
PHYSICAL REVIEW B 94, 245406 (2016)

Classical Stückelberg interferometry of a nanomechanical two-mode system
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Stückelberg interferometry is a phenomenon that has been well established for quantum-mechanical two-level
systems. Here, we present classical two-mode interference of a nanomechanical two-mode system, realizing a
classical analog of Stückelberg interferometry. Our experiment relies on the coherent energy exchange between
two strongly coupled, high-quality factor nanomechanical resonator modes. Furthermore, we discuss an exact
theoretical solution for the double-passage Stückelberg problem by expanding the established finite-time Landau-
Zener single-passage solution. For the parameter regime explored in the experiment, we find that the Stückelberg
return probability in the classical version of the problem formally coincides with the quantum case, which reveals
the analogy of the return probabilities in the quantum-mechanical and the classical version of the problem. This
result qualifies classical two-mode systems at large to simulate quantum-mechanical interferometry.
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I. INTRODUCTION

In 1932, Stückelberg [1] investigated the dynamics of
a quantum two-level system undergoing a double passage
through an avoided crossing. For a given energy splitting, an
interference pattern arises that depends on the transit time and
the rate at which the energy of the system is changed. This
discovery led to the advent of Stückelberg interferometry,
which allows for characterizing the parameters of a two-level
system or for achieving quantum control over the system [2].
Stückelberg interferometry has been studied intensively in a
variety of quantum systems, e.g., Rydberg atoms [3], ultracold
atoms and molecules [4], dopants [5], nanomagnets [6], quan-
tum dots [7–10], and superconducting qubits [11–15], as well
as theoretically in a semiclassical optomechanical approach
[16]. Here, we study experimentally a classical analog of
Stückelberg interferometry, i.e., the coherent energy exchange
of two strongly coupled classical high-Q nanomechanical
resonator modes. We employ the analytical solution [17] of the
Landau-Zener problem describing the single passage through
the avoided crossing [1,18–20] to analyze the Stückelberg
problem, demonstrating that the classical coherent exchange
of energy follows the same dynamics as the coherent tunneling
of a quantum-mechanical two-level system.

The past few years have seen the advent of highly versatile
nanomechanical systems based on strongly coupled, high-
quality factor modes [21–23]. The strong coupling generates
a pronounced avoided crossing of the classical mechanical
modes realizing a nanomechanical two-mode system that can
be employed as a testbed for the dynamics at energy level
crossings [21–24].

In the case of a quantum two-level system, e.g., spin-1/2, a
single passage through the avoided crossing results in Landau-
Zener dynamics originating from the tunneling of a quantum-
mechanical excitation between two quantum states [18]. In
the classical case, the exchange of excitation energy between
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two strongly coupled mechanical modes represents a well-
established analogy to this process [25,26].

During a double passage through the avoided crossing
within the coherence time of the system, phase is accumu-
lated, leading to self-interference. This interference results in
oscillations of the return probability, in a quantum-mechanical
context well-known as Stückelberg oscillations [1], which have
previously been studied in many quantum systems [7–9,15,27].
In the classical case, the return probability is analogous to
the probability that the excitation, namely oscillation energy,
returns coherently to the same mechanical mode.

II. NANOMECHANICAL TWO-MODE SYSTEM

We explore experimentally a purely classical mechanical
two-mode system, consisting of two orthogonally polarized
fundamental flexural modes of a nanomechanical resonator
[Fig. 1(a)]. The flexural modes belong to the in-plane and
out-of-plane vibration of a 50-μm-long, 270-nm-wide, and
100-nm-thick doubly clamped, high-stress silicon nitride (SiN)
string resonator. Dielectric drive and control via electric
gradient fields [28] as well as the microwave cavity en-
hanced heterodyne dielectric detection scheme [22,28,29]
are provided via two adjacent gold electrodes, as detailed
in Appendix A. Applying a dc voltage to the electrodes
induces an electric polarization in the silicon nitride string,
which, in turn, couples to the electric field gradient, resulting
in a quadratic resonance frequency shift with the applied
voltage [28]. The electric field gradients along the in- and
out-of-plane direction have opposing signs, and hence they
have an inverse tuning behavior. Whereas the out-of-plane
oscillation shifts to higher mechanical resonant frequencies,
the in-plane oscillation decreases in frequency with the applied
dc voltage [28]. Hence, the inherent frequency offset of in-
plane and out-of-plane oscillation, induced by the rectangular
cross section of the string, can be compensated. Furthermore,
the applied inhomogeneous electric field induces a strong
coupling between the two modes [24]. Near resonance, they
hybridize into normal modes [22], diagonally polarized along
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FIG. 1. Nanomechanical resonator and measurement scheme.
(a) False color scanning electron micrograph of the 50-μm-long,
270-nm-wide, and 100-nm-thick silicon nitride string (green) flanked
by two adjacent gold electrodes in the oblique view. Arrows indicate
the flexural mode polarizations out-of-plane (Out) and in-plane (In).
The normalized amplitude of the respective mode is denoted c1(t)
for out-of-plane polarization and c2(t) for in-plane polarization,
as explained in the text. (b) Avoided mode crossing of sample A
exhibiting a frequency splitting of �/2π = 22.6 kHz at the avoided
crossing voltage Ua = Ui + 1.47 V = 9.37 V. The lower (out-of-
plane) mode is excited at frequency ω1(Ui)/2π = 7.560 MHz defined
by the initialization voltage Ui. An additional sweep voltage applies
a triangular voltage ramp rising to a maximum of Up and back to
the readout voltage Uf = Ui + 0.2 V = 8.1 V, thus transgressing the
avoided crossing twice. The sweep voltage also decouples the mode
from the fixed-frequency drive, consequently inducing an exponential
decay of the amplitude. (c) Time evolution of the sweep voltage
beginning at t = 0, increasing to Up and returning to Uf after interval
ϑ . The mechanical signal power (green dashed line) is measured
after a delay ε, and a fit (black dotted line) is used to extract its
magnitude at time t = ϑ . The measured return signal is normalized
to the mechanical signal power at t = 0.

±45◦. A pronounced avoided crossing with level splitting
�/2π reflects the strong mutual coupling of the flexural
mechanical modes as depicted in Fig. 1(b).

To study Stückelberg interferometry, we perform a double
passage through the avoided crossing using a fast triangular
voltage ramp. We initialize the system at voltage Ui in the lower
branch of the avoided crossing via a resonant sinusoidal drive
tone at the resonance frequency ω1(Ui)/2π of the out-of-plane
oscillation [cf. Fig. 1(b)]. As illustrated in Fig. 1(c), at time
t = 0, a fast triangular voltage ramp with voltage sweep rate β

up to the peak voltage Up, and back to the readout voltage Uf ,
is applied to tune the system through the avoided crossing.
Note that the ramp detunes the system from the resonant
drive, and the mechanical energy starts to decay exponentially.
At Uf , we measure the exponential decay of the mechanical
oscillation in the lower branch after time t = ϑ + ε, where
ϑ is the duration of the ramp, i.e., the propagation time, and
ε serves as a temporal offset to avoid transient effects. The
signal is extrapolated and evaluated at time ϑ by an exponential
fit and normalized to the signal intensity at the initialization
point (t = 0), consequently yielding a normalized squared
return amplitude. The return signal has to be measured
at the readout voltage Uf at ω1(Uf)/2π since the fixed rf

drive tone at ω1(Ui)/2π cannot be turned off during the
measurement. The presented voltage sequence is analogous
to the one employed in Ref. [27], and it differs from the
frequently performed periodic driving scheme in Stückelberg
interferometry experiments [2].

III. FINITE-TIME STÜCKELBERG THEORY

We follow the work of Novotny [30] to derive the classical
flow (Hamiltonian flow [31]) describing the dynamics of the
system in the vicinity of the avoided crossing. We start with
Newton’s equation of motion for the displacement,

mü1(t) = −k1u1(t) − κ[u1(t) − u2(t)],

mü2(t) = −k2u2(t) + κ[u1(t) − u2(t)],
(1)

with uj (t) (j = 1,2) describing, respectively, the out-of-plane
(j = 1) and in-plane (j = 2) displacement of the center of
mass of the oscillator, kj is the spring constant of mode j ,
κ is the coupling constant between the two modes, and m

is the effective mass of the oscillator. We look for solutions
of the form uj (t) = cj (t) exp(iω̃1t), with cj (t) a normalized
amplitude, i.e., |c1(t)|2 + |c2(t)|2 = 1, and we have defined
ω̃j = √

(kj + κ)/m as the dressed resonance frequency of
mode j in units of 2π . In the experimentally relevant limit
where κ/k1 � 1, the amplitudes cj (t) are slowly varying in
time as compared to the oscillatory function exp(iω̃1t). As
a consequence, it is possible to neglect the second derivates
c̈j (t) in the equations describing the motion of cj (t), which
are obtained by replacing the ansatz for uj (t) in Eq. (1). Thus,
the system of coupled differential equations describing the
evolution of the normalized amplitudes is

iċ1 = κ

2ω̃1m
c2,

(2)

iċ2 = κ

2ω̃1m
c1 − ω̃2

2 − ω̃2
1

2ω̃1
c2.

In the vicinity of the avoided crossing, where the modes can ex-
change energy, we have ω̃2 � ω̃1 such that (ω̃2

2 − ω̃2
1)/2ω̃1 �

ω̃2 − ω̃1. If we further assume ω̃2 − ω̃1 � αt , with α the
frequency sweep rate, and we define � = |λ| = κ/(mω̃1),
Eq. (2) reduces to

iċ(t) = H (t)c(t), (3)

with c(t) = [c1(t) c2(t)]T and

H (t) =
(

0 λ
2

λ
2 −αt

)
. (4)

Since we are interested in multiple passages through the
avoided crossing, we look for the classical flow ϕ(t,ti) defining
the state of the system at time t given that we know its
state at some prior time ti, c(t) = ϕ(t,ti)c(ti). Typically, c(ti)
is the initial condition of the system. One can show that
the classical flow obeys the same differential equation as
c(t), iϕ̇(t,ti) = H (t)ϕ(t,ti). By applying the time-dependent
unitary transformation S(t) = exp(iαt2/4)12 to the classical
flow, i.e., ϕ(t,ti) = S(t)ϕ̃(t,ti)S†(ti), we find that ϕ̃(t,ti) obeys
the differential equation,

i ˙̃ϕ(t,ti) = (S†(t)H (t)S(t) − iS†(t)Ṡ(t))ϕ̃(t,ti)

= H̃ (t)ϕ̃(t,ti), (5)
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FIG. 2. Classical Stückelberg oscillations. Normalized squared return amplitude (left axis, blue dots) and theoretically calculated return
probability (right axis, red line) vs inverse sweep rate for fixed peak voltages of Up = 2.5 V (a), Up = 3.5 V (b), Up = 4.5 V (c), and
Up = 5.0 V (d) measured on sample A.

with

H̃ (t) =
(

αt
2

λ
2

λ
2 −αt

2

)
, (6)

where 12 denotes the unity operator in two dimensions.
Equation (5) coincides with the Schrödinger equation for the
unitary evolution operator of the Landau-Zener problem, for
which an exact finite-time solution is known [17] (see also
Appendix B). With the help of the classical flow, one can
easily calculate the state of the system after a double passage
through the avoided crossing (Stückelberg problem). We find

c(t) = ϕb(t, − tp)ϕ(tp,ti)c(ti), (7)

with ϕb(t,ti) = σxϕ(t,ti)σx describing the evolution of the
system during the back sweep (see Appendix B) where σx

denotes the Pauli matrix in the x direction, and tp labels the
time at which the forward (backward) sweep stops (starts).
From Eq. (7), one can obtain the return probability to mode 1,

P1→1 = |ϕ11(tp,ti)ϕ
∗
11(t, − tp) + ϕ∗

12(tp,ti)ϕ
∗
12(t, − tp)|2, (8)

with ϕij (t,ti) the matrix elements of ϕ(t,ti). Note that we use
the frequency sweep rate α in the theory, which is converted
to the experimentally accessible voltage sweep rate β via a
conversion factor ζ = 55 kHz/V as elucidated in Appendix C.

The analogy between the unitary evolution operator and the
classical flow, both expressed in the basis of uncoupled states
(modes), allows one to draw the analogy to the quantum-
mechanical return probability in Stückelberg interferometry.
The normalized amplitudes are associated with the normalized
energy in each resonator mode, and they differ conceptually
from the probability that a quantum-mechanical two-level
system is found in either of the two quantum states. Neverthe-
less, the dynamics of the normalized amplitudes in classical
Stückelberg interferometry is analogous to the dynamics of the
quantum-mechanical probabilities since they follow the same
equations. In this sense, the coherent exchange of oscillation
energy between two coupled modes can be associated with the

transfer of population between two quantum states. A more
detailed discussion and comparison of our theoretical approach
to previous models [2,17,25,26] reveals previously uncharted
parameter regimes in Stückelberg interferometry, and it will
be presented elsewhere [32].

IV. CLASSICAL STÜCKELBERG INTERFEROMETRY

Experimentally, we investigate classical Stückelberg os-
cillations with two different samples in a vacuum of
� 10−4 mbar. Sample A is investigated at 10 K in a
temperature-stabilized pulse tube cryostat, which offers a
greatly enhanced stability of the electromechanical system
against temperature fluctuations. Sample B is explored at room
temperature in order to confirm the results and to check their
stability under ambient temperature fluctuations. Note that in
both experiments, the system operates deeply in the classical
regime [22], and it does not exhibit any quantum-mechanical
properties. Sample A exhibits a mechanical quality factor Q =
ω/� ≈ 2 × 105 and linewidth �/2π ≈ 40 Hz at resonance
frequency ω1(Ui)/2π = 7.560 MHz of the 50-μm-long string
resonator ensuring classical coherence times in the millisecond
regime [22]. The level splitting �/2π = 22.6 kHz exceeds
the mechanical linewidth by almost three orders of magnitude,
which puts the system deep into the strong-coupling regime.

We initialize the system at Ui = 7.9 V and apply triangular
voltage ramps with different voltage sweep rates β for a set
of peak voltages Up. Figure 2 depicts the normalized squared
return amplitude for different peak voltages and the theoretical
return probabilities calculated without any free parameters.
The normalized squared return amplitude may exceed a value
of unity due to normalization artefacts that arise from the
different signal magnitudes at the initialization and readout
voltages in addition to measurement errors. We observe clear
oscillations in the return signal, in good agreement with
the theoretical predictions for lower peak voltages. As the
number of oscillations increases for higher peak voltages, the
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FIG. 3. Comparison of experimental data and the theoretical model. (a) Color-coded normalized squared return amplitude vs inverse sweep
rate and peak voltage measured on sample B. The dataset is not interpolated. (b) Color-coded theoretical return probability given by Eq. (9) vs
inverse sweep rate and peak voltage for the equivalent data range. The theory is calculated with a single set of parameters, extracted from the
avoided crossing illustrated in Appendix C (Fig. 7), and it contains no free parameters.

deviation from the theoretical prediction is more pronounced.
We attribute this to uncertainties and fluctuations of the
characteristic sweep parameters of the system, which change
under application of the voltage ramp and over time as
discussed in Appendixes D and E. A further deviation arises
from the assumption that a linear change of the voltage leads
to a linear change of the difference in frequency. This is only
an approximation since the mechanical resonance frequencies
tune quadratically with the applied voltage [28]. However,
since most of the energy exchange happens in the vicinity
of the avoided crossing, where the difference in frequency
is linearized, one expects to see noticeable deviations from
theory only for higher peak voltages.

To reproduce the experimental data and to test the stability
of classical Stückelberg interferometry against fluctuations,
we repeat the experiment on a second sample of the same
design at room temperature (sample B, denoted by index “B”).
The now 55-μm-long resonator has a mechanical linewidth of
�B/2π ≈ 25 Hz at frequency ωB,1(UB,i)/2π = 6.561 MHz,
which results in a quality factor of QB ≈ 2.6 × 105 at the
initialization voltage UB,i = 10.4 V and hence an improved
mechanical lifetime of 6.21 ms. Furthermore, the sample ex-
hibits a mode splitting of �B/2π = 6.3 kHz and a conversion
factor of ζB = 19 kHz/V.

Figure 3 depicts a color-coded two-dimensional map of
the normalized squared return amplitude as a function of the
inverse voltage sweep rate β and the peak voltage Up alongside
the theoretical return probability of the classical Stückelberg
oscillations, again calculated with no free parameters. We in-
vestigate double passages up to a total propagation time of ϑ =
1.0 ms in the experiments conducted on sample B. To account
for the decay of both modes when tuned away from the drive for
the considerably longer ramps applied to sample B, we model
the mechanical damping by an exponential decay with an
averaged decay time t0 = 5.7 ms. After a measurement time tm,
the probability to measure an excitation of mode j is given by

|cj (tm)|2 = exp(−tm/t0)P1→j , (9)

with P1→1 given by Eq. (8) and P1→2 = 1 − P1→1. The
experimental data show remarkably good agreement with the
theoretical predictions, despite temperature fluctuations of

several degrees kelvin per hour, which shift the mechanical
resonance frequency up to 40 linewidths. To initialize the
system at the same resonance frequency in each measure-
ment, a feedback loop regulates the initialization voltage Ui

(see Appendix D). Consequently, the recording of a single
horizontal scan at a fixed peak voltage in Fig. 3(a) takes
up to 16 hours, incorporating a non-negligible amount of
fluctuations of the system parameters, such as, e.g., the
center voltage of the avoided crossing Ua, which imposes
considerable uncertainties on the parameters used for the
theoretical calculations. To further illustrate the influence of
fluctuations, Figs. 4(a) and 4(b) depict horizontal and vertical
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FIG. 4. Exemplary classical Stückelberg oscillations of sample
B. Line cuts of Figs. 3(a) and 3(b). (a) Normalized squared return
amplitude (left axis, blue dots) and theoretically calculated return
probability given by Eq. (9) (right axis, red line) vs inverse sweep
rate for a fixed peak voltage Up = 3.3 V. (b) The same quantities as
above but plotted as a function of peak voltage for a fixed inverse
sweep rate 1/β = 51.6 μs/V. Blue dots are joined by blue dashed
lines for illustration reasons.
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line cuts of the two-dimensional map in Fig. 3 at Up = 3.3 V
and at inverse sweep rate 1/β = 51.6 μs/V, respectively.
For small inverse sweep rates, i.e., very fast sweeps, the
experimental data in Fig. 4(a) deviate from the theoretical
model due to a flattening of the voltage ramps in the room-
temperature experiment (see Appendix E). For sweeps with
1/β � 50 μs/V, the experimentally observed Stückelberg
oscillations exhibit good agreement with the theoretical predic-
tions even for the line cut along the vertical peak voltage axis
[cf. Fig. 4(b)]. Note that Fig. 4 depicts the best results from all
datasets at room temperature. Further exemplary line cuts are
provided in Appendix E, also exhibiting a clear oscillatory
behavior in the normalized squared return amplitude, but
incorporating larger deviations from theory in certain regions
and therefore revealing fluctuations of system parameters over
time, predominately induced by temperature drifts.

V. CONCLUSION AND OUTLOOK

In conclusion, we have demonstrated classical Stückelberg
oscillations that have previously been experimentally ob-
served exclusively in the framework of quantum mechan-
ics [2,7,8,27]. An exact solution of the Stückelberg prob-
lem [1] based on the finite-time Landau-Zener single-passage
solution [17] describes the return probability in the classical
version of the double-passage problem, which is shown to
follow the same equation as in the case of a quantum two-
level system. In this way, we have demonstrated that in our
experimental parameter limit, the coherent exchange of en-
ergy between two strongly coupled classical nanomechanical
resonator modes follows the same dynamics as the exchange
of excitations in a quantum-mechanical two-level system in
the framework of Stückelberg interferometry.

This analogy might be exploited in future experiments
in order to determine whether a system of coupled me-
chanical modes operates in the classical regime or in the
quantum-mechanical limit. In the general case of two coupled
quantum harmonic oscillators, the effective model describing
the dynamics would resemble that of the multiple-crossing
Landau-Zener problem [33], which leads to a much more
complex dynamics than the provided solution for the classical
case. Hence, if one would be able to design an experiment
in which two strongly coupled mechanical oscillators can be
cooled to their quantum-mechanical limit, it should be possible
to determine if the system operates in the classical or the
quantum regime by means of a simple Stückelberg return
amplitude measurement rather than by probing the Wigner
distribution function [34]. Whereas the presented experimental
setup is still far from operation in the quantum-mechanical
limit, we could imagine this technique to be applied to different
mechanical systems that already demonstrated the quantum
limit of mechanical oscillators [35,36].

Overall, we have found good agreement between ex-
periment and theory. However, parameter regimes yielding
larger deviations are reminiscent of the sensitivity of the
exact Stückelberg solution to the initial system parameters,
such as the position of the avoided crossing, and hence to
fluctuations in the system. This circumstance, in turn, might
be exploited for future investigations in resonator metrology
of decoherence and noise, adapting the approach to employ

Stückelberg interferometry to characterize the coherence of a
qubit [10].

Furthermore, the possibility to create a superposition state
of two mechanical modes may allow for future application
as highly sensitive nanomechanical interferometers [37–39]
analogous to the applications with cold atom and molecule
matter-wave interferometers [4,40–42], whereas the presence
and implications of, e.g., phase noise [43] can be resolved by
a change in resonator population and interference pattern.

Finally, classical Stückelberg interferometry should not be
limited to the presented strongly coupled, high-quality factor
nanomechanical string resonator modes [22], but it can be
observed in principle in every classical two-mode system
exhibiting the possibility of a double passage through an
avoided crossing within the classical coherence time.
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APPENDIX A: THE NANOELECTROMECHANICAL
SYSTEM

The nanomechanical device and experimental setup are
depicted in Fig. 5. The sample investigated at a temperature
of 10 K (sample A) consists of a 50-μm-long, 270-nm-
wide, and 100-nm-thick doubly clamped silicon nitride (SiN)
string resonator. The room-temperature measurements were
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Microwave
cavity

(b)

10K
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Radiofrequency drive

AFG

±
dc tuning

300K
μw read-out

Summation
amplifier

FIG. 5. Nanoelectromechanical system. (a) False color scanning
electron micrograph of the 50-μm-long, 270-nm-wide, and 100-nm-
thick silicon nitride string (green) in the oblique view. The adjacent
1-μm-wide gold electrodes (yellow) are processed on top of the
silicon nitride layer. Arrows indicate the flexural mode polarizations
out-of-plane (Out) and in-plane (In). (b) Electrical transduction
setup. The arbitrary function generator (AFG) ramp voltage and the
dc tuning voltage are added via a summation amplifier and then
combined with the rf drive using a bias tee. The microwave readout
is bypassed by the second capacitor, acting as a ground path for the
microwave cavity.
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resonance frequency of the 55-μm-long resonator’s fundamental
out-of-plane oscillation (Out) increases quadratically as a function of
dc voltage. The resonance frequency of the corresponding in-plane
mode (In) decreases quadratically. Tuning both modes into resonance,
they exhibit a pronounced avoided crossing indicated by the black
dashed rectangle. This particular region is displayed in Fig. 7(a).
The additional resonances in the spectrum originate from a different
mechanical resonator, which is coupled to the same microwave cavity.

conducted on a similar sample (sample B), differing only in
its resonator length of 55 μm. As stated in the main text, the
temperature does not affect the purely classical character of the
system. The string resonators exhibit a high intrinsic tensile
pre-stress of σSiN = 1.46 GPa resulting from the LPCVD
deposition of the SiN film on the fused silica substrate. This
high stress translates into large intrinsic mechanical quality
factors of up to Q ≈ 500 000, which reduce quadratically
with the applied dc tuning voltage in the experiment as a
result of dielectric damping [28]. Dielectric drive, detection,
and control are provided via two adjacent gold electrodes
in an all integrated microwave cavity enhanced transduction
scheme [22,24,28,29]. In the experiment, we consider the
two orthogonally polarized fundamental flexural modes of
the nanomechanical string resonator, namely the oscillation
perpendicular to the sample plane (out-of-plane) and the
oscillation parallel to the sample plane (in-plane). Applying a
dc voltage to one of the two gold electrodes induces an electric
polarization in the silicon nitride string resonator, which
couples to the field gradient of the inhomogeneous electric
field. Consequently, the mechanical resonance frequencies
tune quadratically with the applied dc voltage as depicted
in Fig. 6. Whereas the out-of-plane resonance (Out) tunes
toward higher resonance frequencies as a function of dc
voltage, the resonance frequency of the in-plane mode (In)
decreases [28]. Dielectric tuning of both modes into resonance
reveals a pronounced avoided crossing originating from the
strong mutual coupling induced by the inhomogeneous electric
field. In the coupling region, the mechanical modes hybridize
into diagonally (±45◦) polarized eigenmodes of the strongly
coupled system.

APPENDIX B: THEORETICAL MODEL

In this Appendix, we derive an exact expression for
the classical return probability. A detailed discussion and

comparison of our theoretical approach to previous models
will be published elsewhere [32].

We start by solving the system of first-order differential
equations defined in Eq. (5) of the main text. Since these
equations are formally identical to the Schrödinger equation
for the (quantum) Landau-Zener problem, we can follow
the work of Vitanov et al. [17] to derive the classical flow,
c̃(τ ) = ϕ̃(τ,τi)c̃(τi) with c̃(τ ) = [c̃1(τ ) c̃2(τ )]T. Here, τ = √

αt

is a dimensionless time and τi is the initial dimensionless
time. Note that we use dimensionless times in this appendix
in order to provide a derivation that is consistent with the
work of Vitanov et al. [17]. The equations in dependence
of times in the main text can be recovered by replacement
of the dimensionless times following the above definition.
In Appendix C, we provide the explicit conversion from
experimentally accessible parameters to the dimensionless
times. We find(

c̃1(τ )

c̃2(τ )

)
=

(
ϕ̃11(τ,τi) ϕ̃12(τ,τi)

−ϕ̃∗
12(τ,τi) ϕ̃∗

11(τ,τi)

)(
c̃1(τi)

c̃2(τi)

)
(B1)

with

ϕ̃11(τ,τi) = �
(
1 + i

η2

4

)
√

2π

[
D−1−i

η2

4
(e−i 3π

4 τi)D−i
η2

4
(ei π

4 τ )

+D−1−i
η2

4
(ei π

4 τi)D−i
η2

4
(e−i 3π

4 τ )
]

(B2)

and

ϕ̃12(τ,τi) = �
(
1 + i

η2

4

)
√

2π

2

η
e−i π

4
[
D−i

η2

4
(e−i 3π

4 τi)D−i
η2

4
(ei π

4 τ )

−D−i
η2

4
(ei π

4 τi)D−i
η2

4
(e−i 3π

4 τ )
]
. (B3)

Here, η = λ/
√

α is the dimensionless coupling, �(z) is the
Gamma function, and Dν(z) is the parabolic cylinder function.
To find the flow describing the evolution of the amplitudes
defined in Eq. (2), we apply the unitary transformation defined
in the main text, ϕ(τ,τi) = S(τ )ϕ̃(τ,τi)S†(τi), with

S(τ ) = exp

[
i

4
τ 2

]
12. (B4)

We find

ϕ(τ,τi) = exp

[
i

4

(
τ 2 − τ 2

i

)]
ϕ̃(τ,τi). (B5)

The flow ϕ(τ,τi) describes the evolution of the normalized
amplitudes for a forward sweep; the frequency of mode 1
(2) increases (decreases) with time. This implies that the
back sweep cannot be described by ϕ(τ,τi) since during the
evolution the frequency of mode 1 (2) decreases (increases).
Hence, the system of coupled differential equations describing
the dynamics during the backward sweep (denoted by index
“b”) is given by

i

(
˙̃c1,b

˙̃c2,b

)
=

(−αt
2

λ
2

λ
2

αt
2

)(
c̃1,b

c̃2,b

)
. (B6)

The solutions of Eq. (B6) can be obtained analogously to the
forward flow since the matrices appearing in Eq. (6) of the
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FIG. 7. Calibration of the conversion factor. (a) Avoided crossing region of sample B. A sweep voltage equal to zero corresponds to
the initialization point Ui = 10.4 V. The two modes exhibit a frequency splitting of �B/2π = 6.3 kHz at the avoided crossing voltage
Ua = Ui + 1.96 V = 12.36 V. The gap in the upper branch (red) results from a signal detection efficiency of the particular mode polarization
below the noise level. (b) Frequency difference of the two modes (black) and averaged slope of the linearized frequency tuning illustrated by a
green dash-dotted line.

main text and Eq. (B6) are related by a unitary transformation.
We find

ϕ̃b(τ,τi) = σxϕ̃(τ,τi)σx =
(

ϕ̃∗
11(τ,τi) −ϕ̃∗

12(τ,τi)

ϕ̃12(τ,τi) ϕ̃11(τ,τi)

)
, (B7)

where σx denotes the Pauli matrix in the x direction. The
flow describing the evolution of the amplitudes c1(t) and c2(t)
during the back sweep is obtained as previously, and we have

ϕb(τ,τi) = exp

[
i

4

(
τ 2 − τ 2

i

)]
ϕ̃b(τ,τi). (B8)

The state of the system after a double sweep is given by

c(τ ) = ϕb(τ, − τp)ϕ(τp,τi)c(τi), (B9)

where τp labels the time at which the first sweep stops and −τp

corresponds to the initial time of the back sweep [cf. Eq. (7)
of the main text]. As stated in Eq. (8) of the main text, the
probability to return to mode 1 is then given by

P1→1(τ,τp,τi)

= |ϕ11(τp,τi)ϕ
∗
11(τ,−τp) + ϕ∗

12(τp,τi)ϕ
∗
12(τ,−τp)|2. (B10)

APPENDIX C: CONVERSION FACTOR CALIBRATION

In the theoretical model, the state of the system after
a double passage through the avoided crossing depends on
the characteristic sweep times. Experimentally, we realize
this double passage by the application of fast triangular
voltage ramps, tuning the resonant frequency of the mechanical
modes [28]. In the following, we focus on sample B to illustrate
how the different times are obtained.

We initialize the resonance in the lower-frequency branch
at the voltage Ui = 10.4 V, where we apply a continuous sinu-
soidal drive tone at ω1(Ui)/2π = 6.561 MHz. We then ramp
the sweep voltage up to the peak voltage Up across the avoided
crossing at voltage Ua = Ui + 1.96 V = 12.36 V and then
back to the readout voltage Uf = Ui + 0.5 V = 10.9 V, where
the oscillation energy is read out again in the lower-frequency
branch. The offset of the readout voltage with respect to the
initialization voltage is necessary since we cannot stop the
sinusoidal drive tone at ω1(Ui)/2π during the experiment. For

a fixed peak voltage Up, the voltage sweep is performed for
different voltage sweep rates β, given in the experimental
units [β] = V/s. In the theoretical model, the frequency
difference of the two modes in units of 2π is approximated
by ω2 − ω1 � αt , where the sweep rate α has the dimensions
[α] = 2π × Hz/s. Consequently, we introduce the conversion
factor ζ from voltage to frequency, defined via the relation

α = 2π × ζβ. (C1)

Figure 7 illustrates the calibration of the conversion factor. As
is conventional in experiments on Stückelberg interferometry,
the frequency difference of the two mechanical modes is
approximated to be linear in time, i.e., linear in sweep voltage.
In our particular system, the resonance frequencies of the
mechanical flexural modes tune quadratically with voltage
outside of the avoided crossing (see Fig. 6). Nevertheless,
for the designated region around the avoided crossing, the
two frequency branches can be linearized as follows. We take
the frequency difference of both modes before and after the
avoided crossing [cf. Fig. 7(b)], respectively, and we extract
the slopes via a linear fit. The two different slopes on the left
and the right-hand side of the avoided crossing are averaged,
yielding an effective conversion factor (dash-dotted green line)

ζ = 19
kHz

V
. (C2)

To estimate the error of the conversion factor, we apply a
quadratic fit to the frequency difference of the two modes,
and we find a fit residual of approximately 2 kHz/V between
the linear and the quadratic fit.

Depending on the specific peak voltage Up, one could take
into account a weighted average of the two slopes in order
to mitigate the deviation of the quadratic frequency tuning
from the linear approximation. Here, one has to point out
deliberately that we neglect any weighted average, but we
take solely the above conversion factor for the calculation of
the theoretical return probabilities. We are well aware of the
fact that this linearization translates into a direct discrepancy
between the theoretical model and the experimental results.
Nevertheless, in our opinion, these discrepancies are prevailed
by the benefits of a closed theoretical calculation using a single
set of parameters that is supported by the remarkably good
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agreement between experiment and theory. Hence, we express
the characteristic sweep times in the theoretical model by the
following parameters extracted from the avoided crossing in
Fig. 7(a):

ti = − 1

β
(Ua − Ui) = τi√

α
,

tp = 1

β
(Ũp − Ua) = τp√

α
,

tf = 1

β
(Ua − Uf) = τf√

α
,

(C3)

where Ũp = Ui + Up. As explained above, the return probabil-
ity is measured at the readout voltage Uf 	= Ui. Consequently,
we replace τ by τf in the back sweep of the theory, which
modifies Eq. (B10) to

P1→1(τf,τp,τi)

= |ϕ11(τp,τi)ϕ
∗
11(τf,−τp) + ϕ∗

12(τp,τi)ϕ
∗
12(τf,−τp)|2. (C4)

APPENDIX D: TEMPERATURE FLUCTUATIONS

As stated in the main text, the measurement of the
normalized squared return amplitude for various voltage sweep
rates β at a particular peak voltage Up takes up to 16 h. During
this time, the ambient temperature undergoes fluctuations of
±2 K per hour due to insufficient air conditioning. Since
the mechanical resonance frequency shifts due to thermal
expansion of the silicon nitride by approximately 500 Hz/K,
both resonances shift by approximately 40 linewidths. To
initialize the system at the same resonance frequency for every
particular measurement, we implement a feedback loop that
regulates the initialization voltage. Therefore, the initialization
voltage shifts slightly from measurement to measurement,
reflecting the temperature fluctuations. Figure 8 depicts the
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FIG. 8. Temperature fluctuations. Initialization voltage shift vs
inverse sweep rate for the dataset depicted in Fig. 4(a) (Up = 3.3 V)
of the main text. Each point corresponds to the measurement of the
normalized squared return amplitude for a given inverse sweep rate.
The first measurement is performed at 1/β = 100 μs/V, representing
the initialization at resonance frequency ωi(Ui)/2π for voltage
Ui = 10.4 V. The implemented feedback loop regulates the initializa-
tion voltage in order to compensate for the temperature fluctuations of
the mechanical resonance. Consequently, the voltage shift illustrates
the fluctuations of the ambient temperature.

initialization voltage shift versus inverse sweep rate for the
dataset of peak voltage Up = 3.3 V, which corresponds to
the measurement depicted in Fig. 4(a) of the main text. Each
point represents a single measurement for a particular sweep
rate. The first measurement is performed at an inverse sweep
rate of 100 μs/V at the initialization voltage Ui = 10.4 V
and therefore corresponds to a shift of zero volts. Clearly,
the temperature fluctuations not only affect the initialization
voltage required to obtain the desired resonance frequency,
but they will also alter other system parameters, such as
the position of the avoided crossing Ua, that greatly affect
the theory (cf. Appendix C). Consequently, the temperature
fluctuations lead to deviations between experiment and theory,
since we calculate the return probability with a single set of
parameters. In turn, these deviations might be used to infer
fluctuations of the system in future applications of Stückelberg
interferometry.

APPENDIX E: EXPERIMENTAL UNCERTAINTIES

In Fig. 9 we provide additional horizontal and vertical line
cuts from Fig. 3 of the main text. We observe pronounced
oscillations in the normalized squared return amplitude (blue
dots) as well as in the theoretically calculated return probability
(red line). Nevertheless, the deviations between experiment
and theory are more apparent, especially for Fig. 9(b), which
depicts a vertical line cut for a fixed inverse sweep rate of
1/β = 60 μs/V, i.e., within the “plateau” in Fig. 3(b) of the
main text. Whereas the normalized squared return amplitude
exhibits destructive interference, with the signal dropping
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FIG. 9. Classical Stückelberg oscillations. (a) Normalized
squared return amplitude (left axis, blue dots) and theoretically
calculated return probability given by Eq. (9) of the main text
(right axis, red line) vs inverse sweep rate for a fixed peak voltage
Up = 3.85 V. (b) Same quantities as above but plotted as a function
of peak voltage for a fixed inverse sweep rate 1/β = 60 μs/V. Blue
dots are joined by blue dashed lines for illustration reasons.
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close to zero, the minima in the return probability saturate
at a value of approximately 0.3. This discrepancy is supposed
to originate from the high sensitivity of the theoretical model to
the input parameters. Experimental uncertainties and fluctua-
tions deter the system from interference with the same constant
parameters throughout all individual measurements. Since the
“plateau” in the theory is characteristic for a particular set of
exact and constant parameters, it cannot be recovered under
the given experimental conditions.

The experimental uncertainties arise not solely from the
temperature fluctuations. The voltage ramp also affects the
characteristic parameters, such as the exact position of
the avoided crossing Ua. As previously stated, the dc volt-
age induces dipoles in the silicon nitride string resonator,
which couple to the electric field gradient. A variation in
dc voltage changes the inhomogeneous electric field at the
same time, to which the nanoelectromechanical system needs
to equilibrate. Consequently, the resonance frequencies of
the mechanical modes drift toward the equilibrium position
of the system. This drift, in turn, alters the characteristic
system parameters, i.e., the characteristic voltages used for
the theoretical calculations, and it depends on the magnitude
of the peak voltage Up. Concerning the initialization voltage,
we simultaneously account for this effect via the initialization
feedback loop (see Sec. IV). Nevertheless, the exact position of
the avoided crossing Ua varies slightly due to this retardation
effect. Experimentally, we mitigate the influence of this drift
by means of a “thermalization” break of 10 s after each voltage
ramp.

Another possible uncertainty arises from the imprecision in
the value of the peak voltage Up at the sample. The output
amplitude uncertainty of the arbitrary function generator
used in the room-temperature experiments is classified by
the manufacturer as ±1% of the nominal output voltage.
Consequently, the maximum uncertainty in the peak voltage
corresponds to ±0.05 V for a maximum peak voltage of
Up = 5.0 V, which is equal to the voltage step size between
two horizontal lines of Fig. 3(a) in the main text.

As stated in the main text, we observed additional deviations
in the experimental data of sample B from the theory for very
fast voltage sweeps (1/β � 50 μs/V). These deviations origi-
nate from a flattening of the triangular voltage ramps. Records
of the triangular voltage pulse taken by an oscilloscope
revealed a flattening of the voltage apex depending on the peak
voltage Up, which becomes significant for very fast sweeps.
This flattening translates into a peak voltage cutoff and hence
a different value of Up, which is transduced to the sample.
We attribute this to the limited bandwidth of the summation
amplifier, which reduces the pulse fidelity for very short ramp
times. In the experiments conducted on sample A, a high-
performance summation amplifier has been employed together
with a different arbitrary function generator. The latter exhibits
a greatly enhanced bandwidth and sampling rate (nearly one
order of magnitude) compared to the device employed in
the room-temperature experiment. As a consequence, the
flattening of the voltage pulse apex is less pronounced, and
we find good agreement between the experimental data and
the theory for inverse voltage sweep rates 1/β � 50 μs/V.
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