predicting a maximum value at the surface of 
E ≈ .1 6z  MV cm−1 and a characteristic decay length of approximately 
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15 nm. We note that Ez is positive (that is, the electric field points 
towards the surface), which corresponds to the bands bending 
upwards (inset in Fig. 1b), as expected from a positive space charge 
density near the surface (see Fig. 1a). As a consequence, only NVs 
deeper than a certain threshold (here approximately 7 nm for ⟨ ⟩d  =​ 
10 nm) exist in the negatively charged state (NV−) usable for sensing 
(Fig. 1b). The expectation value for an electric field measurement 
(that is, E z( )z  averaged over the NV− distribution) is E⟨ ⟩ ≈ 600z  kV 
cm−1, well in the range of sensitivity of the NV centre22. We note that 
the presence of the NV centres (and related implantation defects) 
affects the surface band bending, for instance a lower NV density 
would increase the spatial extent of the band bending. For truly 
non-invasive measurements of band bending, the NV density could 
be reduced to the single-site limit27, although this approach is not 
compatible with real-space imaging.

We measured this electric field by optically detected magnetic 
resonance (ODMR) spectroscopy on the NV centres, using the 
experimental set-up depicted in Fig. 1c. An example ODMR spec-
trum obtained from a near-surface NV ensemble (⟨ ⟩d  ≈​ 10 nm) 
is shown in Fig. 1d. A small magnetic field B0 (of magnitude B0 ~ 
6 mT) was applied to split the eight otherwise degenerate electron 
spin resonances corresponding to the four possible NV defect ori-
entations relative to the diamond crystal (Fig. 1e), and carefully 
oriented so as to maximize the sensitivity to electric fields22 (see 
Supplementary Methods 1). The spectrum was fitted to extract 
the eight resonance frequencies, which are then compared to the 
standard NV spin Hamiltonian including the Zeeman and Stark 
effects22,34, allowing us to infer the full vector magnetic and electric 

fields simultaneously (except for an overall sign ambiguity, that is   
and −  yield the same ODMR spectrum). Importantly, we found 
that the measured frequencies could be satisfactorily fitted only 
when accounting for the Stark effect, providing clear evidence of 
the presence of a non-vanishing electric field (see fit error analysis 
in Supplementary Methods 1). For the data shown in Fig. 1d, we 
obtain E⟨ ⟩ = ±372 5z  kV cm−1 (where we fixed E E= = 0x y  to reduce 
the uncertainty), reasonably close to our estimate.

To illustrate the 3D mapping capability, we formed NV centres 
at different depths in distinct diamonds and measured the electric 
field as explained above. We found that E⟨ ⟩z  decreased from 432 
±​ 10 kV cm−1 at ⟨ ⟩ ≈d 7 nm to 291 ±​ 5 kV cm−1 at ⟨ ⟩ ≈d 35 nm  
(Fig. 2a), a trend relatively well captured by our model for Dsd in 
the range 0.06–1 nm−2. Possible sources of discrepancy include: the 
influence of surface roughness, the presence of other types of sur-
face or bulk defects than those considered in the model, and a depth 
profile different from that assumed.

Effect of the surface termination
We next studied the effect of surface termination on the electric field 
by forming a hydrogen-terminated (H) channel on an otherwise 
oxygen-terminated (O) diamond. An example of the resulting E⟨ ⟩z  
map is shown in Fig. 2b, revealing an increase from 372 ±​ 5 kV cm−1 
in the O region to 410 ±​ 5 kV cm−1 in the H region. This is expected 
because H-terminated diamond is known to have a lower elec-
tron affinity, leading to efficient charge transfer from the diamond 
material onto acceptor species adsorbed on the surface in ambient 
air35,36. This leads to increased band bending and hence the increased  
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Fig. 1 | Mapping band bending with in situ quantum sensors. a, Principle of the experiment, where NV sensors (green dots) probe the electric 
field associated with surface band bending, here visualized as a distribution of space charge density. b, Calculated electric field profile for a typical 
(001)-oriented, O-terminated diamond surface, modelled as a layer of surface acceptor defects with a density of states centred at 1.5 eV above the 
valence band maximum33 and a surface density Dsd =​ 0.1 nm−2 (see details in Supplementary Methods 2). The implanted substitutional nitrogen and 
NV defects are taken to be uniformly distributed over the range d =​ 0–20 nm (that is, ⟨ ⟩ =d 10 nm), with a total areal density of 0.1 nitrogen nm−2. The 
green line is the NV− population at equilibrium, and the green (red) shading represents the region where the NV− (NV0) charge state is dominant. Inset: 
corresponding band diagram near the surface, where EC is the conduction band minimum, EV the valence band maximum, EF the Fermi level, and NV− 
represents the charge transition level of the NV centre (that is, NV− is the stable charge state when this level is below EF). c, Diagram of the experimental 
set-up showing the diamond sample mounted on a glass slide patterned with gold to allow microwave (MW) injection and interfacing with electrical 
devices, illumination with a green laser and imaging of the NV red photoluminescence (PL) with a camera. d, Example ODMR spectrum recorded for an 
ensemble of near-surface NV centres in an O-terminated diamond under a magnetic field BB0 chosen to be perpendicular (within less than 3°) to a given 
NV family (here NVA). Each resonance is labelled according to the corresponding NV orientation, defined in e. The solid line is a multiple-Lorentzian fit. e, 
The four possible tetrahedral orientations of the NV bond with respect to the sample reference frame xyz.
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electric field, beyond the threshold required to form a conductive two-
dimensional hole gas (2DHG) near the surface37, which is imaged in 
an electrical device described below. By fitting our model to the mea-
sured increase in E⟨ ⟩z  caused by the H termination (inset in Fig. 2a), 
one can infer the density of charged surface adsorbates (acceptors), 
Qsa ≈​ 0.07 nm−2, in rough agreement with the value derived from sur-
face resistivity measurements (see Supplementary Methods 2). We 
stress that the two types of acceptor states introduced in the model 
(surface defects and surface adsorbates) are not equivalent because of 
their different energy levels—in particular, only the latter can give rise 
to a 2DHG. We also note that a resonance energy transfer from the 
NV centres to the conducting 2DHG may be present for the lowest 
implantation depths (⟨ ⟩d  ≲​ 10 nm) effectively increasing the mean 
depth of the NV centres contributing to the signal, and as such it may 
provide an explanation for the fact that the measured increase in elec-
tric field by the H termination is slightly smaller than expected.

A consequence of the increased band bending is a decrease in the 
number of NV− centres, which results in a decrease in the detected 

photoluminescence, since the NVs closest to the surface become 
charge neutral38. This is illustrated in Fig. 2c, which shows the pho-
toluminescence reduction as a function of ⟨ ⟩d , with an example 
photoluminescence image of a H channel shown in the inset. This 
motivates the need to minimize band bending via surface engineer-
ing for quantum sensing applications, where the NV− to surface 
distance is critical15. As a step towards this goal, we applied vari-
ous surface treatments in an attempt to reduce the density of sur-
face defects. Starting from a diamond initially O-terminated with 
an oxygen plasma as previously ( E⟨ ⟩ ≈ ±414 10z  kV cm−1), we were 
able to reduce the electric field to approximately 362 ±​ 6 kV cm−1 
through a combination of wet and dry treatments, which corre-
sponds to a reduction of Dsd by nearly a factor of three according 
to our theory (Fig. 2d), and a reduction in the mean NV− depth 
from approximately 23 nm to approximately 19 nm. These trends 
are broadly consistent with direct measurements of Dsd reported 
recently33. We note that another avenue to reduce Dsd is by etch-
ing the diamond, as shown in Supplementary Data 3. These results 
illustrate the value of in situ electric field measurements, which may 
provide new insights into semiconductor surfaces and the effect of 
surface processing.

Electric field in an operating device
We now demonstrate mapping of the electric field in an electrical 
device consisting of a driven conductive 2DHG channel formed 
with an H-terminated diamond surface. Two-terminal devices were 
fabricated where TiC/Pt/Au contacts (source and drain) are con-
nected by an H-terminated channel 100 μ​m in length and 20 μ​m in 
width (Fig. 3a,b). Unexpectedly, upon applying a voltage VSD =​ +​
100 V an increase in E⟨ ⟩z  was observed (by up to a factor of two) in 
a well-defined region of the channel extending over approximately 
20 μ​m from the drain (Fig. 3c). Upon inversion of the voltage (VSD =​ 
−​100 V), the feature moved to the other contact (Fig. 3d) to remain 
at the hole drain. In addition, we observed an influence of the lateral 
position of the laser illumination spot used for the measurements, 
which had a 1/e2 diameter of approximately 120 μ​m. In Fig. 3c,d, the 
laser spot was centred with respect to the device, as shown by the 
photoluminescence profile in Fig. 3e. When the centre of the laser 
spot was moved by 50 μ​m towards the right-hand contact (Fig. 3f–h, 
preserving sufficient illumination to allow ODMR measurement of 
the whole device), the region of increased electric field appeared 
to extend further away (approximately 40 μ​m) from the left-hand 
contact under positive voltage (Fig. 3f), and disappeared completely 
under negative voltage (Fig. 3g).

These observations are qualitatively interpreted as a combina-
tion of two competing effects, illustrated in Fig. 3i: the injection of 
electrons from the drain contact into charge traps in the diamond 
bulk, increasing the electric field seen by the NV centres, and laser-
induced ionization of these charge traps, allowing the electrons to 
escape via the conduction band and returning the electric field to 
its zero-voltage value. These charge traps are probably the substi-
tutional nitrogen impurities that are normally ionized by the band 
bending and become neutral near the drain contact when the volt-
age is applied. This interpretation is corroborated by the nega-
tive capacitance measured for these devices (see Supplementary 
Data 1). Line cuts taken at different voltages (Fig. 3j) reveal that 
the electric field decreases steadily from the contact (with a maxi-
mum value that increases monotonically with voltage, see Fig. 3k) 
before dropping off abruptly at a specific position independent of 
voltage (but dependent on laser position), even though the laser 
intensity increases approximately linearly with position (Fig. 3h). 
This suggests the existence of a strong nonlinearity in the ionization 
process as a function of laser intensity, possibly due to a change in 
the ionization energy of the charge traps caused by ionization of a 
second species of defects39. These experiments illustrate how previ-
ously unobservable lateral changes in electric field, resulting from 
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Fig. 2 | Electric field versus implantation depth and surface termination. 
a, Electric field, E⟨ ⟩z , as a function the mean implantation depth, ⟨ ⟩d , 
for O-terminated diamond. Solid lines: result of the band bending model 
described in Fig. 1b with Dsd =​ 0.06 nm−2 (lower curve) and Dsd =​ 1 nm−2 
(upper curve), with the shading representing intermediate values. Inset: 
difference E E E⟨ ⟩ ⟨ ⟩ ⟨ ⟩Δ = −z z zH O

 between the electric field measured for 
H- and O-terminated diamond. Solid lines: model using a fixed density 
of charged surface adsorbates, Qsa =​ 0.07 nm−2, and with Dsd =​ 0.08 
nm−2 (upper curve) and Dsd =​ 1 nm−2 (lower curve). We note that the 
calculated E⟨ ⟩z  takes into account the NV−/NV0 threshold distance, whose 
dependence on ⟨ ⟩d  and Dsd is plotted in Supplementary Fig. 15. b, E⟨ ⟩z  map 
of an H-terminated channel on an O-terminated background (⟨ ⟩ ≈d 10 
nm). c, Photoluminescence (PL) reduction of the H region relative to the O 
region, as a function of ⟨ ⟩d . Solid lines: model using the same parameters 
as in inset of a. Inset: photoluminescence image of an H-terminated 
channel (⟨ ⟩ ≈d 7 nm). d, E⟨ ⟩z  versus Dsd calculated for ⟨ ⟩ =d 17 nm. The 
dashed lines and data points indicate the measured E⟨ ⟩z  values for a 
comparable sample following various surface treatments, performed in 
the order: oxygen plasma (as used to form the O termination in a–c), acid 
cleaning, oxygen burning and piranha treatment (see details in Methods). 
Vertical error bars: ±​σ, where σ is the standard deviation.
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a complex contact/diamond junction, can be directly imaged and 
correlated with the electrical properties of the device (here a nega-
tive capacitance).

Conclusions
We have shown that NV centres in diamond can be used as in 
situ probes of the electric field associated with surface band 
bending. Furthermore, we applied this method to an electrical 
device based on the conductive H-terminated diamond surface, 
revealing an intriguing interplay between charge injection and 
photo-ionization effects.

Our method could be used to address a variety of questions in 
diamond electronics. It could, for example, be employed to exam-
ine hole transport behaviour in boron delta-doped diamond40,41, 
which is of interest in the future development of high-power FETs. 
Probing the band bending in the vicinity of the delta layer could 
provide insight into why the high hole mobilities predicted for 
these structures (which also provide high carrier density) have not 
been achieved so far. Furthermore, our technique could be used to 
investigate H-terminated diamond FETs, which are also of potential 
value in the development of high-power and high-frequency elec-
tronics42,43. With further improvements in the spatial resolution of 
the technique, it may for instance aid in understanding the origin of 
the suppression of weak anti-localization observed at low tempera-
ture44,45, which is thought to be related to the spatial modulations of 
the confining potential (and thus band bending). More generally, 
systematic studies of the spatial distribution of band bending near 
the diamond surface could provide valuable knowledge on the sur-
face and sub-surface defects present as a result of surface processing 

and device fabrication, which may in turn guide the optimization of 
the hole mobility and hole carrier density in diamond-based FETs, 
which are the two key parameters governing device performance.

Surface properties are also crucial to semiconductor-based quan-
tum technologies. They govern the charge stability of spin-defect 
qubits and may limit their quantum coherence7–9. Optimization of 
these metrics could certainly be facilitated by our technique. This 
includes the NV centre in diamond, whose charge state is intrinsi-
cally related to the surface band bending33 and whose spin coher-
ence is believed to be limited by surface defects46–48. It also includes 
other defects, such as the neutral silicon–vacancy defect in diamond, 
which require careful band engineering49. Finally, another exciting 
prospect is to combine electric field mapping with other quantum 
sensing modalities such as current flow mapping20,50 and noise spec-
troscopy16,19. This would allow charge transport and band bending 
to be simultaneously monitored in all-diamond FET devices or in 
hybrid structures based on 2D electronic systems such as graphene.

Methods
Diamond samples. The NV-diamond samples used in these experiments were 
made from 4 mm ×​ 4 mm ×​ 50 μ​m electronic-grade ([N] <​ 1 ppb) single-crystal 
diamond plates with {110} edges and a (001) top facet, purchased from Delaware 
Diamond Knives, subsequently laser cut into smaller 2 mm ×​ 2 mm ×​ 50 μ​m 
plates and acid cleaned (15 min in a boiling mixture of sulphuric acid and sodium 
nitrate). Each plate was then implanted with 15N+ ions (InnovIon) at a given 
energy (ranging from 4 to 20 keV), a dose of 1013 ions cm−2, and with a tilt angle 
of 7°. Parameters for each sample are given in Supplementary Table 1. Following 
implantation, the diamonds were annealed in a vacuum of approximately 10−5 torr 
to form the NV centres, using the following sequence31: 6 h at 400 °C, 2 h ramp 
to 800 °C, 6 h at 800 °C, 2 h ramp to 1,100 °C, 2 h at 1,100 °C, 2 h ramp to room 
temperature. To remove the graphitic layer formed during the annealing at the 
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elevated temperatures, the samples were acid cleaned (as before) before any further 
surface treatment or fabrication step.

Surface treatments. To form the H-terminated channels measured in Figs. 2b, c  
and 3, the diamond sample was first subject to a soft hydrogen plasma  
(7 min at 400 W, 10 torr) optimized to make the diamond surface conductive via 
hydrogenation while preserving the integrity of the NV centres38. The channels 
were then protected by a photoresist mask and the sample subject to a soft oxygen 
plasma (5 min at 50 W, 14 MHz radiofrequency with a 0.7 torr O2/Ar pressure) 
optimized to render the surface non-conductive via oxygen termination, while 
minimizing the amount of etching of the diamond. No topography step was 
observed in atomic force microscopy (AFM), indicating an etching by the oxygen 
plasma below our AFM resolution (that is, <​0.5 nm).

In Fig. 2d, the effect of other variants of oxygen termination were investigated. 
Namely, starting with a diamond (sample #2) O-terminated via an oxygen plasma 
as described previously (labelled as ‘Plasma’ in Fig. 2d), we applied the following 
steps: acid cleaning (15 min in a boiling mixture of sulphuric acid and sodium 
nitrate); annealing at 500 °C in an oxygen-rich atmosphere similar to the process 
used in ref. 51; cleaning in a piranha solution (mixture of 4 ml of sulphuric acid and 
2 ml of hydrogen peroxide heated to 90 °C) for 10 min. The resulting surfaces are 
labelled in Fig. 2d as ‘Acid’, ‘O2 burn’ and ‘Piranha’, respectively.

Device fabrication. The devices such as the one imaged in Fig. 3 were fabricated via 
the following steps (see a schematic in Supplementary Fig. 1). A stack of Ti/Pt/Au 
(thickness 10/10/70 nm) was evaporated onto the diamond (diamond #2) masked 
by a photoresist pattern. After lift-off of the photoresist leaving Ti/Pt/Au contacts, 
the sample was annealed at 600 °C for 20 min in hydrogen gas (10 torr). At such 
temperature, Ti atoms are able to diffuse into the diamond, and conversely carbon 
atoms are able to diffuse into the Ti layer, thus forming a TiC layer extending about 
15 nm into the diamond. The thick Au layer serves as the primary contact material 
for electrical interfacing, while the Pt layer is introduced to act as a barrier preventing 
diffusion of Au and Ti atoms across the Ti/Au interface. The interest of such a 
process is to form a clean quasi-one-dimensional interface with the H-terminated 
channels subsequently fabricated. Together with the high expected work function of 
TiC (approximately 5 eV; ref. 52), this results in more consistent formation of Ohmic 
contacts than with conventional 2D interfaces of H-terminated diamond with Au 
(ref. 53) or Ti (ref. 54), for instance. After the TiC/Pt/Au contacts were formed, the 
H-terminated channels were made via the process outlined above (that is hydrogen 
plasma to H-terminate the bare diamond surface, photo-lithography to protect the 
channels, and oxygen plasma to O-terminate the unprotected diamond surface). 
Finally, large Cr/Au (10/70 nm) contact pads partially overlapped with the TiC/Pt/
Au contacts were evaporated onto the device for physical wire bonding.

Imaging set-up. The NV imaging set-up is a custom-built wide-field fluorescence 
microscope similar to that used in refs 20,55, with photographs shown in 
Supplementary Fig. 2. The diamonds were glued on a glass cover slip patterned 
with a microwave waveguide, connected to a printed circuit board (PCB) with 
silver epoxy. The diamond devices were electrically connected to the cover slip 
via wire bonding, and to the PCB board with silver epoxy. In Fig. 3, the voltage 
through the device under study was applied using a source-meter unit (Keithley 
SMU 2450) operated in constant voltage mode. All measurements were performed 
in an ambient environment at room temperature, under a bias magnetic field B0 
generated using a permanent magnet.

Optical excitation from a 532 nm Verdi laser was gated using an acousto-
optic modulator (AA Opto-Electronic MQ180-A0,25-VIS), beam expanded 
(5×​) and focused using a wide-field lens (f =​ 200 mm) to the back aperture 
of an oil immersion objective lens (Nikon CFI S Fluor 40×​, NA =​ 1.3). The 
photoluminescence from the NV centres is separated from the excitation light 
with a dichroic mirror and filtered using a bandpass filter before being imaged 
using a tube lens (f =​ 300 mm) onto a sCMOS camera (Andor Zyla 5.5-W USB3). 
Microwave excitation was provided by a signal generator (Rohde & Schwarz 
SMBV100A) gated using the built-in IQ modulation and amplified (Mini-
Circuits ZHL-16W-43+​) before being sent to the PCB. A pulse pattern generator 
(SpinCore PulseBlasterESR-PRO 500 MHz) was used to gate the excitation laser 
and microwaves and to synchronize the image acquisition. For all measurements 
reported in the main text, the total continuous wave (CW) laser power at the 
sample was 300 mW (the effect of changing the laser power is investigated in 
Supplementary Data 2), which corresponds to a maximum power density of about 
5 kW cm−2 given the approximately 120 μ​m 1/e2 beam diameter. The ODMR 
spectra of the NV layer were obtained by sweeping the microwave frequency 
while repeating the following sequence: 10 μ​s laser pulse, 1 μ​s wait time, 300 ns 
microwave pulse, with total acquisition times of several hours typically.

Data availability
The data underlying the present work are available upon request from the 
corresponding authors.
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