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Abstract

Emerging quantum technologies, such as quantum information processing and quan-
tum metrology, require quantum systems that provide reliable toolsets for initial-
ization, readout, and coherent manipulation as well as long coherence times. The
coherence of these systems, however, is usually limited by uncontrolled interactions
with the surrounding environment. In particular, innovations building on solid-state
spin systems like the Nitrogen-Vacancy (NV) center in diamond ordinarily involve
the use of magnetic field-sensitive states. In this case, ambient magnetic field fluctua-
tions constitute a serious impediment that shortens the coherence time considerably.
Thus, the protection of individual quantum systems from environmental perturba-
tions constitutes a fundamentally important but also a challenging task for the further
development of quantum appliances.

In this thesis, we address this challenge by extending the widely used approach of
dynamical decoupling to protect a quantum system from decoherence. Specifically,
we study three-level dressed states that emerge under continuous, ‘closed-contour’
interaction driving. To implement and investigate these dressed states, we exploit
well-established methods for coherent microwave and strain manipulation of the NV
center spin in a hybrid spin-mechanical system. Our results reveal that this novel
continuous decoupling mechanism can overcome external magnetic fluctuations in a
robust way. We demonstrate experimentally that the dressed states we created are
long-lived and find coherence times nearly two orders of magnitude longer than the
inhomogeneous dephasing time of the NV spin, even for moderate driving strengths.

To realize direct and efficient access to the coherence-protected dressed states under
closed-contour driving, we further demonstrate the use of state transfer protocols for
their initialization and readout. In addition to an adiabatic approach, we apply
recently developed protocols based on ‘shortcuts to adiabaticity’ to accomplish the
initialization process, which ultimately accelerates the transfer speed by a factor of 2.6
compared to the fastest adiabatic protocol with similar fidelity. Moreover, we show
bidirectionality of the accelerated state transfer, which allows us to directly read out
the dressed state population and to quantify the transfer fidelity of ≈ 99 %.

By employing the methods to prepare and read out the dressed states, we lay the
foundation to meet the remaining key requirement for quantum systems – coherent
quantum control. We present direct, coherent manipulation of the dressed states
in their own manifold and exploit this for extensive characterization of the dressed
states’ properties. Thus, our results constitute an elementary step to establish the
dressed states as a powerful resource in prospective quantum sensing applications.

Harnessing quantum systems like the dressed states as nanoscale sensors of external
fields requires the detailed characterization of the local internal environment. In the
final part of this thesis, we report on the determination of intrinsic effective fields of
individual NV center spins. We study single NVs in high purity diamond and find
that local strain dominates over local electric fields. In addition, we experimentally
demonstrate and theoretically describe a new technique for performing single spin-
based polarization analysis of microwave fields in a tunable, linear basis.
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Ĥ Ground state fine- and hyperfine Hamiltonian
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Ĥel,0, Ĥel,1, Ĥel,2 Components of the electric interaction Hamiltonian
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(C)
x , Î
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1. Introduction

Quantum physics is a cornerstone of modern natural sciences. Since its foundations
were laid in the early 20th century, the quantum formalism has become essential for
the understanding and description of systems at atomic length scales and smaller.
A pedagogical and widely used abstraction of such complex systems relies on two-
level quantum systems. These are the simplest non-trivial quantum models, whose
dynamics can be solved analytically without approximation, which renders them an
important pillar of quantum theory. Also experimentally, two-level systems have
been established as the most common resource for exploring quantum properties, as
they offer a large assortment of observable quantum effects, like Rabi oscillations,
superposition states, and entanglement, while minimizing experimental challenges.
Consequently, such quantum systems have been engineered in diverse host systems,
e.g. in quantum dots [1–3], superconducting circuits [4–6], ultracold atoms [7–9], and
solid-state spins and defects [10–12].

Three-level quantum systems extend the capabilities of two-level systems, which
make them advantageous for various applications, ranging from faster quantum in-
formation processing [13–15], the study of entanglement in higher-dimensional sys-
tems [16, 17], and more robust quantum cryptography protocols [18, 19]. Typically,
experiments studying three-level systems use two separate, coherent driving fields,
which couple two different states to a common third one. This configuration gives
rise to phenomena inaccessible in two-level systems, including novel population dy-
namics and coherent state transfer mediated by interference effects of simultaneously
driven excitation pathways. Famous examples are Autler-Townes splitting [20], coher-
ent population trapping [21, 22], electromagnetically induced transparency [23], and
stimulated Raman adiabatic passage (STIRAP) [24, 25]. The sheer variety of phys-
ical effects renders two- and few-level quantum systems highly promising for future
quantum technology developments.

Yet decoherence remains a major obstacle for quantum applications. The loss of
quantum coherence is caused by the interaction of the system with its environment. In
solid-state and atomic systems, ambient magnetic field fluctuations are a serious im-
pediment, usually limiting the coherence time to a small fraction of the spin relaxation
time. It is, therefore, imperative to protect a quantum system from these decoher-
ing effects while retaining the ability to control the dynamics of the system. There
are several approaches to achieve quantum coherence protection. Pulsed dynamical
decoupling is a widely used strategy, which has been studied extensively both theo-
retically [26–30] and experimentally [31–35]. These protocols are based on applying
external pulses in a certain sequence to compensate for the effect of the environment,
thereby preserving the coherence of the system at certain times. However, pulsed de-
coupling techniques suffer from pulse imperfections, potentially harmful pulse powers,
and high repetition rates and are only severely compatible with desired quantum gate
operations. Instead of using a sequence of pulses, continuously driving a two-level
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system with a ‘dressing’ field leads to continuous dynamical decoupling [36–40]. This
approach offers another strategy to suppress environmental noise and to protect the
system’s coherence while being easily combined with quantum gate operations [41–43].
Continuous dynamical decoupling can be extended even further to the more complex
concatenated continuous driving [44–47] or combined with the pulsed method to form
mixed dynamical decoupling [48].

Three-level systems allow for a similar yet more sophisticated approach. By si-
multaneously and coherently addressing all three available transitions, a continuous
driving scheme known as a ‘closed-contour interaction’ can be achieved [49]. Such
a scheme increases the functionality of three-level systems even further as the three
driving fields introduce complex interference dynamics. Additionally, the continuous
closed-contour driving generates dressed states, i.e. the eigenstates of the driven sys-
tem, that might provide a novel mechanism for efficient coherence protection beyond
what is offered by driven two-level systems.

The Nitrogen-Vacancy (NV) center’s electronic spin naturally provides a three-level
system to implement and test such schemes [50]. Due to its fast response to resonant
spin manipulation [51, 52], its long coherence time [53, 54], its room-temperature
operation, and the host of well-established methods for optical spin initialization
and readout [55, 56], the NV spin constitutes an attractive and powerful solid-state
platform in quantum science. However, the long spin coherence time is usually dimin-
ished by unwanted magnetic interactions with the surrounding spin-bath inherent in
the diamond lattice, making the full coherence potential not immediately accessible.
Thus, to fully exploit the merits of the NV spin, it is crucial to decouple it from
its magnetic environment. In this context, closed-contour dynamical decoupling in
combination with full coherent quantum control of the dressed states may boost the
NV’s impact in quantum technologies even further and may pave the way for future
applications.

Scope of this thesis

In this thesis, we report on the implementation and detailed characterization of the
three-level dressed states emerging under closed-contour driving of the NV center’s
spin ground state. The major goals of our study are thereby to provide a thor-
ough understanding of this novel type of dressed states and to lay the foundation for
prospective operations in quantum sensing and quantum information processing.

We start with a theoretical description of the main aspects of the NV center in
Chap. 2. In particular, we first outline the basic properties of the NV before explain-
ing the interaction of the NV spin with static external fields and discussing their
influence on the NV spin levels and transitions. Moreover, we describe the two essen-
tial coherent manipulation techniques for the NV spin, microwave (MW) spin control
and manipulation with time-varying strain fields.

Combining the two spin manipulation toolsets allows us to realize the closed-contour
interaction scheme in the NV ground state, where all three possible spin transitions
are individually and coherently addressed. To that end, we briefly introduce the un-
derlying experimental system, a hybrid spin-mechanical device, at the beginning of
Chap. 3. We then present a detailed study of the system’s dynamics under closed-
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contour interaction and demonstrate its tunability through the relative phase of the
involved driving fields. Additionally and most importantly, we show that this ap-
proach of dressing the spin states is highly effective for suppressing environmental
perturbations that lead to spin dephasing.

Having revealed the remarkable coherence properties of three-level dressed states,
we turn to the question of how to prepare our system in a particular single dressed
state. In Chap. 4, we accomplish this by efficient state transfer protocols. A powerful
class of such protocols is based on the adiabatic theorem, which we use as a starting
point for our studies. In the underlying adiabatic evolutions, the gradual changes of
the controls allow the system to adapt its configuration. However, these processes are
intrinsically slow and, therefore, have limited effectiveness. To mitigate this drawback,
we take advantage of approaches for speeding up adiabatic protocols, collectively
known as ‘shortcuts to adiabaticity’ (STA). These general strategies aim to remedy
the limitation of adiabatic approaches by designing fast dynamics that reproduce
the results of a slow, adiabatic transition. We thereby realize accelerated, high-
fidelity state transfer to the dressed state manifold and consequently enable direct
and efficient access to the protected dressed states.

In Chap. 5, we make use of the methods to prepare and read out a particular dressed
state and demonstrate coherent manipulation of the dressed states. We present an
extensive characterization of the dressed states’ properties, including the exploration
of the driven and undriven system dynamics. The latter enables us to directly access
the dressed state subspace that offers the most efficient coherence protection and to
confirm its long coherence time. Hence, we provide full quantum control of our closed-
contour dressed states, which is a primarily important feature for their prospective
applications.

Due to their notable coherence properties, the three-level dressed states form an
appealing resource for high sensitivity nanoscale sensing. As for the NV spin itself,
harnessing such a quantum system as a sensor demands a comprehensive characteri-
zation of the local internal field environment. In Chap. 6, we present high-resolution
electron spin resonance (ESR) spectroscopy on single NV spins at and around zero
magnetic field to characterize the intrinsic effective field the NVs experience. We find
that for our diamond sample, local strain dominates over the electric field and thereby
constitutes the main contribution to the effective field. Furthermore, our experiments
yield a method for MW polarization analysis in a tunable, linear basis.

In the final Chap. 7, we summarize our main results and discuss promising routes
and exciting prospects that can be pursued with the system discussed in this thesis.
We propose concrete applications of the three-level dressed states in sensing schemes
and discuss interesting areas in which our three-level system will have a significant
impact, e.g. in the exploration of fault-tolerant geometric quantum gates and in the
investigation of quantum synchronization. Ultimately, we compile challenging, but
feasible perspectives, which we advocate to aim for with our hybrid-spin mechanical
system in the future.





2. Influence of fields on the NV
ground state

The NV center in diamond [50, 57] offers outstanding and versatile properties that
render it a unique quantum system with auspicious prospects in a wide variety of
applications, ranging from quantum information technology [12, 58, 59] to nanoscale
quantum sensing of biological and condensed matter systems [60–62]. In particular, its
electron spin degree of freedom has triggered an explosion of pioneering experimental
demonstrations in these areas. This story of success is based on the convenient all-
optical initialization and readout mechanisms the electronic spin of the NV center
features. Additionally, the NV spin can be precisely and coherently manipulated
with both MW magnetic [63, 64] and strain fields [65, 66] and thereby provides a
highly coherent platform to explore a multitude of quantum phenomena, even at
room temperature.

The remarkable characteristics of the NV center are to a great extent attributed
to its host material [66]. Diamond has a large electronic bandgap, which makes it
optically transparent. As the NV’s electronic bound states reside deep within this
bandgap, they are well isolated from the valence and conduction bands, which ulti-
mately enables the optical NV readout. Moreover, diamond’s high Debye temperature
and weak spin-orbit interaction contribute to the NV’s long coherence and relaxation
times. Finally, its robustness and high Young’s modulus provide diamond with excel-
lent mechanical properties, allowing for high-quality resonators [67, 68].

To pool diamond’s mechanical and the NV’s spin capabilities, we exploit a hybrid
spin-mechanical system comprising a diamond mechanical cantilever with embedded
NV center spins. Crystal strain occurring upon cantilever displacement thereby af-
fords a natural and intrinsic mechanism to couple both systems. The combination of
mechanical manipulation and conventional MW control ultimately allows us individ-
ual and full coherent control of all NV ground state spin transitions and will be at
the heart of our experimental studies.

In the first chapter of this thesis, we introduce the theoretical foundations for
our subsequent experiments. We thereby focus on the physical background of the
employed three-level system, the ground state of the NV center. We then discuss its
response to static external fields, before turning to the aforementioned manipulation
techniques based on time-dependent MW and strain fields.
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2.1. The NV center in diamond

2.1.1. Structural and electronic properties

The NV center is a paramagnetic lattice defect in diamond. It consists of a substitu-
tional nitrogen atom1 next to a neighboring lattice vacancy (see Fig. 2.1a). As such
the NV exhibits a trigonal structure in the diamond lattice, which is described by the
C3v symmetry group. The corresponding rotational symmetry axis joins the nitrogen
atom and the vacancy and points along diamonds [111] crystal direction.

The electronic structure of the NV center comprises charge, orbital, and spin de-
grees of freedom. While there exist several charge states of the NV defect [50], the
negatively charged NV center (NV−) [71], which is at the focus of this thesis, offers
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Figure 2.1.: Atomic and electronic structure of the NV center in diamond. a) The
NV center is a point defect in the diamond lattice (black carbon atoms) comprising
a substitutional nitrogen atom (blue) adjacent to a lattice vacancy (transparent).
It has a trigonal structure, with the symmetry axis joining the nitrogen atom and
the vacancy. b) Simplified electronic orbital structure and optical properties of the
NV center at room temperature. The triplet ground state 3A2 and triplet excited
state 3E manifolds reside deep within the diamond bandgap. The singlet ground
state is located in between the two and consists of three levels 1E1,2 and 1A1. Off-
resonant excitation at 515 nm (green) pumps the system into vibronic levels of the
excited state in a spin-conserving transition. The vibronic excitations experience a
rapid, phonon-mediated, radiationless decay (purple), which brings the spin to the
bottom of 3E. After a few ns (lifetime of the excited state ≈ 6 − 14 ns [69, 70]) the
NV either relaxes back to the ground state by emitting a photon into the zero-phonon
line (637 nm) or into the phonon sideband (638 − 800 nm, red), or it decays via the
metastable singlet manifold. The latter process comprises both non-radiative decays
(dashed) and a fluorescent decay in the infrared (IR, orange).

1Nitrogen naturally occurs in two stable isotopes, 14N and 15N. As we solely work with 14N in
this thesis, we will only focus on this isotope in the following.
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the most attractive quantum properties. Therefore, we refer to the NV− state as just
NV hereafter. In this negative charge state, the NV center is associated with six elec-
trons, five of which come from the dangling bonds of the nitrogen and carbon atoms,
while one additional electron is trapped from a donor atom nearby. The electronic
states can be calculated by ab initio theory [72, 73] or obtained via symmetry consid-
erations [74]. From the occupation of the molecular orbital states, it follows that there
remain two unpaired electrons. The Coulomb interaction between the two electrons is
minimized when they are configured in an antisymmetric spatial configuration. The
spin configuration, therefore, has to be symmetric (compare to Hund’s rule) [74]. As
a result, the electronic ground state consists of an orbital singlet, spin triplet state,
which is denoted2 as 3A2. From the 3A2 ground state the NV can be excited to an or-
bital doublet, spin triplet excited state 3E via an optical electric dipole transition (see
Fig. 2.1b). At room temperature, however, spin-conserving electron-phonon interac-
tions within the excited state manifold mix the orbital states, causing an averaging of
the orbital degree of freedom to an effective orbital singlet [75]. The resulting excited
state structure strongly resembles the ground state spin triplet [74, 76, 77]. The spin
singlet ground state (levels 1E1,2 and 1A1) is located in between the ground and ex-
cited state manifolds. All levels are deep within the 5.5 eV bandgap of diamond, such
that valence and conduction bands are not involved in optical transitions between the
NV states [50]. Thus, based on the electronic structure, one identifying feature of
the NV is the optical zero-phonon line at 637 nm [78, 79], with an associated vibronic
sideband extending to larger wavelengths in emission. Additionally, the separation of
the singlet states give rise to an infrared (IR) transition at 1042 nm [80] (see Fig. 2.1b).

2.1.2. Ground state spin Hamiltonian

In our experiments, we focus on the NV’s spin degree of freedom, in particular on the
NV’s electronic ground state triplet, which has been the subject of most NV-related
research to date and exploited in diverse areas [12, 58, 60, 81]. The fine structure
of this S = 1 spin system comprises the eigenstates |ms〉 of the spin projection op-
erator Ŝz with respect to the NV’s symmetry axis. Here, ms = 0,±1 denote the
corresponding spin quantum numbers. Spin-spin interactions split the degenerate
|−1〉 and |+1〉 from |0〉 by the zero-field splitting D0 ≈ 2.87 GHz (see Fig. 2.2).

The fine structure levels are affected by interactions between the NV’s electron spin
density and the nuclear spin of the 14N atom, giving rise to a hyperfine structure.
As the 14N nucleus possesses a nuclear spin I = 1 and a nuclear electric quadrupolar
moment, the hyperfine interaction has both magnetic and electric components [82].
The magnetic component accounts for both the non-zero overlap of the electron spin
density with the spatial position of the 14N nucleus (Fermi contact contribution) and
the dipolar contribution emerging from the interaction of the NV electron spin and
14N nuclear spin. In contrast, the electric component describes the interaction of
the electric field gradient arising from the NV’s electronic charge distribution with
the electric quadrupole moment associated with the finite charge distribution of the
nucleus [83]. Due to the quadrupolar interaction the 14N nuclear spin has the same
quantization axis as the NV electronic spin.

2The label of the states indicate the orbital symmetry of the C3v group (A1, A2 and E) and the
spin multiplicity 2S + 1, where S = 1 [74].
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All fine and hyperfine interactions are described by the Hamiltonian of the NV’s
spin ground state [50, 73], which reads

Ĥ/h = D0

(
Ŝ2
z − 2/3

)
+A

‖
HFŜz Îz +A⊥HF

(
ŜxÎx + Ŝy Îy

)
+ P

(
Î2
z − 2/3

)
. (2.1)

Here, Ŝ = (Ŝx, Ŝy, Ŝz) and Î = (Îx, Îy, Îz) are the vectors of the dimensionless elec-
tronic S = 1 and nuclear I = 1 spin operators of the NV and 14N spin, respectively,
and h is Planck’s constant. Expressions for the components of the electronic spin
operator Ŝ in the {|+1〉 , |0〉 , |−1〉} basis (Zeeman basis) are

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 , Ŝy =
1√
2i

 0 1 0
−1 0 1
0 −1 0

 , Ŝz =

1 0 0
0 0 0
0 0 −1

 .

(2.2)

Equivalent definitions hold for the components of the 14N nuclear spin operator Î [82].
By considering Hamiltonian (2.1) we can evaluate the impact of the hyperfine in-

teractions on the NV level structure (see Fig. 2.2). We denote the hyperfine states by
|ms,mI〉, withmI = 0,±1 being the eigenvalues of the Îz nuclear spin operator. While
the electric contribution shifts all levels with mI = ±1 with respect to the mI = 0
states by the nuclear electric quadrupole parameter P = −4.95 MHz [84], the magnetic
contribution induces a splitting of {|−1,−1〉 , |+1,+1〉} and {|−1,+1〉 , |+1,−1〉} from
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Figure 2.2.: Fine and hyperfine structure of the S = 1 ground state. Spin-spin inter-
actions split the 3A2 orbital state into |ms = 0〉 and |ms = ±1〉, which are separated
by the zero-field splitting D0. Electric and magnetic hyperfine interactions between
the NV’s electronic spin and the 14N nucleus (nuclear spin I = 1) additionally split
the levels by the nuclear quadrupole parameter P and the axial magnetic hyperfine

parameter A
‖
HF, respectively. The hyperfine levels are labeled by their spin projec-

tions on the NV’s symmetry axis, |ms,mI〉. Note that around zero external magnetic
field the effect of the non-axial hyperfine interaction A⊥HF is suppressed by D0.
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{|−1, 0〉 , |+1, 0〉} by the axial hyperfine parameter A
‖
HF = −2.14 MHz and a mixing

of nearly degenerate states with a spin and nuclear projection difference of ∆ms = ±1
and ∆mI = ∓1 by the non-axial hyperfine parameter A⊥HF = −2.7 MHz [85].

In the following, we will neglect several contributions of Hamiltonian (2.1), as they
do not affect the spin states or spin transitions in the parameter regime of weak
magnetic fields we consider in the experiments (B . 30 G). First, the terms of 2/3
in the zero-field splitting and the quadrupolar coupling won’t be considered as they
only denote global energy shifts of all involved states. Second, we will disregard the
non-axial hyperfine interaction, as it couples states with a spin quantum number
difference of ∆ms = ±1 and is consequently suppressed by the zero-field splitting3

(‘secular approximation’). Lastly, the nuclear electric quadrupole interaction does not
cause a mixing of states with different ms and, therefore, does not affect the electron
spin transition frequencies, so that it won’t be relevant for our experimental results
and will be disregarded as well.

We note that besides the internal coupling between the 14N nucleus and the NV
spin itself, the hyperfine interaction also gives rise to an extrinsic coupling of the NV
spin to other nuclei in the diamond crystal lattice. Carbon naturally occurs with
an abundance of 98.9 % as 12C, which has zero nuclear spin (I = 0). In contrast,
13C possesses a nuclear spin I = 1/2 and affects the NV spin properties in terms of
an additional magnetic hyperfine interaction4. With a natural abundance of 1.1 %
such 13C isotopic impurities are randomly distributed in the diamond lattice. The
resulting nuclear spin bath induces a fluctuating magnetic environment ultimately
causing decoherence of the NV spin [86, 87]. If however, an individual 13C atom
is in the vicinity of the NV a discrete set of distinguishable hyperfine couplings is
possible [88, 89]. We will discuss such an extrinsic hyperfine coupling in Sec. 2.2.4.

2.1.3. Optical properties and spin polarization

Besides its unique level structure, the NV offers the intriguing possibility to initial-
ize and read out the ground state spin by purely optical means [55, 56, 90, 91].
The 3A2 ↔ 3E transition normally is a spin-conserving transition for both resonant
and non-resonant optical excitation. Due to the presence of the metastable singlet
states, however, exciting the NV spin with laser light (in our case non-resonantly with
515 nm) does not necessarily result in a closed optical transition (see Fig. 2.1b). Specif-
ically, after optical excitation into the 3E manifold, two possible pathways compete
with each other. On the one hand, direct optical decay to the ground state preserves
the spin projection and gives rise to visible fluorescence. On the other hand, non-
radiative decay to the intermediate singlet state is enabled by spin-orbit coupling.
This ‘intersystem crossing’ is spin-selective and preferentially occurs for the ms = ±1
spin states [92, 93]. The non-radiative transfer to the singlet state is followed by an
immediate decay within the metastable singlet manifold causing the emission of an
IR photon. Finally, the system decays back into the ground state with similar decay
rates for all spin projections [91, 92].

3Hereafter we refer to the axial hyperfine interaction as just hyperfine interaction, A
‖
HF ≡ AHF.

4As I = 1/2, 13C has no electric quadrupole moment, since only nuclei with spin I ≥ 1 may
possess electric quadrupole moments [82].
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The longer lifetime of the metastable singlet state (≈ 150 ns [91, 94]) compared to
the triplet excited state (≈ 6− 14 ns [69, 70]) leads to an effective shelving of the spin
population decaying via this pathway, thereby introducing a difference in the visible
fluorescence. Accordingly, the NV exhibits a spin-dependent (initial) fluorescence
intensity, with the ms = ±1 spin levels exhibiting up to ≈ 30 % less fluorescence
compared to the ms = 0 states [50]. Additionally, the dynamics described above
induce a spin polarization of up to ≈ 90 % into the ms = 0 state of the ground
state when the NV is optically excited for about 1 µs near saturation [95]. Thus,
the initial fluorescence intensity allows for discrimination of the spin state, while spin
polarization is achieved once the steady state under optical pumping has been reached.

2.2. Effect of static external and internal perturbations

The NV center has long shown promise as an excellent and versatile quantum sen-
sor with nanoscale spatial resolution, even at ambient conditions. This applicability
is based on the NV’s exceptional sensitivity to external fields, including magnetic
fields [96–99], electric fields [100, 101], strain [102–106], and temperature [107–110].
In this section, we discuss the response of the NV ground state to these external
fields in detail [73]. Additionally, we explain the signatures of the extrinsic hyperfine
coupling between an individual 13C nuclear spin and the NV spin within the ground
state level structure.

2.2.1. Static magnetic fields

An external static magnetic field couples to the permanent magnetic moments of
the NV’s electron spin and the 14N nuclear spin. Both magnetic interactions are
described by the Zeeman effect and the corresponding Hamiltonian, which adds to
Hamiltonian (2.1), reads

Ĥmag/h = γNVB · Ŝ + γNB · Î

= γNV

(
BxŜx +ByŜy +BzŜz

)
+ γN

(
BxÎx +By Îy +Bz Îz

)
. (2.3)

Here, Ŝ = (Ŝx, Ŝy, Ŝz) and Î = (Îx, Îy, Îz) are the spin operators as defined in
Eq. (2.2) and B = (Bx, By, Bz) is the external magnetic field given in the coordi-
nate frame (x, y, z) of the NV. Here, z denotes the NV’s symmetry axis (quantization
axis) and we choose y to lie in one of the NV’s symmetry planes. The NV gyro-
magnetic ratio γNV = geµB/h = 2.80 MHz/G is given by the NV’s isotropic g-factor5

ge = 2.0028 [71, 83] and the Bohr magneton µB , whereas the 14N gyromagnetic ra-
tio γN = gNµN/h = 0.308 kHz/G is defined by the isotropic 14N nuclear g-factor
gN = 0.404 and the nuclear magneton µN. As the nuclear Zeeman coupling is four or-
ders of magnitude smaller than the one for the electron, we won’t take it into account
in the following.

5A slight anisotropy of the g-factor was reported in [85], which results in an anisotropic g-tensor
with components g‖ = 2.0029 and g⊥ = 2.0031 for axial and transverse magnetic field components,
respectively. However, we will neglect this minute anisotropy.
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By diagonalizing the sum of the NV ground state Hamiltonian (2.1) and the mag-
netic interaction Hamiltonian (2.3), the effect of an external magnetic field on the
NV states can be illustrated. Applying a magnetic field parallel to the NV axis,
B = (0, 0, B‖), shifts each of the ms = ±1 hyperfine states by msγNVB‖ (indepen-
dent of mI), whereas the ms = 0 states are not affected. Consequently, the frequencies
of the six possible hyperfine transitions from |0〉 to |−1〉 and |0〉 to |+1〉 vary linearly
with B‖ and show a Zeeman splitting of ∆Z = 2γNVB‖ (see Fig. 2.3a). In contrast, a

transverse magnetic field with amplitude B⊥ = (B2
x +B2

y)1/2 mixes the electron spin
states, which results in a quadratic dependence of the transition frequencies. In case
of mI = 0 the transition frequencies read ω−/2π = D0/2 + [D2

0 + (2γNVB⊥)2]1/2/2
and ω+/2π = [D2

0 + (2γNVB⊥)2]1/2. For the states with mI = ±1 the (axial) hy-
perfine coupling needs to be considered, which leads to a deviation from the given
quadratic dependence for γNVB⊥ . AHF ≈ 2 MHz. Thereby, two hyperfine states
with opposing nuclear spin projection always remain degenerate, ultimately resulting
in four resolvable transition frequencies. As the coupling to perpendicular magnetic
fields is of second order, we can neglect its effect when we work with parallel magnetic
fields in our experiments, since we can carefully align the field to the NV axis with
< 0.2° mismatch (see App. A.1.1).

2.2.2. Effective electric and stress fields

Besides the response to external magnetic fields, the NV ground state is also suscep-
tible to electric field and stress. We will see that both perturbations can be described
by defining an effective electric and stress field, as the interaction Hamiltonians have
similar form [82]. In general, electric field and stress couple only to the orbital de-
gree of freedom and not to the spin [66]. In addition, spin-orbit interactions vanish
to first order in the ground state, as the orbital wavefunction is antisymmetric (see
Sec. 2.1.1) and thus has no orbital angular momentum [50]. Nevertheless, a non-zero
coupling between the spin degree of freedom and stress or electric fields exists due
to spin-orbit coupling between the ground and excited spin triplet states. Since this
coupling is suppressed by the energy splitting between both manifolds, this effect is
however small6 [100].

We first focus on the interaction of the NV spin with an electric field. From a
theoretical perspective, the coupling to an external electric field E = (Ex, Ey, Ez) is
described by the linear Stark effect [82]. The corresponding interaction Hamiltonian
is constrained by the C3v symmetry of the NV [105] and reads

Ĥel/h = Ĥel,0/h+ Ĥel,1/h+ Ĥel,2/h

= d‖EzŜ
2
z+

+ d′⊥Ex

(
ŜxŜz + ŜzŜx

)
+ d′⊥Ey

(
ŜyŜz + ŜzŜy

)
+

+ d⊥Ex

(
Ŝ2
y − Ŝ2

x

)
+ d⊥Ey

(
ŜxŜy + ŜyŜx

)
, (2.4)

where the subscripts 0, 1, and 2 refer to the difference of the electron spin quan-
tum numbers ms that are connected by the corresponding part of the Hamiltonian.

6Compared to the 3A2 ground state the 3E excited state is much more sensitive to the presence
of electric field and stress as its orbital doublet structure offers an orbital degree of freedom [74, 111].
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Figure 2.3.: Response of the NV ground state transition frequencies to static external
fields. a) An axial magnetic field B‖ causes a Zeeman splitting ∆Z of the hyperfine
states with ms = ±1, leading to a linear dispersion of the six possible spin transitions
from |0〉 to |−1〉 and |0〉 to |+1〉. Applying a transverse magnetic field B⊥ mixes
the hyperfine levels and results in a second-order shift of the transition frequencies.
b) An axial electric field E‖ slightly shifts |−1〉 and |+1〉 with respect to |0〉. Cor-
respondingly, the transitions show a very weak linear response characterized by d‖.
In a transverse electric field E⊥, |−1〉 and |+1〉 are mixed and split, resulting in a
linear Stark splitting ∆S of the hyperfine states. Note that for small electric fields
the response of the mI = ±1 states is suppressed by the hyperfine coupling, causing a
second-order response. c) Applying uniaxial stress with amplitude σ‖ along the NV’s
symmetry axis [111] induces a common-mode shift of |−1〉 and |+1〉 with respect to
|0〉 similar to an axial electric field, but with larger susceptibility. However, uniaxial
stress with amplitude σ⊥ transverse to the NV axis (e.g. along [101̄]) induces both a
splitting and a shift of |−1〉 and |+1〉. This is a direct consequence of the parameters
of the spin-stress interaction (see Eq. (2.6)), which consider the tensor character of
stress. d) Around T ≈ 300 K variations of the environmental temperature affect the
zero-field splitting D0 linearly, with dD0/dT = −74.2 kHz/K.
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The axial and transverse electric field susceptibilities are d‖ = 0.35 Hz cm/V and
d⊥ = 17 Hz cm/V [112], whereas the susceptibility d′⊥ has not been quantified ex-
perimentally or theoretically up to now, but is excepted to have the same order of
magnitude as d⊥ [82] and may be determined by the methods described in [105]. The
electric field interaction Hamiltonian (2.4) is universal for defects with C3v symmetry,
but was derived specifically for the NV in [82, 105]. Note that we will disregard the
effect of Ĥel,1 in the following, as it is suppressed by the zero-field splitting between
the ms = 0 and ms = ±1 states in the regime of weak magnetic fields we study within
this thesis.

Considering the reduced interaction Hamiltonian (2.4) we find two different types
of coupling mechanisms. First, there are symmetry-conserving interactions that only
shift the spin states (Ĥel,0), whereas symmetry-breaking interactions may mix the spin

levels (Ĥel,2). For example, an axial electric field, E = (0, 0, E‖), gives rise only to

the contribution of Ĥel,0, resulting in a common-mode shift of all ms = ±1 hyperfine

states with respect to the ms = 0 levels, which are not affected by Ĥel,0. Consequently,
the transition frequencies experience a linear Stark shift of d‖E‖, while the two-fold
degeneracy of the transitions is maintained (see Fig. 2.3b). On the other hand, in a
transverse electric field with amplitude E⊥ = (E2

x+E2
y)1/2 the |−1〉 and |+1〉 hyperfine

states are mixed and split according to D0 ± [(d⊥E⊥)2 + (mIAHF)2]1/2. Thus, the
mI = 0 transition frequencies experience a linear Stark splitting of ∆S = 2d⊥E⊥,
whereas for the mI = ±1 transitions the axial hyperfine coupling suppresses the
effect of electric perturbations in first order, resulting in a quadratic response.

The interaction between the NV spin and stress is more complicated than for the
electric field coupling. While the electric field has vector character, stress needs to be
described as a tensor to account for normal and shear stress components [113, 114].
Thus, stress-coupling results in more coupling coefficients that need to be considered
compared to electric field coupling. Indeed, the spin-stress interaction Hamiltonian
in its most general form compatible with the C3v symmetry requirements of the NV
is represented in an analogous way to the electric interaction Hamiltonian (2.4)7, but
contains six independent real coupling parameters. This interaction Hamiltonian has
been only recently derived completely [105] and reads

Ĥσ/h = Ĥσ,0/h+ Ĥσ,1/h+ Ĥσ,2/h
=MzŜ

2
z+

+Nx
(
ŜxŜz + ŜzŜx

)
+Ny

(
ŜyŜz + ŜzŜy

)
+

+Mx

(
Ŝ2
y − Ŝ2

x

)
+My

(
ŜxŜy + ŜyŜx

)
, (2.5)

where the parameters of the spin-stress interaction weight the components of the stress
tensor σ (given in crystal coordinates) with the corresponding spin-stress coupling
strength parameters (a1, a2, b, c, d, e) [105, 106].

7The Hamiltonians (2.4) and (2.5) represent both the most general form of the spin-electric and
spin-stress interaction compatible with the C3v symmetry. They satisfy the requirements of time-
reversal symmetry, the spatial symmetries of the point group, and the linearity in the corresponding
field [105].
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The resulting coupling parameters are given by

Mz = a1(σXX + σY Y + σZZ) + 2a2(σY Z + σZX + σXY ) , (2.6a)

Nx = d(2σZZ − σXX − σY Y ) + e(2σXY − σY Z − σZX) , (2.6b)

Ny =
√

3 [d(σXX − σY Y ) + e(σY Z − σZX)] , (2.6c)

Mx = b(2σZZ − σXX − σY Y ) + c(2σXY − σY Z − σZX) , (2.6d)

My =
√

3 [b(σXX − σY Y ) + c(σY Z − σZX)] . (2.6e)

Similar to the electric interaction Hamiltonian (2.4) the subscripts 0, 1, and 2 refer to
the difference in the electron spin quantum numbers ms connected by the correspond-
ing part of the Hamiltonian. Note that the spin-stress interaction Hamiltonian (2.5)
is given in the ‘hybrid’ representation, i.e. it is expressed in terms of the NV frame
components of the spin vector (Ŝx, Ŝy, and Ŝz) and the cubic frame components of
the stress tensor (σXX , σXY , . . . ), which reference the diamond lattice (see Fig. 2.1a).
For a representation of the spin-stress interaction Hamiltonian completely in the NV
frame we refer the reader to [105]. Up to now, measurements have yielded four of
the six spin-stress coupling strength parameters [104, 106], a1 = −4.4 MHz/GPa,
a2 = 3.7 MHz/GPa, b = 2.3 MHz/GPa, and c = −3.5 MHz/GPa in [104]. Us-
ing density functional theory it was found that the parameters d and e are in the
same order of magnitude as the other four parameters, d = −0.12 MHz/GPa and
e = 0.66 MHz/GPa [105]. Both parameters may be determined experimentally using
similar methods as for d′⊥ [105]. Note that we will neglect Ĥσ,1 from now on, as its
effect is suppressed by the zero-field splitting for weak magnetic fields, in analogy to
Ĥel,1 from Eq. (2.4).

If the mechanical deformation is characterized in terms of a strain tensor ε instead
of a stress tensor σ, the spin-strain interaction is described completely analogous to
Eq. (2.5), but with the substitutions σ 7→ ε and corresponding spin-strain coupling
strength parameters instead of the spin-stress susceptibilities (refer to [105, 106] for
more details).

To illustrate the spin-stress interaction on the ground state levels, we first con-
sider uniaxial stress applied along the NV axis. Such stress changes the relative
distance between the lattice atoms but maintains the C3v symmetry of the defect,
so that the energy of the |−1〉 and |+1〉 hyperfine states are increased (compressive
stress) or decreased (tensile stress) with respect to |0〉 [66]. The corresponding hyper-
fine transition frequencies shift linearly with the amplitude of the applied stress σ‖
according to ω/2π = (

√
3a1 + 2

√
3a2)σ‖, while maintaining the two-fold degener-

acy (see Fig. 2.3c). Uniaxial stress with amplitude σ⊥ applied transverse to the NV
axis breaks the trigonal symmetry of the NV, resulting in a mixing of the |−1〉 and
|+1〉 hyperfine states accompanied by a shift. The occurrence of both effects, i.e.
mixing and shifting, is a direct consequence of the tensor character of stress and re-
sults from the parameters of the spin-stress interaction given in Eq. (2.6). We obtain
ω±/2π = D0+(a1−a2)σ⊥±[(b+c)2σ2

⊥+(mIAHF)2]1/2 for the corresponding response
of the hyperfine transition frequencies, verifying the common-mode shift of all |−1〉
and |+1〉 (first term) and a splitting that depends on the nuclear spin projection mI

(second term). Again, the effect of the splitting is suppressed to first order for the
mI = ±1 transitions due to the axial hyperfine coupling, in analogy to the transverse
electric field.
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By comparing the spin-electric and spin-stress interaction Hamiltonians (2.4)
and (2.5) it becomes obvious that both perturbations can be treated in similar ways.
Consequently, we define the effective field as the combined strain and electric field [82].
In the NV’s coordinate frame it is represented by Π = (Πx,Πy,Πz), where its com-
ponents are Πx,y = d⊥Ex,y +Mx,y and Πz = d‖Ez +Mz. The interaction of the NV
ground state with the effective field can then be written as

Ĥeff/h = ΠzŜ
2
z + Πx

(
Ŝ2
y − Ŝ2

x

)
+ Πy

(
ŜxŜy + ŜyŜx

)
, (2.7)

where we neglected the coupling terms with ∆ms = ±18.
Comparing the electric field susceptibilities with the spin-stress coupling strength

parameters yields an important feature characterizing the effective field interaction.
While we find d⊥ ≈ 50d‖, all spin-stress coupling strength parameters are of compa-
rable magnitude. This implies that the average effect of a randomly oriented electric
field leads to a large splitting of the transition frequencies with a negligible common-
mode shift, while in the case of stress the splitting is accompanied by a common-mode
shift in the same order of magnitude [115, 116]. Thus, by averaging over an ensemble
of electric field and stress arrangements, one can differentiate between their relative
contributions to the effective field by considering the spectral response. This property
will be used in Chap. 6 to characterize the effective field of individual NV centers.

2.2.3. Temperature

At ambient conditions, temperature variations affect the NV ground state spin mani-
fold as well. In particular, it was found that the zero-field splitting D0 is temperature-
dependent and decreases slightly with increasing temperature T [107]. The linear dis-
persion valid around room temperature is characterized by dD0/dT = −74.2 kHz/K
(see Fig. 2.3d). As environmental temperature fluctuations cannot be completely sup-
pressed in our experiments, they constitute an important limitation of our experimen-
tal setup, which will be discussed later (see e.g. Sec. 3.3 for more details).

2.2.4. Hyperfine interaction with nuclear spins

When a single 13C nuclear spin occupies a lattice site in the vicinity of the NV center,
it can individually couple to the NV spin via the magnetic hyperfine interaction. The
general interaction Hamiltonian [88, 89] reads

Ĥ(C)
HF /h = Ŝ ·A · Î(C) , (2.8)

where Î(C) is the dimensionless nuclear spin operator of the 13C nucleus with I(C) =
1/2 and A the hyperfine tensor defined by

A =

Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

 . (2.9)

8To take account of these couplings additional effective field terms Σx,y = d′⊥Ex,y + Nx,y can
be introduced and correspondingly added to Hamiltonian (2.7).
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In the case of a weak external magnetic field applied along the NV axis, terms
proportional to Ŝx and Ŝy can be neglected within the secular approximation [117,
118]. This simplifies Hamiltonian (2.8) to

Ĥ(C)
HF /h = Ŝz

∑
i= x,y,z

AziÎ
(C)
i . (2.10)

Hence, the 13C hyperfine coupling causes a splitting and mixing of the NV’s hyper-
fine states |ms,mI〉, which in the present case are characterized by the additional
13C nuclear spin quantum number, |ms,mI ,m

(C)
I 〉, with m

(C)
I = ±1/2. To evaluate

how the |ms,mI〉 states with ms = ±1 split due to 13C hyperfine coupling, we diag-
onalize the complete interaction Hamiltonian. This Hamiltonian comprises Eq. (2.1),
Eq. (2.3), and Eq. (2.10) in combination with a Zeeman coupling of the 13C nuclear
spin, γCB · Î(C), where γC = 1.07 kHz/G is the gyromagnetic ratio of the 13C nuclear
spin [89]. For a parallel magnetic field, we find

∆(C) =
[
A2
zx +A2

zy + (Azz − γCB‖)
2
]1/2

+ γCB‖ . (2.11)

In reasonably low magnetic fields, the contribution of the nuclear Zeeman splitting
can be neglected, resulting in a hyperfine splitting of

∆(C) =
(
A2
zx +A2

zy +A2
zz

)1/2 ≡ A(C)
HF , (2.12)

where we introduced the 13C hyperfine coupling strength A
(C)
HF [88]. Note that only

certain discrete values for the hyperfine splitting were observed, as the 13C isotope
can only occupy discrete lattice sites in the vicinity of the NV. For example, the

13C nuclear spin
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spin (I = 1/2). Due to spin-spin interactions, the hyperfine levels of the NV ground
state experience an additional splitting according to the nuclear spin projection of

the 13C spin, m
(C)
I = ±1/2. The level scheme is given for a positive 13C hyperfine

parameter, A
(C)
HF > 0 with A

(C)
HF < AHF, and for negligible off-diagonal components

of the hyperfine tensor. Consequently, without any external field applied each of
the hyperfine states is two-fold degenerate, leading to six nuclear spin-conserving
transitions.
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maximum hyperfine coupling strength for a 13C placed in one of the nearest neighbor
lattice sites of the vacancy is 130 MHz [85], while for other proximal lattice sites, the
coupling strengths are in the order of ≈ 1 MHz. A detailed classification of possible
hyperfine couplings strengths is presented in [88, 89].

In Fig. 2.4 we illustrate the level splitting of the hyperfine states in the presence of
a nearby individual 13C nuclear spin when the off-diagonal terms are negligible and

A
(C)
HF > 0. At zero-field all ms = ±1 hyperfine states split into two sublevels with an

energy splitting A
(C)
HF . Consequently, there are six possible nuclear spin-conserving

transitions. As the involved sublevels are two-fold degenerate, the spin transitions
split into a total of twelve transitions in an external magnetic field.

2.3. MW spin manipulation

Up to now, we only considered the effect of static fields on the NV’s ground state,
causing static changes of the level structure. In contrast, time-varying external fields
introduce a time-dependence to the system. Specifically, magnetic fields in the MW
regime can be utilized to coherently control and manipulate the NV’s spin degree of
freedom [63, 64]. In this section, we introduce the technique of optically detected
ESR, which has been the workhorse for studying the NV’s response to the external
perturbations discussed in Sec. 2.2 [100, 107, 119, 120]. Moreover, we discuss coherent
manipulation pulse sequences used to investigate the relevant spin properties.

2.3.1. Magnetic dipole transitions

Magnetic dipole interactions are the dominant effect when an externally applied elec-
tromagnetic field couples to the NV spin in its ground state. As the ground state
is an orbital singlet, i.e. it has no orbital magnetic dipole moment, a harmonic MW
magnetic field Bmw(t) = Bmw cos(ωmwt) couples only to the spin magnetic dipole
moment, resulting in the time-dependent interaction Hamiltonian

Ĥmw(t) = −Bmw(t) · µ̂ , (2.13)

where the magnetic dipole moment operator reads µ̂ = −2µBŜ = −hγNVŜ. This
interaction Hamiltonian gives rise to transitions between an initial spin state |i〉 and
a final spin state |f〉. Applying the rotating wave approximation in a reference frame
rotating with angular frequency ωmw around the spin quantization axis, we find that
the system performs coherent oscillations between |i〉 and |f〉 with a ‘Rabi frequency’

Ωi,f =
1

~
|〈f |−Bmw · µ̂|i〉| = 1

~
∣∣Bmw · µi,f

∣∣ . (2.14)

Here, we introduced the magnetic dipole matrix elements

µi,f = 〈f |µ̂|i〉 = −2µB

〈
f
∣∣∣Ŝ∣∣∣i〉 , (2.15)

which can easily be evaluated for given |i〉 and |f〉 by using the definition of the spin
operator Ŝ from Eq. (2.2). According to Eq. (2.14) and Eq. (2.15) we can deduce two
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important aspects. First, from the magnetic dipole matrix elements µi,f we can derive
the selection rules for a magnetic dipole transition, i.e. transitions are only possible if
electron spin quantum number changes by ∆ms = ±1. Second, only MW magnetic
field components transverse to the NV axis yield non-zero Rabi frequencies for two
different spin states and are consequently able to drive spin transitions in the NV
ground state. Parallel components only induce time-varying shifts of the spin states,
which can yield a parametric drive [46].

The magnetic dipole moment operator defined in Eq. (2.15) additionally allows us to
infer information about the response of the spin transitions to MW fields with different
polarizations. To that end, we define the Stokes vector S = (S0,S1,S2,S3) [121],
whose components in the coordinate frame of the NV are given by

S0 = |µx|2 + |µy|2 (2.16a)

S1 = |µx|2 − |µy|2 (2.16b)

S2 = 2 Re(µ∗xµy) (2.16c)

S3 = −2 Im(µ∗xµy) . (2.16d)

Here, µx,y,z denote the components of the magnetic dipole matrix elements µi,f for
given |i〉 and |f〉. Note that the Stokes vector is normally used to determine the
polarization of a MW field and defined in terms of the field components instead of the
magnetic dipole matrix elements. However, to characterize the polarization response
of a spin transition, we consider the magnetic dipole matrix elements. These allow us
to deduce the MW field polarization that results in a maximum overlap in Eq. (2.14),
i.e. the polarization that drives the transition the best.

The Stokes parameters S0,1,2,3 can be interpreted in the following way: While S0

determines the degree of polarization for a MW field to optimally drive the spin
transition, S1, S2, and S3 characterize the polarization response of the transition. If
(S2

1 + S2
2 + S2

3 )1/2 < S0 the transition has a partially polarized response, otherwise
it has a fully polarized response. In the latter case, the transition response is gen-
erally described in terms of a polarization ellipse [121]. The shape of this ellipse is
thereby determined by polarization ellipse parameters S1,2,3 (see Fig. 2.5a). While
S1 and S2 indicate a linear polarization in a horizontal/vertical and diagonal/anti-
diagonal polarization plane, respectively, S3 denotes right/left circular polarization.
The polarization ellipse parameters can be visualized on the Poincaré sphere [121]
(see Fig. 2.5b), where the equator corresponds to purely linear polarization (S1- and
S2-axes), whereas the poles corresponds to purely circular polarization (S3-axis). Con-
sequently, if µi,f only has real components, we find S3 = 0, which implies a linear
polarization response. If the components of µi,f have, however, imaginary arguments
with the same magnitude, we find S3 6= 0, which corresponds to a circular polarization
response.

As an example we consider the |0〉 ↔ |±1〉 spin transitions in the NV ground state.
Using Eq. (2.15) we can calculate the magnetic dipole matrix elements

µ0,±1 = −
√

2µB
(
1,±i, 0

)
. (2.17)

From these, Eq. (2.16) allows us to obtain the normalized Stokes vector, which reads

S0,±1 =
(
1, 0, 0,±1

)
. (2.18)
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Figure 2.5.: Polarization response and its visualization on the Poincaré sphere. a) Ex-
amples of Stokes vectors S and the corresponding polarization responses. While S1

and S2 characterize a linearly polarized response, S3 implies a circular polarization
response. b) The Stokes parameters S1,2,3 corresponds to a point on or inside the
Poincaré sphere. Any transition on the sphere has a fully polarized response, other-
wise it has a partially polarized response. Antipodal points on the Poincaré sphere
refer to orthogonal polarization responses. As an example, the green points illustrate
the |0〉 ↔ |±1〉 spin transitions, which have a purely circular polarization response.

As the only non-zero polarization ellipse parameter is S3, both transitions exhibit a
purely circular polarization response, with |0〉 ↔ |−1〉 having a left circularly polarized
response and |0〉 ↔ |+1〉 having a right circularly polarized response. Thus, the two
spin transitions correspond to MW driving field polarizations located on opposite
poles of the Poincaré sphere (see Fig. 2.5b).

2.3.2. Electron spin resonance

By using MW magnetic fields we can address and manipulate the NV’s spin tran-
sitions, which will ultimately allow us to characterize the fundamental properties of
the NV spin and its environment. Typically, these studies are done by the general
manipulation pulse sequence illustrated in Fig. 2.6a. First, the NV spin is initialized
in |0〉 by optical means, i.e. a green laser pulse (see Sec. 2.1.3). Next, a MW magnetic
field is used to perform spin manipulation. Finally, the spin state is read out optically,
which also reinitializes the NV spin into |0〉 again. The specific MW manipulation
sequences used for spin characterization are discussed in the following.

To identify the spin transitions in the NV ground state we utilize optically detected
pulsed ESR (see Fig. 2.6b). To that end, the manipulation pulse sequence consists of
a MW pulse with fixed duration, whose frequency ωmw/2π is swept across the region
of interest [71, 122] (for a maximum contrast, the pulse length should induce a full
transition between the spin states, which is the case for a duration tπ, compare to
Sec. 2.3.3). When the MW frequency is near resonance with a specific NV spin tran-
sition, the MW field induces coherent oscillations between the involved states. The
consequent change in spin populations can then be read out by the spin-dependent
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fluorescence of the NV. In the resulting ESR spectrum, we typically observe six hy-
perfine transition dips, which are labeled according to their spin quantum numbers.
Here, an externally applied static magnetic field lifts the zero-field degeneracy of the
involved states according to the Zeeman effect (see Fig. 2.3a). The corresponding level
scheme is depicted in Fig. 2.6c.

Note that for the described ‘pulsed ESR’ technique the laser is switched off during
MW manipulation in order to eliminate laser power induced broadening, while MW
power is chosen to be low to minimize MW induced power broadening [122]. This pro-
cedure ensures that one can resolve the NV spin hyperfine structure, as the linewidth
of the transitions is then limited by inhomogeneous broadening. One can also per-
form continuous wave (CW) ESR spectroscopy, where the laser illumination and the
MW manipulation are constantly applied. This technique, however, only allows for
the observation of inhomogeneously broadened linewidths when all power levels are
carefully adjusted and will result in artificially broadened linewidths otherwise.
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Figure 2.6.: MW manipulation and ESR. a) General pulse sequence employed for
MW manipulation of the NV spin. In between the spin initialization and readout a
specific manipulation sequence (symbolically represented by the blue box) is applied.
We present these sequences for each of the manipulation techniques in the correspond-
ing figures. b) Pulsed ESR allows us to selectively probe and resolve the hyperfine
transitions. To that end, the MW manipulation field with amplitude Ωmw is switched
on for a certain period of time (typically τπ = π/Ωmw, corresponding to a ‘π-pulse’,
see Sec. 2.3.3) while we vary the MW frequency ωmw/2π. In the resulting spectrum
(here obtained at B‖ ≈ 2.5 G) we observe a pair of resonances with three hyperfine
transitions each. The pair corresponds to the electronic spin transitions |0〉 ↔ |±1〉
exhibiting a subdivision due to the hyperfine structure as illustrated in c). c) Level
diagram of the NV ground state under a non-zero axial magnetic field and neglecting
the quadrupolar interaction (see Sec. 2.1.2). The transverse MW manipulation field
(blue) drives the hyperfine transitions |0,mI〉 ↔ |±1,mI〉 with mI = 0,±1.
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2.3.3. Coherent spin manipulation

Characterizing the NV’s spin transitions via ESR is crucial for more complex spin
manipulation measurement protocols, which require resonant driving of these tran-
sitions [123–125]. Here, we focus on the three most common coherent manipulation
techniques, specifically Rabi, Ramsey, and spin echo spectroscopy.

Rabi oscillations

Initializing the NV spin into a specific superposition state requires the definition of
quantum coherent operations on the spin. The two most important rotation opera-
tions, the π- and π/2-pulse, can be defined by the Rabi pulse sequence. As described
previously, transverse MW fields quasi-resonant with a transition in the NV ground
state manifold can induce population transfer between the two coupled spin states, if
the respective transition is magnetic dipole-allowed, i.e. ∆ms = ±1. The dynamics of
the population transfer, however, depend on both the amplitude and duration of the
MW pulse. When the MW field amplitude is fixed while its duration is varied, the
spin populations of the two states exhibit coherent oscillations, a phenomenon known
as Rabi oscillations [126].

In Fig. 2.7a we present coherent Rabi oscillations driven on the |0〉 ↔ |−1〉 transition
and measured with the corresponding manipulation sequence. For this measurement,
we applied a parallel magnetic field B‖ = 1.82 G to split |−1〉 and |+1〉9. In the present
case of resonant driving, the spin population oscillates harmonically between the two
states with frequency Ωmw/2π. Applying the MW field for an interaction time τπ =
π/Ωmw completely inverts the spin population from |0〉 to |−1〉 – a situation denoted as
a ‘π-pulse’. Similarly, for a ‘π/2-pulse’, the MW field is applied for τπ/2 = π/(2Ωmw),
resulting in an equal superposition of both coupled states. Note that driving the
system slightly out of resonance, i.e. with a detuning δ = ωmw − ω0,−1 6= 0, results
in faster oscillations at the effective Rabi frequency Ω = (Ω2

mw + δ2)1/2, with less
contrast [114]. Moreover, as seen in Fig. 2.7a Rabi oscillations are damped, which
is a result environmental fluctuations coupling to the NV spin. The interactions of
the NV spin with its environment can be characterized by two time constants, the
inhomogeneous dephasing time T ∗2 and the homogeneous coherence time T2, which
we introduce in the following.

Free induction decay

To study the coherence properties of a single NV spin10, we first consider a super-
position of two states, e.g. of |0〉 and |−1〉. Due to the Zeeman interaction, the time
evolution of this superposition is highly sensitive to changes in the local magnetic
field, characterized by the accumulation of a relative phase between the two states.
Consequently, time-varying environmental fluctuations, e.g. induced by the dynamics
of the nuclear spin bath surrounding the NV spin, will randomize this relative phase,
a process often referred to as transverse relaxation or decoherence.

9Alternatively one can apply a circularly polarized MW field to selectively address either the
|0〉 ↔ |−1〉 or |0〉 ↔ |+1〉 transition even at zero magnetic field (see Sec. 2.3.1).

10In our case we investigate a typical shallow, single NV in a nanostructured, type-IIa diamond
(see Sec. 3.1).
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To characterize the decoherence mechanism we employ Ramsey or free induction
decay spectroscopy [128]. The underlying pulse sequence is presented in Fig. 2.7b.
First, the system is initialized into a superposition state by a π/2-pulse, after which
the spin is left to evolve freely for a duration τ . Finally, we project the spin state
into a measurable population difference by a second π/2-pulse, which allows us to
analyze the accumulated phase. The experimental result obtained on a hyperfine
resolved transition of a single NV shows a beating of frequencies with a Gaussian
decay envelope. The observed beating is caused by the hyperfine coupling of the NV
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Figure 2.7.: Coherent MW manipulation of the NV spin. a) Varying the duration τ
of the MW pulse while choosing the MW frequency on resonance with one of the
transition frequencies allows one to drive coherent Rabi oscillations. For the present
case we extract a Rabi frequency Ωmw/2π = 492(8) kHz and a decay TRabi = 32(3) µs
from fitting an exponentially damped single harmonic. b) To determine the inhomo-
geneous dephasing time T ∗2 we employ Ramsey spectroscopy. Two MW π/2-pulses are
applied with a varying evolution time τ in between. Using a Gaussian decay envelope
we obtain T ∗2 = 2.1(1) µs. c) For a spin echo an intermediate, refocusing π-pulse is
inserted into the Ramsey sequence and the inter-pulse delays τ before and after this
π-pulse are varied simultaneously. We apply a moderate magnetic field of B‖ = 30 G
to resolve periodic collapses and revivals of the signal, which are attributed to the
precession of the 13C nuclear spin bath. Fitting the data with an appropriate model
results in T2 = 219(31) µs for an exponential decay with exponent n = 1.2(3) [127].
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electron spin to the 14N nuclear spin, while the decay is attributed to both spin-
spin relaxation and inhomogeneous effects, i.e. different static field conditions during
each measurement cycle. Averaging over the subsequent variable phase accumulations
ultimately results in the observed decay. The characteristic timescale for this process
is the inhomogeneous11 dephasing time T ∗2 , which quantifies the decoherence process
under free (undriven) spin dynamics. In a weak parallel magnetic field of B‖ = 1.82 G,
the NV under study exhibits T ∗2 = 2.1(1) µs, limited by dipolar interactions between
the NV spin and the slow-varying spin bath of 13C nuclei [128].

Spin echo spectroscopy

To mitigate the effect of slow environmental fluctuations and to remove the inho-
mogeneous contribution to decoherence, spin echo spectroscopy can be employed.
This allows us to determine the homogeneous coherence time T2, the characteristic
timescales of spin-spin relaxation.

For a spin echo sequence [112, 117, 123] an additional π-pulse is inserted in the
Ramsey sequence, and positioned symmetrically between the two π/2-pulses (see
Fig. 2.7c). The π-pulse inverts the sign of the relative phase accumulated during
the second free evolution interval. Thus, the pulse sequence leads to a refocusing and
cancellation of the net accumulated phase, in particular of the random phase shift
caused by slowly varying noise components. A typical spin echo signal in a moderate
magnetic field (here B‖ = 30 G) shows periodic revivals at a rate set by the Larmor
precession frequency for the 13C nuclear spins, γC = 1.07 kHz/G [117]. This can be
understood by considering the NV’s phase accumulation. When the evolution time τ
matches half of the Larmor oscillation period 1/(2γCB‖) of the 13C nuclear spin, the
NV’s accumulated phase is maximized, resulting in the fast initial collapse of the
NV’s coherence. For τ = 1/(γCB‖) the accumulated phase is minimized due to the
refocusing, which leads to a revival of the spin coherence. This process is repeated
iteratively, so that the 13C precession induces periodic decorrelation and rephasing of
the nuclear spin bath, causing the observed collapses and revivals. The overall decay
of the revivals allows us to extract the NV’s homogeneous coherence time T2. To
that end, we fit our data using an appropriate fit function [127] including a damping
exponent n. We find T2 = 219(31) µs and n = 1.2(3). Besides the paramagnetic bath
fluctuations, T2 is also limited by environmental electric field noise originating from
the diamond surface. Consequently, T2 is highly dependent on the diamond sample
and additionally on the depth of the NV from the diamond surface. At room temper-
ature the maximum reported values for T2 reach up to 2 ms in isotopically purified
diamond [53, 130].

Long coherence times are highly desired in quantum technologies. Dynamical
decoupling techniques [32–34] can further suppress the decoherence processes and
thereby elongate the coherence time. However, these techniques suffer from experi-
mental complexities and are only severely compatible with quantum gate operations.
Alternatively, the decoherence process can be mitigated by using dressed spin states,
i.e. by driving the spin transitions continuously, as we will see in Chap. 3.

11For a single spin, T ∗2 is also referred to as time-averaged dephasing time [129].
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Spin lattice relaxation

Besides the transverse relaxation mechanism, the NV spin also undergoes longitudinal
relaxation, which influences the level populations by induced spin flips. More precisely,
such an energy relaxation process describes the decay of a polarized spin state into
a thermally mixed state. In case of the NV spin, the decay is mainly induced by
interactions with lattice phonons, so that this process is referred to as spin-lattice
relaxation12. The corresponding timescale is the spin-lattice relaxation time T1.

To determine the relaxation time T1 of the NV’s three level ground state, we need
to take all possible relaxation channels between the spin states into account [131]. In
particular, the transition rates between both |0〉 ↔ |±1〉 and |−1〉 ↔ |+1〉 have to
be considered and are given by Γ and γ, respectively (see Fig. 2.8a). The population
dynamics are then described in terms of rate equations, i.e. the population change
in each state corresponds to the sum of rates into and out of the state weighted by
the current populations [131]. Based on this relaxation model, T1 for the three-level
system of the NV ground state is found as

1

T1
= 3Γ + γ . (2.19)

This definition of the relaxation time ultimately sets the upper limit for the homoge-
neous coherence T2 ≤ 2T1 of any superposition spin state in the NV ground state.
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Figure 2.8.: Relaxation of the NV spin. a) The transition rates in the ground state
are denoted by Γ (|0〉 ↔ |±1〉 transitions) and γ (|−1〉 ↔ |+1〉 transition). While Γ
is mainly sensitive to magnetic field noise, the transition rate γ is sensitive to elec-
tric field noise. b) The complete measurement sequence to determine the relaxation
time T1 of the NV’s three-level system consists of four parts as depicted on the right.
To extract the two transition rates Γ and γ, various πj,k-pulses between states |j〉 and
|k〉 (j, k = 0,±1, but j 6= k) are used to initialize in |i〉 and read out the population
in |r〉, giving the signal Si,r. The resulting relaxation signals offer two different pop-
ulation decays, which are fitted with a corresponding exponential model [131]. From
the fits we obtain Γ = 60(14) Hz and γ = 190(81) Hz, resulting in T1 = 2.7(9) ms.

12Note that the interaction with lattice phonons is not the only mechanism contributing to lon-
gitudinal relaxation, as magnetic and electric noise at the frequency of the transition between two
states can induce relaxation as well.
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The right part of Fig. 2.8b presents the manipulation pulse sequences to extract the
two transition rates Γ and γ. The complete measurement consists of two sets of pulse
sequences. Using various resonant π-pulses, the pulse sequences probe the population
in |r〉 after the system was initially prepared in |i〉 and freely evolved for time τ ,
yielding the signal Si,r. Subtracting the two signals within a measurement set results
in the relaxation signal, which we fit with an exponential decay [131]. In the present
case of B‖ = 1.82 G, we find the transition rates Γ = 60(14) Hz and γ = 190(81) Hz.
Using Eq. (2.19) finally results in T1 = 2.7(9) ms. Note that due to its phonon-assisted
nature spin-lattice relaxation exhibits a strong temperature dependence, reaching T1

values up to ≈ 1 min at cryogenic temperatures [132].

2.4. Interaction with time-dependent strain fields

The discussed MW spin manipulation is limited by the magnetic dipole selection
rules, which only allow us to address the |0〉 ↔ |±1〉 spin transitions in the NV
ground state. Thus, coherent transitions between |−1〉 ↔ |+1〉 are difficult to access
using conventional magnetic resonance techniques. In recent years mechanical motion
has been investigated to overcome this limitation and to coherently manipulate the
NV’s spin degree of freedom through strain coupling [52, 102, 133, 134]. In particular,
hybrid spin-mechanical systems have emerged as an attractive platform to exploit the
quantum-coherent spin-mechanical interaction [65, 66].

According to Eq. (2.5) strain mixes |−1〉 and |+1〉 states. Applying time-varying
strain, e.g. induced by the fundamental mode of a diamond cantilever, to an embedded
NV, the state mixing is modulated dynamically, leading to a coupling between |−1〉
and |+1〉 [52]. In the case of a cantilever, driving spin transitions between |−1〉 and
|+1〉 requires the Zeeman splitting ∆Z to match the frequency of the mechanical
strain field, ωm/2π. Note that Eq. (2.5) is independent of the nuclear spin, i.e. strain
only couples states with the same nuclear spin projection mI (see Fig. 2.9a).

To verify coherent mechanical spin manipulation with ∆ms = ±2 we demonstrate
strain-driven Rabi oscillations between |−1〉 ↔ |+1〉 for a given hyperfine manifold
(here mI = +1, see Fig. 2.9a). The employed pulse sequence is illustrated in Fig. 2.9b.
After optical initialization of the NV spin, we swap the |0,+1〉 ↔ |−1,+1〉 populations
by a resonant π-pulse to prepare the system in |−1,+1〉. Then, the spin evolves for a
variable time τ under the presence of the resonant strain field, before another π-pulse
allows us to optically read out the spin population in |−1,+1〉. Fig. 2.9c shows the
resulting strain-induced, coherent Rabi oscillations with Ωm/2π = 1.14(1) MHz and
hardly any damping over the 30 µs observation time [52]. We note that due to the
long ring-up and ring-down times of the mechanical motion, it is experimentally not
possible to switch on and off the mechanical drive. Typical values of ring-down times
are ≈ 100 µs, far exceeding the timescales of our applied pulse sequences (tπ ≈ 500 ns).
This, in combination with the non-zero length of the MW pulses, reduces the contrast
of the mechanical Rabi oscillations to ≈ 80 % due to incomplete population transfer
during the initial and final π-pulses.
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Figure 2.9.: Coherent spin manipulation with strain fields. a) While transverse MW
fields coherently drive transitions between |0〉 ↔ |±1〉 (blue), time-dependent trans-
verse strain fields coherently address transitions between |−1〉 ↔ |+1〉 (red). Note
that in both cases only states with the same nuclear spin projection mI are driven.
b) Pulse sequence employed to demonstrate strain-induced coherent spin drive in
terms of Rabi oscillations in the |−1〉 ↔ |+1〉 manifold. For initialization and readout
of the spin, a π-pulse between |0〉 and |−1〉 is used. c) Mechanically driven Rabi
oscillations between |−1〉 ↔ |+1〉 mediated by transverse strain. The fit yields a Rabi
frequency Ωm/2π = 1.14(1) MHz and a decay time TRabi = 48(10) µs.

Having direct access to the magnetic dipole forbidden |−1〉 ↔ |+1〉 transition opens
the door to several interesting operations. For example, this enables new types of spin-
based sensing or even enhances current magnetometry protocols [135, 136]. Moreover,
combining strain driving with standard MW spin manipulation allows us to address all
three spin transitions in the NV ground state simultaneously and coherently, thereby
forming a closed ‘∇-system’ [49]. Such a system, which is at the heart of this thesis,
may find particular value in quantum-assisted sensing and quantum optomechanics
and will be discussed extensively in the following chapters.



3. Coherence protection under
closed-contour driving

Three-level quantum systems are an indispensable platform in quantum optics. Ex-
tending the well-studied capabilities of two-level systems, three-level systems give rise
to diverse physical phenomena based on the interference between different, simultane-
ously driven excitation pathways [137, 138]. Typically, two out of three transitions are
addressed by coherent driving fields, leading to effects like coherent population trap-
ping [21, 22], electromagnetically induced transparency [23], and STIRAP [24, 25].
These phenomena rely on the special properties of the eigenstates of the driven sys-
tem, the so-called dressed states. In the mentioned examples the crucial dressed states
are formed by mixing two of the three undriven states.

Introducing an additional third driving field and thereby addressing all available
transitions coherently extends the diversity of three-level systems further and gives
rise to previously inaccessible effects [49]. Specifically, in such a closed-contour inter-
action scheme, novel system dynamics arise caused by interfering pathways. These
interferences depend on the relative phase of the driving fields, which can be re-
duced to a single parameter, the global phase Φ [139]. The global phase thereby fully
determines the system’s dynamics and controls the quantum interference phenom-
ena [49, 140, 141]. These effects can, in turn, be described by the eigenstates of the
fully driven three-level system, i.e. dressed states, which will turn out to be equal,
coherent superpositions of all three undriven spin states.

The properties of three-level dressed states emerging from closed-contour driving
remain, however, largely unexplored. Studying these dressed states is severely com-
plicated in most experimental systems due to prevailing selection rules attributed to
the transitions. As a consequence of symmetry, not all of the three transitions adhere
to the same selection rules, i.e. they cannot all be dipole-allowed for the same type of
driving field. Systems combining electric and magnetic dipole transitions overcome
this limitation, but their experimental observation of the coherent dressed-states’ dy-
namics was limited by prevalent dephasing [142–146]. This was overcome in a recent
demonstration of the coherent circulation of MW photons in three coupled supercon-
ducting qubits [147]. Yet this study does neither offer a complete characterization
of the system’s dynamics nor a systematic analysis of the coherence times of the
occurring dressed states.

In this chapter, we introduce the experimental methods we employed to imple-
ment three-level dressed states in a closed-contour interaction scheme and provide
a thorough characterization of their properties [114, 148]. To that end, we exploit
a unique combination of coherent MW and strain driving to realize and study such
dressed states in the ‘∇-system’ of the NV’s S = 1 ground state. We start with a
brief overview of the experimental setup and the measurement techniques before we
present a detailed study of the influence of the global phase on the coherent dynamics
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of the system and the remarkable properties of the dressed states. Most significantly,
owing to the nature of the dressed states, the global phase serves as a powerful handle
to protect them from environmental noise and thereby prolongs their coherence times
by nearly two orders of magnitude compared to the NV’s inhomogeneous dephasing
time, even for moderate continuous driving strengths. Thus, dressed states emerg-
ing from closed-contour interaction driving constitute a novel dynamical decoupling
approach with interesting perspectives for future technology applications.

The results presented here have been published in [148].

3.1. Experimental implementation

Our experimental approach to realizing three-level dressed states that emerge under
closed-contour interaction is based on individual NV spins in a hybrid spin-mechanical
system (see Fig. 3.1a). The sample under investigation for all experiments within the
scope of this thesis is an electronic grade diamond (Element Six) implanted with
14N (dose 109 ions/cm2, energy 12 keV) and subsequently annealed using a high-
temperature annealing process [149]. Hence, implanted NV centers are located at
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Figure 3.1.: Realization of dressed states under closed-contour driving in the S = 1
NV ground state. a) Schematic of the experimental setup. The single NV center under
investigation (red) is embedded in a diamond cantilever. To enable strain driving of
the NV spin a piezoelectric actuator drives the cantilever resonantly. A nearby wire is
used for MW delivery. Strain and MW manipulation fields are generated by a function
generator and a MW signal generator and are mutually phase-locked to ensure control
over the global phase Φ. To optically initialize and read out the NV spin we use a
confocal microscope. b) The electronic spin sublevels of the NV ground state form
a three-level system. In an external magnetic field, the Zeeman splitting ∆Z lifts
the degeneracy of |−1〉 and |+1〉, so that all spin transitions can be individually and
coherently addressed. MW fields drive the |∆ms| = 1 transitions (blue), while strain
is used to address the |∆ms| = 2 transition (red). The manipulation fields have
frequency ωi/2π, amplitude (Rabi frequency) Ωi, and phase φi (i = 1, 2, 3).
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a depth of ≈ 17(6) nm below the surface, as estimated from implantation profiles us-
ing the software SRIM [150]. To structure cantilevers with dimensions in the range of
0.5(2)×3.5(1)×(15−45) µm3 in thickness, width, and length, we use well-established
techniques for diamond fabrication [151]. All underlying steps to fabricate such dia-
mond cantilevers are discussed in great detail elsewhere [114].

To optically address single NV centers we use a homebuilt confocal microscope
setup [52, 103, 152]. It allows us to readily initialize the NV spin state via optical
pumping from a laser, whereas we collect the spin-dependent red NV fluorescence for
optical spin state readout [55]. For a detailed description of the microscope setup we
refer the reader to [114]. Additionally, three pairs of magnetic coils allow us to apply
an external magnetic field with full vector control (see App. A.1.1).

Manipulation of the NV spin is achieved through two different methods. First,
a nearby gold wire with a diameter of ≈ 30 µm close to the NV under study acts
as a near-field MW source. The delivered MW magnetic fields are generated by a
MW circuit (see App. A.1.2) and allow us to drive transitions between electronic spin
levels with |∆ms| = 1. Second, resonantly driving the utilized cantilever at its eigen-
frequency1 induces a time-varying strain field, which is controlled by a piezoelectric
transducer. To that end, we apply an external static magnetic field to bring the Zee-
man splitting of |−1〉 and |+1〉 into resonance with the mechanical driving field while
we maximize strain coupling by investigating a single NV close to the clamping point
of the cantilever [102, 103]. This hybrid approach allows us to individually control the
amplitudes, relative phases, and frequencies of all driving fields. All measurements
present in this work are performed under ambient conditions.

3.2. Dressed states under closed-contour interaction

To dress the S = 1 electronic spin ground state of a single NV center in a closed inter-
action contour, we combine both spin manipulation techniques discussed above (see
Fig. 3.1b). Specifically, while MW magnetic fields address the |0〉 ↔ |±1〉 transitions
coherently [63, 64], strain coherently drives the nominally magnetic dipole-forbidden
|−1〉 ↔ |+1〉 transition [52, 134]. As strain only couples hyperfine levels with the same
nuclear spin quantum number mI , we restrict ourselves to the nuclear spin subspace
with quantum number mI = +1 for experimental simplicity [52].

To meet the requirement that the Zeeman splitting ∆Z of |−1〉 and |+1〉 is in reso-
nance with the driving frequency ω3/2π = 5.8679 MHz of the cantilever under study,
i.e. ∆Z = ω3/2π, we apply an axial magnetic field B‖ = 1.82 G. Correspondingly, the
frequencies of the two MW fields are set to ω1,2 = 2πD0±ω3/2. The amplitudes (Rabi
frequencies) of all fields are controlled by either the amplitude of the piezo excitation
(Ω3) or the MW power delivered to the MW source (Ω1,2). While Ω3 remains constant
throughout our experiments2, we can control the MW field amplitudes Ω1,2 arbitrar-
ily, which will be a fundamental requirement for the following chapters. Additionally,

1For all the experiments presented in this thesis we use a cantilever with dimensions 0.5(2) ×
3.5(1) × 43(2) µm3 for thickness, width, and length, which results in a measured eigenfrequency of
5.8679(1) MHz.

2This is a direct consequence of the sizable quality factor of our cantilever (≈ 500), which prevents
us to switch on and off the mechanical drive on the required ns timescale (see Sec. 2.4).
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all three fields are generated in a phase-locked manner, allowing us to tune the rel-
ative phases φ1,2,3 and thereby providing full, coherent control of the closed-contour
system.

Considering the combined action of the three driving fields, the dynamics of the
closed-contour interaction scheme in an appropriate rotating frame [139, 153] are
described by the time-independent Hamiltonian

Ĥ0/~ =
1

2

 2δ1 Ω1 Ω3 eiΦ

Ω1 0 Ω2

Ω3 e−iΦ Ω2 2δ2

 , (3.1)

if the three-photon resonance ω1 + ω3 = ω2 is fulfilled (see [114, 148] for a detailed
derivation). Hamiltonian Ĥ0 is expressed in the basis {|−1〉 , |0〉 , |+1〉} and δ1,2 are
the detunings of the MW driving fields from the |0〉 ↔ |±1〉 transitions (see Fig. 3.1b).
Importantly, the resulting spin dynamics are dependent on the well-defined, gauge-
invariant global phase Φ = φ1+φ3−φ2, where φi (i = 1, 2, 3) are the individual driving
field phases. In the following, we will focus on the case of resonant and symmetric
driving, i.e. δ1,2 = 0 and Ω1,2,3 ≡ Ω. Here, we can readily diagonalize Ĥ0, resulting
in the dressed eigenstates

|Ψk〉 =
1√
3

(
ei(Φ/3−kϕ0), 1, e−i(Φ/3−k/ϕ0)

)
, (3.2)

with corresponding eigenenergies

Ek/~ = Ω cos(Φ/3− kϕ0) , (3.3)

where ϕ0 = 2π/3 and k = 0,±1. Note that each of the dressed eigenstates is an equal
superposition of the three NV spin states, i.e. the dressed states carry zero angular
momentum and are, therefore, expected to be insensitive to magnetic fields to first
order, as long as no degeneracy is present.

To provide a baseline for our subsequent studies of the three-level dressed states,
we first characterize the system’s dynamics under the closed-contour interaction. To
that end, we measure the time evolution of the NV spin population for various values
of Φ with Ω/2π = 500 kHz using the experimental sequence shown in Fig. 3.2b. For
each value of Φ, a green laser pulse initializes the NV spin in |ψ(τ = 0)〉 ≡ |0〉, which
can be expressed as equal superposition of all three dressed states,

|ψ(τ = 0)〉 = (|Ψ−1〉+ |Ψ0〉+ |Ψ+1〉)/
√

3 . (3.4)

We then let the system evolve under the influence of the three driving fields for a
variable evolution time τ . To monitor the time evolution

|ψ(τ)〉 = e−iĤ0τ/~ |ψ(0)〉 , (3.5)

we finally apply an additional green laser pulse to read out the final population in |0〉,

P|0〉(τ) = |〈0|ψ(τ)〉|2 . (3.6)
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Figure 3.2.: Phase-dependent spin dynamics under closed-contour driving. a) Time
evolution of the population P|0〉(τ) as a function of global phase Φ after initialization
in |0〉. Quantum interferences induced by the closed-contour driving cause a periodic
evolution of P|0〉(τ). The interference pattern shows a strong Φ-dependence of period
and decay times. b) Pulse sequence used for studying the closed-contour dynamics.
After initialization in |0〉, the MW fields are switched on instantaneously. The system
then evolves under the presence of all fields for a time span τ , before the population in
|0〉 is read out. An additional π-pulse (dashed box) is required to read out the popula-
tions in |−1〉 or |+1〉 shown in c). c) Time evolution of the |ms〉 populations, P|ms〉(τ)
with ms = 0,±1 for Φ = π/2, 0, and −π/2 (top, middle, and bottom, respectively).
For Φ = π/2 (−π/2) the population circulates clockwise (counterclockwise) in the
three-level system indicating non-reciprocal character of the closed-contour driving.
For Φ = 0 the population oscillates between |0〉 and an equal superposition of |−1〉
and |+1〉.
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The resulting data, which is presented in Fig. 3.2a, shows oscillations of P|0〉(τ)
in time, with a π-periodic dependence of the population dynamics on Φ. Looking
closely at the spectrum reveals that the decay times of the oscillations also depend
on the global phase. For example, at Φ ≈ 0, the decay times are very short, while
at Φ ≈ −π/4 the oscillations are long-lived. We will investigate and discuss this
phase-dependent decay in the next section.

To complete the picture of the system’s dynamics, we monitor the populations
P|±1〉(τ) in |−1〉 and |+1〉 for Φ = 0,±π/2 as presented in Fig. 3.2c. This mea-
surement is achieved by applying a MW π-pulse resonant with the |0〉 ↔ |−1〉 or
|0〉 ↔ |+1〉 transition at the end of the time evolution (dashed box in Fig. 3.2b).
The resulting coherent spin dynamics show that, at Φ = π/2 (−π/2), the spin ex-
hibits clockwise (counterclockwise) circulation between |0〉, |+1〉, and |−1〉, thereby
demonstrating time-reversal symmetry breaking population transfer for these values
of Φ (see Fig. 3.2c, top and bottom). This behavior is in perfect analogy with elec-
tron dynamics on a closed loop interacting with a synthetic magnetic flux Φ [147].
Conversely, for Φ = 0, the spin population oscillates between |0〉 and an equal super-
position of |−1〉 and |+1〉 in a ‘V-shaped’ trajectory (see Fig. 3.2c, middle). These
findings provide an intuition for the strong influence of Φ on the spin dynamics and
the corresponding dressed states. For a more detailed discussion of the results and
a direct comparison of the experimental results with numerical simulations using the
Hamiltonian (3.1) we refer the reader to [114, 148].

3.3. Phase dependent coherence protection

Our experiments not only allow us to characterize the system’s dynamics as a function
of global phase, but to also directly access the dressed states’ eigenenergies Ek from
Eq. (3.3). After we initialize the system in |ψ(τ = 0)〉 = (|Ψ−1〉 + |Ψ0〉 + |Ψ+1〉)/

√
3

(see Eq. (3.4)), each dressed state |Ψk〉 acquires a dynamical phase Ekτ/~ (see black
lines in Fig. 3.3a). This phase accumulation leads to a time-dependent phase difference
between the dressed states, which in turn governs the time evolution (see App. A.2).
Thus, P|0〉(τ) will oscillate in time at frequencies that correspond to the differences in
the eigenenergies of the states, i.e. ∆m,n = (Em−En)/h with m,n = 0,±1, but m 6= n
(see colored arrows and lines in Fig. 3.3a and b). As there are three possible pairs
of dressed states, we expect to observe three beat frequencies in our measurements.
This is verified by a Fourier transformation of P|0〉(τ) from Fig. 3.2a, which reveals
the ∆m,n and thereby the dressed states’ eigenenergies for any given Φ (see Fig. 3.3c).

The resulting frequency spectrum shows overall good agreement with the predicted
spin transition frequencies for the undisturbed system, i.e. δ1,2 = 0 (see Eq. (3.3) and
colored lines in Fig. 3.3c). However, around Φ ≈ 0,±π there are discrepancies between
the expected and measured frequency components, as we find avoided crossings in-
stead of the expected crossings in the frequency spectrum. Indeed, this observation
indicates the vulnerability of the dressed states at these phase values to environmental
fluctuations and slow drifts, which disturb the closed-contour interaction scheme. In
particular, the most relevant noise sources are amplitude noise of the driving fields
causing variations in the Rabi frequencies Ωi, environmental magnetic fluctuations
induced by nearby nuclear 14N or 13C spins, and drifts in the zero-field splitting D0
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Figure 3.3.: Eigenenergy and transition frequency spectra of the three-level dressed
states. a) Calculated eigenenergies Ek as a function of Φ for zero (black) and non-zero
(gray) detunings δ1,2 for Ω/2π = 500 kHz. Two nearly degenerate dressed states are
vulnerable to environmental fluctuations, which disturb the closed-contour interaction
system causing the avoided crossings at Φ ≈ 0,±π. The colored arrows indicate the
expected spin transition frequencies ∆m,n. b) Spectrum of spin transition frequen-
cies |∆m,n| as a function of Φ for zero (colored) and non-zero (gray) detunings. The
magnitude of the deviations between both cases is a measure of the system’s vulnera-
bility to environmental noise. For Φ ≈ ±π/4,±3π/4 the central transition frequencies
are to first order not affected by detunings indicating a coherence protected spectral
component. c) Discrete Fourier transformation of the data shown in Fig. 3.2a. The
observed spin precession frequencies agree well with the calculated |∆m,n| for zero
detunings (blue, red and green). The discrepancies around Φ ≈ 0,±π arise from
environmental magnetic fluctuations. The observed Fourier amplitude (contrast) is
inversely proportional to the linewidth and, therefore, gives an indication of the decay
time for each spectral component.
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due to temperature fluctuations [107]. The latter two lead to variations in the de-
tunings δ1,2 of Hamiltonian (3.1). The resulting, non-resonant (δ1,2 6= 0) driving lifts
the degeneracies of the dressed states at Φ ≈ 0,±π (see gray, dotted lines in Fig. 3.3a
and b, for which we chose δ1/2π = −δ2/2π = 50 kHz). This simplified approach
illustrates the effect of environmental fluctuations on the dressed states. However, we
stress that it is not a proper description of the experiment, as the interplay between
the different noise sources is far more complex. In [114, 148] a careful modeling of
these environmental noise effects is presented, yielding a good qualitative agreement
between simulations and experimental data.

The dressed states’ vulnerability to environmental fluctuations is also illustrated
in Fig. 3.3b. The deviations of the transition frequencies between the unperturbed
(colored) and perturbed (gray) system are a measure for the degree of vulnerabil-
ity of the corresponding dressed state subspace to environmental noise. The largest
deviations are present for Φ ≈ 0,±π, whereas for Φ ≈ ±π/4,±3π/4 the central
transition frequency is not affected by detunings indicating a coherent protected sub-
space. Therefore, we expect the decay times T dec of the dressed states to vary with Φ,
having minima at Φ ≈ 0,±π and maxima at Φ ≈ ±π/4,±3π/4. This effect is qual-
itatively confirmed by the phase-dependent interference pattern in Fig. 3.2a, where
the interference fringes decay fastest for Φ ≈ 0,±π and have some long-lived spectral
components for phase values in between. Fig. 3.3c gives additional insights in the
decay times of the different spectral components. For a given Φ the three frequency
components are characterized by different peak amplitudes. As these amplitudes are
inversely proportional to the linewidths, they are a direct measure for the decay times.
Hence, the decay times of the three spectral components are in general not equal, i.e.
T dec
−1,0 6= T dec

+1,0 6= T dec
+1,−1. Moreover, the expected maxima of the decay times at

Φ ≈ ±π/4 (for T dec
±1,0) and Φ ≈ ±3π/4 (for T dec

+1,−1) are indicated.
We further analyze the phase-dependent decay times and present detailed popula-

tion oscillation data taken at Φ = 0 (top) and Φ = −π/4 (bottom) in Fig. 3.4a. By
fitting the time traces with a sum of three exponentially decaying sinusoids [114], we
find evidence for the expected significant enhancement of the dressed state coherence
time from T dec

−1,0 = 9(2) µs at Φ = 0 to T dec
−1,0 = 125(28) µs at Φ = −π/4. To systemati-

cally quantify the decay times as a function of Φ, we repeat this procedure for the data
in Fig. 3.2a and extract the decay times T dec

m,n for each frequency component ∆m,n (see
Fig. 3.4b). The resulting phase-dependence of the decay times confirms our expec-
tations, exhibiting pronounced maxima at Φ ≈ ±π/4,±3π/4. These long coherence
times result from the fact that at these global phase values, the corresponding two
dressed states respond in the same way to environmental magnetic field noise (see
Fig. 3.3a). In general, a long coherence time implies a highly predictable relative
phase between two dressed states, which is directly linked to the noise vulnerability
of their transition frequencies in Fig. 3.3b. We calculate the phase relation between
two dressed states analytically with perturbation theory to model the decay times
T dec
m,n (see [148] for further details). The result (dashed lines in Fig. 3.4b) reveals that

at the phase values where T dec
m,n peaks, two dressed states exist whose eigenenergies

show the same perturbative response to magnetic field fluctuations, even up to fourth
order [148]. These pairs of states then form a subspace that offers efficient coher-
ence protection, and for which T dec

m,n should theoretically approach the spin relaxation

time. We attribute the significantly reduced value of T dec
−1,0 ≈ 105 µs measured at
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Figure 3.4.: Phase-controlled coherence protection of closed-contour dressed states.
a) Time evolution of P|0〉(τ) for Φ = 0 (top) and Φ = π/4 (bottom) including a
fit with three exponentially damped harmonic frequency components (black). The
resulting decay times T dec

m,n reveal a strong phase dependence, varying between T dec
−1,0 =

9(2) µs (Φ = 0) and T dec
−1,0 = 125(28) µs (Φ = −π/4) for the most long-lived spectral

component. b) Systematic study of T dec
m,n as function of Φ obtained by fitting the data

from Fig. 3.2a. The decay times are minimal for Φ ≈ 0,±π, while having pronounced
maxima at Φ ≈ ±π/4,±3π/4. The dashed lines are the result of a second-order
perturbative caluculation of T dec

m,n [148]. The observed asymmetry with respect to
Φ = 0 is caused by slow environmental drifts, for example of the zero-field splitting.
Note that the extracted decay times differ slightly from those presented in panel a),
as the data originate from separate measurements and thus under a different noise
environment. All error bars represent 95 % confidence intervals of the fits.
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Φ = −π/4 to driving field fluctuations – a hypothesis that is quantitatively supported
by numerical modeling [148]. Additionally, compared to the theoretical calculation,
our data shows an unexpected, though strong asymmetry of the decay times, most
prominently visible in the varying magnitude of the four local maxima in Fig. 3.4b.
This behavior is induced by slow experimental drifts in the zero-field splitting due
to temperature variations and is also quantitatively reproduced by simulations that
take these drifts into account [148]. Nevertheless, the theoretical and experimental
results demonstrate that the global phase does not only control the dynamics under
closed-contour driving but also serves as a handle to decouple the dressed states from
magnetic fluctuations, thereby effectively protecting the NV spin.

3.4. Conclusion and outlook

To summarize, by combining coherent MW and strain manipulation we have estab-
lished dressed states emerging from closed-contour driving of the three-level system in
the NV’s ground state. Compared to prior work on coherence protection by continuous
driving [43, 44, 52, 154], such dressed states can be efficiently decoupled from envi-
ronmental magnetic noise at comparatively weak driving fields, Ω/2π = 500 kHz. The
decoupling we achieved is thereby far more efficient than comparable schemes relying
on coherent driving of two-level systems. At the same time, experimental complexity
is reduced compared to approaches based on multiple MW fields [155]. Our results
evidence that the global phase in such a closed-contour interaction scheme serves as a
useful control parameter not only for the system’s coherent dynamics but also for the
tunable decoupling mechanism of the dressed states. The phase-dependent coherence
protection is explained in terms of the eigenenergies of the underlying Hamiltonian
and their response to environmental noise. Specifically, the dressed states offer de-
coupling from magnetic field noise up to fourth order for certain phase values [148].
Additionally, our analysis indicates that further experimental improvements would
make dressed states approaching T1 limited inhomogeneous dephasing times feasible.

To realize such improved coherence protection, stabilizing and controlling the ex-
perimental environment is unavoidable. This may be realized by implementing a
temperature stabilization in terms of a Peltier element in the setup to minimize drifts
in zero-field splitting or to perform the experiment in more stable environments like in
vacuum and/or cryogenic conditions. Additionally, using driving fields with less am-
plitude noise would improve the decoupling mechanism of the dressed states. With
that, even larger driving amplitudes would be achievable without being limited by
driving field fluctuations.

Our dressed states emerging in a three-level closed-contour scheme have promis-
ing application perspectives. Recently, efficiently decoupled two-level dressed states
have been established as a powerful resource for sensing gigahertz fields [47, 156].
Combing these sensing schemes with the tunability and coherence protection of our
dressed states offers interesting avenues for enhanced sensitivities and phase-tuning
of the sensing frequencies. Our dressed state can also be used as built-in sensors to
study the phase noise in our hybrid spin-mechanical system, as for Φ = ±π/2 the
eigenenergies depend linearly on the phase. Moreover, the time-reversal symmetry
breaking character of our dressed states is in strong analogy to recent realizations
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of synthetic gauge fields in optomechanical systems [157]. This analogy opens in-
teresting resources, for example for realizing on-chip, non-reciprocal MW elements,
such as MW circulators or directional amplifiers, using ensembles of NV centers with
engineered dissipation. In the context of quantum information processing the explo-
ration of the coherent coupling of the dressed states to nearby nuclear spin [158] or
the investigation of non-Abelian geometric phases induced in a subspace of two de-
generate dressed states at Φ = 0,±π to implement error-resistant geometric quantum
gates [159] offers exciting routes.

However, the measurements up to now have only addressed the preparation of a
superposition of the three dressed states (see Eq. (3.4)). To take full advantage of
the dressed state manifold and the prolonged coherence times, it is imperative to
establish fast and robust initialization of individual, well-defined dressed states as
well as precise coherent manipulation via applied control fields – an issue, which will
be discussed in the next chapters.





4. Initialization of three-level dressed
states using STA

Decoherence of quantum states is one of the main obstacles to their operation in
quantum sensing [81, 96, 160] and quantum information processing [161, 162], as it
limits the sensitivity and the number of executable quantum gates. Therefore, quan-
tum states require an efficient protection from environmental fluctuations [163, 164],
which is primarily achieved by pulsed dynamical decoupling [27–29, 31]. However,
these protocols suffer from drawbacks including experimental complexity and vul-
nerability to pulse errors [165]. In contrast, dressed states generated by continuous
dynamical decoupling yield efficient coherence protection [39, 44, 52, 154, 166] in
a robust and experimentally accessible way that is readily combined with quantum
gates [41–43, 167]. In particular, the three-level dressed states emerging under closed-
contour driving introduced in Chap. 3 exhibit outstanding decoupling from magnetic
noise even for comparatively weak driving fields and thereby go beyond what is offered
by driven two-level systems [114, 148].

A major challenge for further applications of such dressed states, however, is the
difficulty in performing fast, high-fidelity initialization into individual, well-defined
dressed states. Up to now, such initialization has focused on two-level systems and
has mainly used adiabatic state transfer [41, 43], without characterizing the resulting
transfer fidelities in detail. Despite their robustness to experimental imperfections,
adiabatic protocols generally suffer from a tradeoff between speed and fidelity. The
processes must be slow to maintain fidelity, but fast enough to avoid decoherence
during the state transfer. For experimentally achievable driving field strengths, this
tradeoff and the remaining sources of decoherence form a key limitation to further
advances in the use of dressed states in quantum applications.

‘Shortcuts to adiabaticity’ (STA) [168–173] provide a useful toolbox to remedy and
overcome the stated limitations. These approaches mitigate decoherence by designing
fast dynamics that reproduce the results of a slow, adiabatic evolution, thus offering
accurate operations despite a noisy environment within minimized process times [173].
STA protocols have been studied theoretically [159, 174–178] and implemented exper-
imentally [179–182] with NV centers, but besides the theoretical proposal [159] none
of the experimental realizations has been focused on the complete three-level system
in the NV ground state so far.

In this chapter, we combine STA and the coherence protection provided by closed-
contour, coherent driving of the NV spin in its ground state and demonstrate the
initialization of well-defined, individual dressed states. Besides the inherently slow
adiabatic transfer protocols, we exploit STA protocols to realize fast and robust state
initialization. Using STA protocols, we accelerate the transfer speed by a factor of
2.6 compared to the adiabatic approach. We further show bidirectionality of the STA
state transfer, which allows us to determine a transfer fidelity of 99.0(3) % bounded
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by experimental limitations. We finally present a first proof of principle of coherent
control in the dressed state manifold. Thus, our results enable direct and efficient ac-
cess to the coherence-protected dressed states introduced in Chap. 3 and thereby offer
attractive avenues for their room temperature application to quantum technologies.

The presented results have been published in [183].

4.1. State transfer to the dressed state manifold

Faithfully transferring a quantum system from an initial to a desired final state is
a central topic of quantum physics. A commonly applied approach to realize such
state transfer relies on the adiabatic theorem. Its basic idea is that the quantum
system remains in an instantaneous eigenstate if the variation of the Hamiltonian
is slowly enough and if there is always an energetic gap to the other instantaneous
eigenstates [184]. In other words, gradually changing conditions allow the system to
adapt its configuration and to undergo an evolution that is referred to as adiabatic.
To ensure adiabaticity the energy separation of the instantaneous, adiabatic eigen-
states needs to be much larger than their mutual coupling at each instant in time. If
this criterion is, however, not fulfilled, i.e. the changes of the control parameters are
too fast, the evolution will generally have diabatic (nonadiabatic) character, which
ultimately results in mixing of the adiabatic eigenstates [184]. In this context, STA
represent theoretically developed methods, which design fast routes to the final state
of an adiabatic change by avoiding diabatic errors. For an illustrative analogy to the
STA approach, we consider a flat, horizontal road turn, which corresponds to the
desired state transfer. To achieve a faster process, i.e. letting the vehicles go faster
without sliding off the road, we can modify the road turn by inclining the roadway
surface about its longitudinal axis with a bank angle. The inclining corresponds to
additional control fields, which enable the same transfer process result but on shorter
timescales [173].

Here, we study state transfer protocols to initialize into the dressed states that
emerge from closed-contour interaction in the NV ground state as introduced in
Chap. 3. To that end, we use our hybrid spin-mechanical system (see Fig. 3.1a) to
simultaneously and coherently drive all three available NV spin transitions as illus-
trated in Fig. 4.1a. The resulting dressed states are best described in an appropriate
rotating frame (see Eq. (3.1)), where, under resonant driving of all three transitions,
i.e. δ1,2 = 0, the system Hamiltonian reads

Ĥ0(t)/~ =
1

2

[
Ω1(t) |−1〉〈0|+ Ω2(t) |+1〉〈0|+ Ω3 eiΦ |−1〉〈+1|+ H.c.

]
=

1

2

 0 Ω1(t) Ω3 eiΦ

Ω1(t) 0 Ω2(t)
Ω3 e−iΦ Ω2(t) 0

 . (4.1)

In this case, the matrix representation is given in the basis {|−1〉 , |0〉 , |+1〉}. We
explicitly note that in contrast to Eq. (3.1), Hamiltonian Ĥ0(t) is now time-dependent,
as the amplitudes (Rabi frequencies) of the MW driving fields Ω1,2(t) are now a
function of time, while the mechanical driving amplitude Ω3 ≡ Ω remains constant. In
the following, we tune the global phase Φ = φ1 +φ3−φ2 (where φ1, φ2, and φ3 are the
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phases of the driving fields, see Sec. 3.2) to Φ = π/2. We choose this particular value
of Φ, because the resulting, equal energy spacing between the dressed states allows
for a straightforward derivation of an analytical, purely real STA for our system.
The STA formalism is, however, applicable to arbitrary global phase values Φ, as we
can employ numerical methods to determine the required experimental protocols (see
App. A.4).
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Figure 4.1.: State transfer schematics. a) Level scheme of the NV’s S = 1 ground
state with spin states |0〉, |−1〉, and |+1〉. All three spin transitions are individually
and coherently addressable, either by MW magnetic fields (Ω1,2(t), light and dark
blue) or by a cantilever induced strain field (Ω3 = Ω, red). b) Level schemes in the
rotating frame for Φ = π/2. The initial system (left) comprises the states |0〉, |−〉,
and |+〉, with |−〉 and |+〉 being equal admixtures of |−1〉 and |+1〉. Ramping the
amplitudes of both MW fields results in a transfer to the final dressed states |Ψk〉
(k = 0,±1, right). We initialize the system in |0〉 (yellow) to transfer along the
adiabatic eigenstate |ψ+1(t)〉 to |Ψ+1〉 (dark green). c) Pulse sequence employed for
state transfer. Note that in general Ω1,2(t) may be complex and have different time
dependencies. d) Schematics of possible state transfer dynamics. A perfect adiabatic
evolution transfers the desired state along the dashed trajectory, which is followed
exactly only in the infinite time limit. Speeding up the evolution causes nonadiabatic
transitions leading to an imperfect state transfer (dark red). STA protocols (solid
black) in general employ control pulses to start and end up at the same states as the
perfect adiabatic protocol, thereby ensuring perfect state transfer, but for arbitrary
evolution times and possibly along a different path. Dissipation (gray arrows) leads
to errors in all processes.
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To achieve state transfer into the dressed state basis, we start in the initial NV
system, where only the strain field resonant with the |−1〉 ↔ |+1〉 transition is applied,
i.e. Ω1,2(t = 0) = 0 and Ω3 = Ω. For Φ = π/2, the eigenstates of Ĥ0(t) prior to state
transfer are then |0〉 and |±〉 ≡ (|−1〉 ∓ i |+1〉)/

√
2 (see Fig. 4.1b, left). By ramping

up the MW driving fields Ω1,2(t) within a ramp time tr, we end up in the final dressed
state system with Ω1,2(t = tr) = Ω3 = Ω. The eigenstates of the final system are the
desired dressed states given by

|Ψk〉 =
1√
3

(
eiπ(1−4k)/6 |−1〉+ |0〉+ e−iπ(1−4k)/6 |+1〉

)
, (4.2)

with k = 0,±1 (see Fig. 4.1b, right, and Eq. (3.2)). Both initial and final system are
linked via the instantaneous (adiabatic) eigenstates |ψk(t)〉 (k = 0,±1) defined at
each instant in time, i.e. for each value of Ω1,2(t). These eigenstates coincide with
the initial system at t = 0 and with the final system at t = tr. Thus, in Fig. 4.1b
our state transfer protocol consists of spin initialization of the initial system into
|0〉 with Ω1,2(t = 0) = 0 (yellow dot), after which we apply suitable ramps to the
MW driving field amplitudes Ω1,2(t) (blue arrow) to transfer along the adiabatic
eigenstates into the dressed state basis (green dot). For analytic simplicity, we choose
to work with dressed states under symmetric driving of all three transitions, i.e.
Ω1,2(t = tr) = Ω3 = Ω.

The generally employed experimental pulse sequence is shown in Fig. 4.1c. A green
laser pulse prepares the initial system in |ψ(t = 0)〉 ≡ |0〉. Then, we individually ramp
the MW driving field amplitudes within the ramp time tr. The state |0〉 is thereby
ideally transferred to |Ψ+1〉, but in general ends up in a (non-ideal) final state |ψ(tr)〉.
For analysis of the final state, we let |ψ(tr)〉 subsequently evolve in presence of all
three driving fields,

|ψ(t)〉 = e−i(t−tr)Ĥ0(tr)/~ |ψ(tr)〉 , (4.3)

where t > tr, and finally read out the population in |0〉 using spin-dependent fluores-
cence,

P|0〉(t) = |〈0|ψ(t)〉|2 . (4.4)

During the whole pulse sequence, the amplitude of the mechanical driving field is
constant at Ω3/2π = Ω/2π = 510 kHz.

The fluorescence signal acquired during readout directly indicates, whether the
state transfer was successful or not. If we prepare our system in a single dressed
state, i.e. |ψ(tr)〉 = |Ψ+1〉, the measured population for t > tr is time-independent
with P|0〉(t) = 1/3. If, however, we do not prepare in a single dressed state, but
rather a mixture of dressed states, we measure a time-dependent population P|0〉(t)
for t > tr, characterized by a beating of the transition frequencies of the dressed states
(see Sec. 3.3 and App. A.2 for a detailed description of the readout mechanism).

Fig. 4.1d shows the generalized idea of STA protocols [180, 185]. Starting in the
initial state |0〉 an adiabatic protocol transfers along the dashed trajectory to the final
state |Ψ+1〉. This trajectory, however, is only followed exactly in the infinite time
limit. For finite time realizations, |0〉 may be transferred to a different state |ϕ〉 as
nonadiabatic errors lead to imperfect state transfer (dark red). STA protocols (solid
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black) in general design an evolution that provides perfect state transfer, but for
arbitrary evolution times and generally along a different path compared to adiabatic
protocols. To achieve such transfer, controlled ramps of Ω1,2(t) are employed, which
ensure that the transfer state coincides with the desired states at the initial and final
time of the protocol, |0〉 and |Ψ+1〉, respectively. The design and implementation of
appropriate ramp functions will be discussed in the following sections.

4.2. Adiabatic state transfer

To benchmark subsequent studies of STA protocols, we first demonstrate state transfer
into the dressed state manifold by employing an adiabatic protocol. Such a state
transfer protocol in general ensures that the system will remain in an initially prepared
adiabatic eigenstate if changes to the system are sufficiently slow. To that end, we
choose the ‘Vitanov-shape’ ramp functions developed in quantum optics for adiabatic
state transfer in three-level ‘Λ-systems’ via STIRAP [186],

Ω1,2(t) = Ω sin[θ(t)] , (4.5)

(see Fig. 4.2a), with

θ(t) =
π

2
· 1

1 + exp[−ν(t− t0)]
. (4.6)

Here, the phase function θ(t) is a Fermi function shifted by

t0 = ln

[
π

2 sin−1(ε)
− 1

]
/ν , (4.7)

which has the two free parameters ε and ν (see red highlights in Fig. 4.2a). While
ε� 1 sets the amplitude of the ramp’s unavoidable discontinuities at t = 0 and t = tr,
ν controls the slope of θ(t) at t = t0 and thereby is directly linked to the ramp time

tr = t0 − ln

[
π

2 sin−1(1− ε)
− 1

]
/ν . (4.8)

In all our experiments we use ε = 10−3, as this value is comparable to the estimated
amplitude noise of our MW signals (see App. A.1.2 for a detailed description of the
MW field generation and control).

In Fig. 4.2b we present the time evolution of P|0〉(t) for several values of tr after
employing the adiabatic protocol. For small tr, i.e. for fast ramping, P|0〉(t) oscillates
for t > tr indicating imperfect (nonadiabatic) state transfer. Increasing tr reduces the
amplitude of these oscillations, until P|0〉(t) becomes time-independent with P|0〉(t >
tr) ≈ 1/3. This transition from an oscillatory to a constant time evolution with
increasing tr marks a change from a nonadiabatic to an adiabatic transition.

We corroborate our experimental findings by calculating the time evolution of
P|0〉(t). To that end, we solve the time-dependent Schrödinger equation for |ψ(t)〉
using Hamiltonian (4.1) and find excellent agreement with our data (see Fig. 4.2b).
Note that the calculation is based on a fully coherent evolution, i.e. it does not take
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into account dissipation, which causes additional damping in the experimental data.
To further highlight the agreement between measurement and calculation, we present
in Fig. 4.2c a time trace recorded in the nonadiabatic regime for tr = 6.8 µs, which is
indicated by green dashed line in Fig. 4.2b.

The transition from the nonadiabatic to the adiabatic regime is determined by the
adiabatic criterion, which requires that the energy separation of the adiabatic eigen-
states (see Fig. 4.1b) far exceeds their mutual coupling. This requirement ensures that
transitions between the adiabatic eigenstates are avoided during the transfer protocol,
but thereby implies inherently slow processes. The method to determine the adiabatic
criterion is to express the state transfer dynamics in the adiabatic frame [168, 173].
The associated adiabatic basis consists of the instantaneous eigenstates of Hamilto-
nian Ĥ0(t), i.e. the adiabatic eigenstates |ψk(t)〉 (given in the {|ms〉} basis). In the
adiabatic frame, these states are accordingly time-independent and denoted by |ψk〉.
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Figure 4.2.: Adiabatic state transfer. a) Experimentally employed ramps for the MW
field amplitudes. Both MW fields are ramped simultaneously in an optimized STI-
RAP pulse shape. The slope parameter ν is directly linked to the ramp time tr, the
amplitude of the ramp’s unavoidable discontinuities at t = 0 and t = tr is set by ε.
b) Measurement of P|0〉(t) = |〈0|ψ(t)〉|2 as a function of time t and ramp time tr.
The right panel shows theoretical calculations based on a fully coherent evolution.
For small tr oscillations in P|0〉(t) indicate a nonadiabatic transfer, whereas for slower
ramping of the MW fields the state transfer becomes adiabatic. The green line indi-
cates the location of the time trace presented in c). c) Time evolution of measured
population P|0〉(t) (green) for ν = Ω/2 with corresponding calculation (black).
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Thus, the unitary transformation to the adiabatic frame is given by

Û(t) =
∑

k=0,±1

|ψk〉〈ψk(t)| , (4.9)

which for each time t maps the adiabatic eigenstate |ψk(t)〉 onto the time-independent
state |ψk〉, i.e. |ψk〉 = Û(t) |ψk(t)〉. Specifically, we can obtain Û(t) from its in-
verse Û†(t), whose columns contain the normalized adiabatic eigenstates |ψk(t)〉.

By applying this unitary transformation to the Schrödinger equation, we find that
the Hamiltonian in the adiabatic frame has the form

Ĥad
0 (t) = Û(t) Ĥ0(t) Û†(t)− i~ Û(t) ∂tÛ†(t) . (4.10)

Hamiltonian Ĥad
0 (t) comprises two terms. The first term in Eq. (4.10) is by definition

of Û(t) diagonal and gives the eigenenergies of the adiabatic eigenstates. The second
term, however, is nondiagonal and results in diabatic couplings between the adiabatic
eigenstates.

In our specific case defined by Hamiltonian (4.1) and the ramp functions from
Eq. (4.5), we find

Ĥad
0 (t)/~ =


Ω
2

√
2− cos[2θ(t)] cos[θ(t)] ∂tθ(t)

2−cos[2θ(t)] 0
cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] 0 − cos[θ(t)] ∂tθ(t)

2−cos[2θ(t)]

0 − cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] −Ω

2

√
2− cos[2θ(t)]

 ,

(4.11)

which is expressed in the basis {|ψ0〉 , |ψ+1〉 , |ψ−1〉} (see App. A.3 for more details
on the derivation). At this point, the adiabatic condition is evident, as we need
to compare the off-diagonal elements of Ĥad

0 (t) with the separation of the diagonal
elements. Consequently, the adiabatic criterion reads

2 cos[θ(t)] ∂tθ(t)

Ω
(
2− cos[2θ(t)]

)3/2 � 1 . (4.12)

Note that the criterion is proportional to ∂tθ(t), i.e. it is directly linked to the slope
of the applied ramps and thereby to the ramp time. By choosing an upper limit for
the right-hand side of 1/10 for all times, we find a critical ramp time of tad

r = 12.9 µs
for an adiabatic transition.

4.3. State transfer using STA

The established adiabatic state transfer into the dressed state basis requires long
evolution times (tr > tad

r ). To mitigate this drawback, i.e. to accelerate the ini-
tialization procedure without suffering from nonadiabatic errors, a general strategy
termed STA [168–173] was theoretically proposed. The development of STA meth-
ods and applications has been quite fast since the term was coined in [170]. STA
protocols provide fast dynamics that reproduce the results of a slow, adiabatic tran-
sition. The shortcuts are designed by a set of analytical and numerical methods,



46 Initialization of three-level dressed states using STA

including, among others, transitionless driving (TD) [168, 169, 187]1, superadiabatic
transitionless driving (SATD) [185], and the dressed state approach to SATD [185].
All techniques harness nonadiabatic transitions by adding theoretically engineered
corrections to the state transfer Hamiltonian, which are experimentally implemented
by control pulses. Thus, by speeding up the processes, STA methods are particularly
useful for manipulating a quantum system on timescales limited by the coherence
time, while enhancing flexibility and robustness to a noisy environment [173].

To allow for an analytical STA correction that is compatible with our current
experimental setup, we focus on the case of symmetric driving and a global phase
value Φ = π/2. In this case, the TD approach does not demand any control of the
mechanical drive, which remains constant over the whole experimental sequence (see
Fig. 4.1c). Additionally, this technique results in a purely real correction for the MW
fields, so that no time-dependent phase control of these fields is required.

The basic idea of the TD method is to add auxiliary control fields to the system,
so that the dynamics follow exactly the time evolution that is defined by Hamilto-
nian (4.1) in the infinite time limit, i.e. nonadiabatic transitions between the adiabatic
eigenstates are precisely canceled [168, 173]. To that end, we introduce a correction
ĤTD(t) to the Hamiltonian Ĥ0(t), which counteracts the coupling between the adia-
batic eigenstates. Accordingly, the correction is chosen in a way that the second term
in Eq. (4.10) is canceled, i.e.

Ĥ0(t)→ Ĥ0(t) + ĤTD(t) = Ĥ0(t) + i~
[
∂t Û†(t)

]
Û(t) . (4.13)

Evaluating the TD correction results in additional components in the Hamiltonian,
which add to the initial driving field ramps (see App. A.3). We thereby find the
modified MW pulse amplitudes

Ω1,2(t) = Ω sin[θ(t)]± 2 · cos[θ(t)] ∂tθ(t)

2− cos[2θ(t)]
, (4.14)

while keeping the phases of all field constant. The resulting envelopes of MW driving
fields for ν = Ω/2 and Ω/2π = 510 kHz are shown in Fig. 4.3a. The TD approach
provides different corrections for the two MW fields, such that both field amplitudes
are ramped successively with different functional forms. We note that in our exper-
iment, we can implement the TD method of Eq. (4.13) only for Φ = ±π/2, where
time-reversal symmetry is maximally broken (see Fig. 3.2c) and the resulting TD cor-
rection is, therefore, purely real. For different values of Φ, the resulting imaginary
component to the corrected ramps would require control of the phase and amplitude
of the driving fields. Our strain field mediated by the mechanical oscillator does not
provide such phase control on the relevant timescales. However, other STA meth-
ods [185] can be applied to find appropriate ramps (see App. A.4).

1An equivalent terminology for the concept of TD is ‘counterdiabatic driving’ [173].
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In Fig. 4.3b we present the experimental results of the state transfer when applying
the TD corrected ramps. Independent of tr, the time evolution of P|0〉(t) converges
to ≈ 1/3, indicating perfect initialization of a single dressed state, even for the fastest
ramps. The measurements are in striking agreement with the calculations based on
the Schrödinger equation. Note that there exists a lower bound for tr in case of
the TD corrected ramps. For faster state transfer, the corresponding ramps lead
to momentary driving field amplitudes either < 0 or >Ω (see App. A.3). In such a
scenario the energy separation of the adiabatic eigenstates gets temporarily larger
than in Fig. 4.1b, thereby temporarily ‘relaxing’ the adiabatic criterion. To ensure
a fair comparison with the adiabatic transfer protocol, we, therefore, exclude this
parameter range from our study (grayed area in Fig. 4.3b). The fastest possible state
transfer corresponds to ν = Ω/2, resulting in tr = 6.8 µs. The corresponding time
trace is presented in Fig. 4.3c.
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Figure 4.3.: STA state transfer protocol. a) Envelope of the optimized MW field
amplitudes for ν = Ω/2 and Ω/2π = 510 kHz. Modifications of the adiabatic pulse
shape (dashed) lead to altered and unequal ramps for the two MW fields (Ω1 light
blue, Ω2 dark blue). b) Two-dimensional plots of P|0〉(t) as a function of time t
and ramp time tr. The left plot shows experimental data, and the right plot shows
theoretical calculations. We achieve state transfer with high fidelity independent of tr.
The green line indicates the location of the time trace presented in c) with ramp
parameters at the experimental limit (ν = Ω/2, border of the grayed area, see text).
c) Time evolution of measured population P|0〉(t) (green) for the same parameters as
in Fig. 4.2c with corresponding calculation (black).
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Fig. 4.2c and Fig. 4.3c allow for a direct comparison of the adiabatic and STA trans-
fer protocols under identical conditions. For the first approach, P|0〉(t) oscillates,
thereby clearly indicating nonadiabatic errors in the dressed state initialization (see
Fig. 4.2c). However, in case of the TD protocol, almost no oscillations in P|0〉(t) are
visible, which indicates excellent state transfer (see Fig. 4.3c). The remaining small
oscillations are attributed to residual imperfections in the dressed state initialization,
which we discuss in the next section. By comparing these residual oscillations with
the calculations of the adiabatic protocol, we find that at least an adiabatic ramp time
of tr = 17.6 µs would be required to achieve the same transfer fidelity when using an
adiabatic approach. This allows us to determine the acceleration of the TD protocol
compared to adiabatic ramping, for which we here find a speedup factor of 2.6.

4.4. Reverse state transfer and transfer fidelity

Having implemented the initialization into the dressed state manifold by STA proto-
cols, we next demonstrate the reversibility of these transfer protocols and map from
the dressed states back to the initial system. This remapping also verifies that our
TD protocol indeed results in the initialization of an individual, pure dressed state,
and not of an incoherent state mixture, which may also yield a time-independent
P|0〉(t) = 1/3. More specifically, we use the TD method introduced in Sec. 4.3 to
prepare the system in a single dressed state, and then use the inverted TD protocol,
i.e. t→ tr− t, to map back to the NV states, while measuring the population P|0〉(t

′)
as a function of the remapping time t′. The corresponding pulse sequence is presented
in Fig. 4.4a. For both transfer directions we set ν = Ω/2 to achieve maximal ramping
speed.

In Fig. 4.4b we present the time evolution of P|0〉(t
′) as we apply the remapping

protocol. In this case, we consider only a single cycle of mapping in and mapping out,
i.e. N = 1. The experimental data clearly shows that almost all of the population
in the prepared dressed state returns to |0〉. This observation evidences a coherent,
reversible population transfer between undressed and dressed states. Under the fair
assumption that mapping in and mapping out yield the same transfer fidelity, such
measurements further allow us to quantify the efficiency of a single state transfer. To
that end, we initialize the NV spin and then repeatedly map in and out of the dressed
state basis before we read out the final population in |0〉. Each set of one mapping
in and one mapping out process constitutes a single ‘remapping cycle’. By varying
the number of remapping cycles N and reading out the population P|0〉(2Ntr) we
quantify the transfer fidelity F (see Fig. 4.4c). We fit the data with an exponential
decay towards 1/3, i.e.

P(N) =
2

3

(
F2
)N

+
1

3
, (4.15)

which yields a fidelity of F = 99.0(3) % for a single transfer process. This trans-
fer fidelity is experimentally limited by several reasons. These include experimental
uncertainties in the fidelity of the initialization into |0〉 at the beginning of the ex-
periment, in setting the global phase Φ, leakage of the MW signals, nonequal driving
field amplitudes, and most importantly unwanted detunings of the driving fields from
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the spin transitions. We calculate our ramps assuming equal driving field amplitudes
and zero detunings, but deviations from these assumptions are experimentally un-
avoidable, and the errors generally fluctuate in time [148]. These factors are also
responsible for the remaining, small oscillations in P|0〉(t) visible after state trans-
fer in Fig. 4.3c. In App. A.3 we simulate the state preparation process with these
experimental uncertainties, which allows us to reproduce the residual small wiggles
consistent with the observations in the measurements.
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Figure 4.4.: Reverse state transfer and transfer fidelity. a) Pulse sequence employed
for bidirectional state transfer. To characterize the transfer fidelity N subsequent cy-
cles of mapping in and out of the dressed state basis are performed. b) Inverted state
transfer to the NV basis after the dressed state |Ψ+1〉 was prepared (single remapping
cycle, N = 1). Measured population P|0〉(t

′) (green) as a function of the remapping
time t′ for ν = Ω/2 with corresponding simulation (black). c) Experimental transfer
fidelity for various numbers of completed remapping cycles N . The exponential fit to
the data (dashed line) yields a statistical transfer fidelity of F = 99.0(3) %. d) The-
oretical transfer fidelity as a function of the ramp time tr for the adiabatic (blue)
and STA (green) transfer protocol on a logarithmic scale. Under ideal conditions
the maximal achievable transfer fidelity for ε = 10−3 is F ≈ (1 − 2 · 10−6) (solid
lines). Considering non-zero detunings δ1,2 the fidelity decreases further (dashed dot-
ted lines and see App. A.3). For the values of δ1,2 presented here (compare to Fig. 3.3)
the transfer fidelity F is similar to the one determined experimentally. In this case
the adiabatic and STA fidelities become the same for tr ≈ 17.6 µs, the ramp time ex-
tracted for calculating the speedup factor (dashed gray). The grayed area corresponds
to the experimentally inaccessible parameter range for the used STA protocol.
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To evidence the influence of the named uncertainties, we theoretically model the
transfer fidelities of the adiabatic and STA protocols in Fig. 4.4d. The logarithmic
plot shows the deviation of the theoretical fidelity F = | 〈Ψ+1|ψ(tr)〉 |2 from unity as
a function of the ramp time tr using the experimental parameters Ω/2π = 510 kHz
and ε = 10−3. Assuming no perturbations of the system (solid lines) a STA proto-
cols achieves the maximal transfer fidelity of F ≈ (1 − 2 · 10−6), independent of tr.
The fidelity of the adiabatic protocol increases by ramping more slowly and finally
converges to the maximum value of the STA transfer. The oscillatory behavior that
the fidelity shows in the case of the adiabatic protocol for large tr is a direct conse-
quence of having only a finite duration of the ramps, which requires to cut the pulses
at the beginning and the end of the ramps [185]. Thus, it is directly linked to the
discontinuity ε.

To illustrate the effect of environmental fluctuations, we also show the numerically
calculated fidelities for non-zero detunings, here δ1/2π = −δ2/2π = 50 kHz (dashed
lines, compare to Fig. 3.3). The detunings decrease the transfer fidelities for both
adiabatic and STA protocol. Note that for the presented values of δ1,2 the theoretical
transfer fidelity has the same magnitude as the one determined experimentally in
Fig. 4.4c. Consequently, the adiabatic and STA fidelities correspond to each other
around tr ≈ 17.6 µs (dotted gray line), the ramp time estimated for the speedup
factor in the previous section. Again, the oscillations in the fidelities are attributed
to the finite-time transfer pulses.

4.5. Summary

To conclude, we have shown high-fidelity, reversible initialization of individual dressed
states in a closed-contour interaction scheme using state transfer protocols. Thereby,
STA methods overcome the key limitation of adiabatic protocols, namely the intrin-
sically long ramp times and the concomitant accumulation of perturbations from the
environment [173]. In contrast, STA provide fast, robust and efficient protocols. In
particular, we demonstrated a more than twofold speedup over the adiabatic approach
using the TD method, while we achieve state transfer fidelities ≈ 99 %. The experi-
mental results are accomplished by theoretical calculations, which yield a remarkable
degree of consistency. By combining STA with closed-contour dressed states we es-
tablish a basis for future exploitation of these dressed states, which offer a close to
50-fold improvement in coherence times compared to the other continuous mechanical
or MW driving schemes under similar conditions [148].

4.6. Outlook

Having shown efficient initialization of a single, pure dressed state and subsequent
dressed state population readout with STA, a fundamental next step is the coherent
control and manipulation of the dressed states. In Fig. 4.5 we present a first proof of
principle of coherent manipulation in the dressed state basis by performing ESR and
Rabi nutation measurements at Φ = π/2. For this we apply an additional MW manip-
ulation field with frequency ωman/2π and Rabi frequency Ωman in between the STA
initialization and remapping procedures (see Fig. 4.5a). By sweeping the frequency of
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the manipulation field across the |0〉 ↔ |−1〉 transition of the NV states while keeping
the pulse duration of τ = 4.5 µs constant, we observe the ESR spectrum shown in
Fig. 4.5c. The spectrum shows two dips, corresponding to dressed state transitions at
positive and negative frequencies in the rotating frame, i.e. at symmetric detunings
around the bare |0〉 ↔ |−1〉 transition frequency. Note that the two possible transi-
tions from |Ψ+1〉 to either |Ψ0〉 or |Ψ−1〉 (see Fig. 4.5b) occur at the same frequencies
and are, therefore, indistinguishable in the presented ESR spectrum. Using the de-
termined transition frequencies to resonantly drive the dressed state transitions for
variable durations τ , allows us to observe coherent Rabi oscillations between dressed
states (see Fig. 4.5d).
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Figure 4.5.: Direct manipulation of the dressed states at Φ = π/2. a) Pulse sequence
employed for coherently manipulating the dressed states. After initialization with the
STA transfer protocol, the dressed states are manipulated by an additional MW field
for a duration τ . For reading out the dressed states’ population the inverted STA state
transfer is applied subsequently. b) Level diagram of the dressed states for Φ = π/2.
We initialize the system in |Ψ+1〉 (green dot), from where we can drive the transitions
to |Ψ0〉 and |Ψ−1〉, which have both the same transition frequency. c) Transition
frequencies of the dressed states measured with the additional probe field Ωman, which
is applied for τ = 4.5 µs. The probe field frequency is given relative to the |0〉 ↔ |−1〉
transition frequency ω1/2π = 2.8672 GHz and the two observed dips correspond to
positive and negative frequencies in the rotating frame. d) Rabi oscillations on a
dressed state transition extracted from b) with ΩRabi/2π = 131(1) kHz and TRabi =
24(3) µs.
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Based on these results, the coherent characterization and control of the closed-
contour dressed states can be extended to arbitrary global phase values Φ. This
will be discussed in more detail in Chap. 5. Looking forward, the superior coher-
ence protection the closed-contour dressed states offer compared to the bare spin
states [43, 148, 154] can be used for efficient storage of particular NV spin states on
timescales much longer than the coherence times of the bare NV states by mapping to
the dressed state basis [188–190]. Additionally, the possibility to initialize the dressed
states in a fast and robust way in combination with the prolonged coherence times
makes them attractive for ultrasensitive sensing of high-frequency magnetic fields on
the nanoscale [47, 156]. Although demonstrated on an NV center in diamond here, our
presented methods can be applied to other systems as well. For example, similar STA
methods were proposed to be used for detection and separation of chiral, three-level
molecules [191], where the chirality takes over the role of the global phase and deter-
mines the population dynamics. While for one species the nonadiabatic couplings are
canceled and the population transfer is, therefore, perfect, for the other chirality the
nonadiabatic couplings are enhanced, thereby hindering the state transfer. Lastly, ow-
ing to its versatility and stability, the experimental system we established here forms
an attractive testbed for state transfer protocols from various STA approaches [173],
which provide a variety of flexible techniques. Here, the cases Φ = 0,±π are of special
interest as two of the dressed state become degenerate, thus state initialization occurs
into a subspace of two degenerate dressed states. This subspace then allows for the
implementation of universal geometric quantum gates, which can be sped up by STA
protocols [159].

For many of these perspectives, it would, however, be advantageous to overcome
a key limitation of the current system by having time-dependent amplitude control
of the mechanical drive. This can be envisioned by using diamond optomechanical
crystals [192–194] or surface acoustic wave structures [195–197], as they allow for full
coherent control of all three driving fields.



5. Coherent control of dressed states
under closed-contour interaction

For a quantum system to be fully functional in future quantum applications, it must
meet several requirements [160, 198]. For example, the system must provide capabil-
ities for initialization and readout and it must have a long coherence time. Moreover,
coherent manipulation is a crucial prerequisite. This ensures that the system becomes
a resource, in which a universal set of state rotations can be realized. The NV center
constitutes a well-characterized spin system that satisfies the stated criteria, as it
offers polarization and readout mechanisms by optical means, and spin manipulation
is possible on timescales much faster than the relevant decoherence times [73].

Instead of using the bare NV spin states, it can be advantageous to utilize the
states formed when the NV spin is dressed by closed-contour, continuous driving
fields [148]. As shown in Chap. 3, these closed-contour dressed states are far less
sensitive to dephasing from magnetic field noise than bare spin states and hence can
be used to potentially increase the coherence time of the system by several orders of
magnitude. Additionally, in Chap. 4 we established methods to initialize and readout
the dressed states in a fast and robust way. However, full quantum control accompa-
nied by a detailed characterization of these dressed states is an indispensable but still
open requirement and, therefore, constitutes a fundamental step to develop their full
potential for quantum technologies [12, 58–60].

In this chapter, we demonstrate coherent control of three-level dressed states un-
der closed-contour driving and provide a detailed characterization of their coherence
properties. To that end, we employ the dressed state initialization and readout mech-
anisms from Chap. 4 in combination with direct MW manipulation in the dressed
state manifold based on the techniques discussed in Sec. 2.3. Specifically, we first
perform phase-dependent ESR spectroscopy to identify the dressed state transition
frequencies. By tuning the MW frequency to be in resonance with one of those tran-
sitions, we reveal the driven dynamics of the dressed states in terms of coherent Rabi
oscillations. We then study the free (decoherence) dynamics of the system by per-
forming phase-dependent Ramsey spectroscopy, which ultimately gives direct access
to the dephasing time of the most long-lived spectral components. This measurement
yields a direct comparison to the decay times determined in Chap. 3 and results in
similar dephasing times up to ≈ 100 µs. We thereby directly confirm that the intrinsic
coherence times of the closed-contour dressed states are significantly longer than the
NV spin dephasing time of T ∗2 ≈ 2 µs and as such hold promise for prospective ap-
plications where long coherence times are required. To evaluate the ultimate limit of
the coherence protection given by the relaxation time, we end the chapter by present-
ing T1 relaxation measurements on the dressed states. Thus, our results enable the
three-level dressed states under closed-contour driving to become a fully controllable
quantum resource.
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5.1. Coherent manipulation of dressed states

Our approach to realize the intended coherent control of the dressed states relies on
applying additional MW pulses in between the initialization and readout processes,
which we established in Chap. 4. Thereby we are able to address transitions between
the dressed states and to ultimately achieve their direct manipulation. The general
pulse sequence, on which all measurements presented in this chapter are based, is
shown in Fig. 5.1a. We choose an adiabatic protocol for preparing and remapping
the dressed states, so that the whole sequence can be applied with the same ramp
functions for all values of Φ. The underlying ramps have an error-function envelope
for both MW driving fields and are characterized by a fixed ramp time tr = 20 µs
and a discontinuity ε = 3 · 10−4 at the beginning and the end of each state transfer.
Starting in the bare NV state |0〉, the initialization protocol prepares the system in
|Ψ+1〉 (|Ψ−1〉) for 0 < Φ < π (for −π < Φ < 0) or in the degenerate subspace
of both states for Φ = 0,±π. We then drive and manipulate the dressed states
by applying a MW probe field with frequency ωman/2π and amplitude Ωman, where
we use a characteristic pulse sequence for each measurement. This manipulation
sequence is different for each of the following measurements and, therefore, discussed
and presented in the corresponding context. Finally, we read out the dressed state
population through a reversed transfer protocol followed by optical detection.

A basic requirement to perform coherent manipulation in the dressed states man-
ifold is the determination of the corresponding dressed state transition frequencies.
Consequently, we start our studies by performing phase-dependent ESR spectroscopy
of the dressed states. To that end, we keep the duration of the MW manipulation
pulse fixed (here τ = 6.8 µs, which results in the maximum contrast), while sweep-
ing the frequency ωman/2π of the probe field across the |0〉 ↔ |−1〉 transition (see
Fig. 5.1b). Whenever |ωman−ω1|/2π is on resonance with one of the two dressed state
transitions (|Ψ+1〉 ↔ |Ψ0,−1〉 for 0 < Φ < π or |Ψ−1〉 ↔ |Ψ0,+1〉 for −π < Φ < 0,
respectively), we see a drop in the detected fluorescence signal. This indicates a pop-
ulation transfer in the dressed state basis induced by the MW field. For each value
of Φ we observe four possible transitions, which consist of two pairs of dressed state
transitions, one pair corresponding to positive frequencies and the other to negative
frequencies in the rotating frame. Both pairs are thereby placed symmetrically rel-
ative to ω1/2π = 2.8672 GHz. This can be understood by the fact that the dressed
states are defined in a reference frame rotating at the frequencies ω1 and ω2 around
appropriate axes (see Sec. 3.2 and [148]). Hence, in the lab frame, the dressed state
transitions appear as positive and negative frequency components with respect to
ω1/2π and ω2/2π. Here we focus on the spectral features around ω1/2π but would
find identical results around ω2/2π.

To compare the determined transition frequencies with the theoretically predicted
values for |∆m,n| (see Fig. 3.3b), we plot the theory result on top of the measured ESR
data. For this we mirror |∆m,n| with respect to ω1/2π to take account of the positive
and negative frequency components discussed above (see Fig. 5.1b). Note that due
to the initialization into |Ψ+1〉 (|Ψ−1〉) we are not able to resolve the transitions at
frequency |∆−1,0| (|∆+1,0|) for 0 < Φ < π (for −π < Φ < 0). Overall we find good
agreement between measurement and calculation for δ1,2 = 0 (colored). Just as in
our observations from Sec. 3.3 deviations between theory and experiment are most
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Figure 5.1.: Coherent manipulation in the dressed state manifold. a) To study the
dressed states, we employ a universal pulse sequence. After the initialization process
with an error-function shaped ramp (tr = 20 µs), we manipulate the dressed states
with a MW probe field Ωman. The specific manipulation sequence (here symbolically
represented by the green box) for each of the following measurements is directly
included in the corresponding figure. Finally, a reverse transfer protocol is used for
dressed state readout. b) Phase-dependent ESR of the dressed states monitored with
a fixed evolution time of 6.8 µs. The frequency of the probe field ωman/2π is given
relative to the |0〉 ↔ |−1〉 transition of ω1/2π = 2.8672 GHz. The observed transition
frequencies |∆m,n| agree well with the calculated spectrum from Fig. 3.3b, here shown
for zero (colored) and non-zero (dashed) detunings. c) Rabi oscillations driven on the
∆+1,0 dressed state transition for Φ = π/4, demonstrating coherent control in the
dressed state basis. The extracted parameters from the fit are ΩRabi/2π = 196(1) kHz
and TRabi = 57(16) µs.



56 Coherent control of dressed states under closed-contour interaction

prominent at Φ ≈ 0,±π, where the system is most vulnerable to environmental noise.
The induced coupling between two nearly degenerate dressed states results in avoided
crossings, which manifest itself as a flattening of the transition frequency dispersion
with Φ. Introducing non-zero detunings δ1,2 6= 0 in the calculation (white dotted lines,
here shown for δ1/2π = −δ2/2π = 50 kHz) reproduces the observed experimental
features (see also Sec. 3.2). In addition, around Φ ≈ 0,±π we observe reduced contrast
of the transitions compared to other global phase values. This is because at Φ ≈ 0,±π
two of the dressed states become nearly degenerate, thereby affecting the initialization
and remapping processes. We no longer prepare the system in a single dressed state,
but rather in a nearly degenerate subspace of dressed states. The remapping process
itself also contributes errors, as the final dressed state populations are distributed
over several NV states during the remapping. Therefore, only transitions to non-
degenerate dressed states can be clearly identified in our spectrum.

Looking closely at the spectrum from Fig. 5.1b reveals two aspects that are not fully
understood. First, there is an additional structure with less fluorescence contrast for
detunings |ωman−ω1|/2π ≈ 0.25 MHz, most prominently at Φ ≈ ±π/2. This structure
is symmetric with respect to ω1/2π and reproduces the course of the calculated tran-
sition frequencies. Even less pronounced there is a similar structure mirrored with re-
spect to the calculated transition frequencies for detunings |ωman−ω1|/2π ≈ 0.75 MHz,
faintly indicated at Φ ≈ ±π/2. Both structures might be artifacts caused by higher-
order resonances of the pulsed manipulation scheme we employ. While the evolution
time τ = 6.8 µs was chosen to be a π-pulse for resonantly driving the transitions at
Φ = π/3, this pulse duration corresponds to an off-resonant ‘3π-pulse’ at the fre-
quencies where we observe the additional features. Such a scenario would explain the
reduced contrast of the pattern and why this structure appears symmetrically around
the main transitions. Second, at Φ = ±π/2, where the transition frequencies are sup-
posed to cross, we observe small splittings between the transitions, indicating avoided
crossings. These splittings cannot be explained by environmental fluctuations (de-
tunings δ1,2) nor by unequal driving field amplitudes. We might, however, drive the
system into a dark state, as at Φ = ±π/2 we address both transitions simultaneously.
Still, this hypothesis remains speculative and requires further investigations.

Having determined the transition frequencies allows us to directly address these
transitions and thereby probe the dynamics of selected dressed states, a feature that
was not possible with our system before. Specifically, we focus on the manipulation
of a subsystem spanned by two of the dressed states and demonstrate its coherent
control by studying Rabi oscillations. To that end, we tune the frequency of the
MW manipulation field in resonance with one of the transitions and vary the dura-
tion of the manipulation pulse τ . For example, choosing Φ = π/4 and addressing
the |Ψ+1〉 ↔ |Ψ0〉 transition while monitoring the population in |Ψ+1〉 results in an
evolution as shown in Fig. 5.1c. The signal displays long-lasting coherent oscillations
between the two dressed states. We note that such coherent manipulation is feasible
for any dressed state transition and any global phase value provided that the transition
frequency can be resolved (see e.g. Fig. 4.5d for coherent manipulation at Φ = π/2).
In particular, the transition frequencies of the subsystems that are supposed to of-
fer the best coherence protection, e.g. ∆+1,0 for Φ ≈ π/4 and correspondingly for
Φ ≈ −π/4,±3π/4 (compare to Fig. 3.4b), are well-resolved in the ESR spectrum of
Fig. 5.1b and can thus be addressed individually.
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5.2. Determination of the dephasing time

Rabi oscillations represent the system’s dynamics under an external drive and allow
the determination of π- and π/2-pulse lengths. To observe the free (decoherence)
dynamics of the dressed states we make use of Ramsey spectroscopy, to determine the
dephasing time of the dressed states. This approach is in stark contrast to Fig. 3.4b,
which constitutes a simultaneous measurement on all three possible dressed state
subsystems, making it therefore difficult to faithfully extract individual coherence
times. The technique used here, however, allows us to directly access and characterize
the free induction decay of a subsystem spanned by only two dressed states. Following
the results of Sec. 3.3, we focus on the most long-lived subsystems of the dressed
states. Due to the underlying symmetry, we further restrict our study to phase values
0 < Φ < π/2, corresponding to the dressed state manifold of |Ψ+1〉 and |Ψ0〉.

The manipulation pulse sequence we use consists of two π/2-pulses separated by a
variable delay τ . The frequency of the MW field is fixed and deliberately detuned by
≈ 200 kHz from the transition frequency. This ensures the existence of Ramsey fringes
at the frequency of the detuning. Fig. 5.2a shows free induction decay traces taken
at Φ = π/2 (top) and Φ = 0.23π (bottom)1. The decay of the Ramsey fringes gives
us a direct measurement of the dephasing time of the dressed state subsystem under
investigation. We extract T dec

+1,0 from the data by fitting a single harmonic frequency
component with a Gaussian decay envelope [128]. The dephasing times show the
expected dependence on the global phase, varying from T dec

+1,0 = 22(11) µs at Φ = π/2

to T dec
+1,0 = 94(29) µs at Φ = 0.23π.

To investigate the dephasing of the dressed states as a function of the global phase,
we repeat similar measurements for several values of Φ and especially focus on the
phase values around the expected maximum at Φ ≈ π/4. The summarized results
are presented in Fig. 5.2b. Note that this data set allows for a direct comparison
with the decay times extracted in Fig. 3.4b and, consistent with these, we find decay
times up to T dec

+1,0 ≈ 100 µs. Comparing our results with the theoretically expected
dephasing times from perturbative calculations (see Sec. 3.3 and [148]) indicates that
the measured dephasing times still do not reach the theoretical limit, presumably due
to driving field fluctuations and temperature drifts. Despite this limitation, we still
demonstrate an enhancement of the dressed states’ dephasing time by a factor of ≈ 50
compared to the bare NV spin states.

1The used π/2-pulse lengths are τπ/2 = 1200 µs and τπ/2 = 950 µs for Φ = π/2 and Φ = 0.23π,
respectively. Note that the pulse durations are slightly different as both measurements were taken
under slightly different experimental conditions.
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Figure 5.2.: Ramsey spectroscopy on the dressed states. a) Time evolution of
P|Ψ+1〉(τ) for Φ = π/2 (top) and Φ = 0.23π (bottom) under the pulse sequence of a
free induction decay (see inset). We fit a single harmonic with a Gaussian decay en-
velope (black) to obtain the corresponding decay times, T dec

+1,0 = 22(11) µs (Φ = π/2)

and T dec
+1,0 = 94(29) µs (Φ = 0.23π). This verifies the strong phase dependence of

the dressed states’ dephasing times from Fig. 3.4. b) Phase-dependent study of the
dephasing time of the most long-lived dressed state subsystem (|Ψ+1〉 and |Ψ0〉) with
dephasing time T dec

+1,0. We restrict ourselves to the range Φ ∈ [0, π/2], as the decay
times of the studied spectral components are symmetric under sign changes of Φ and
inflections of Φ around π/2 (see Fig. 3.4b). The theoretically calculated evolution of
the decay time (dashed) [148] serves as a guide to the eye. All error bars represent
95 % confidence intervals of the fits.
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5.3. Relaxation in the dressed state manifold

In the absence of environmental and driving field fluctuations, the ultimate bound on
the dephasing times of the dressed states is given by their relaxation time. To quantify
the limit of the coherence protection and to characterize the inherent potential of the
dressed states, we finish this chapter by studying dressed state relaxation. As we
show in Sec. 2.3.3 the relaxation dynamics of a three-level system are more complex
compared to a two-level system, as decay channels between all three states contribute
to the total relaxation time T1 [131]. In the case of the dressed states discussed
here the situation simplifies, as they are composed of equal superpositions of the
bare NV states. Therefore, the relaxation rates of the dressed states are also an
equal mixture of the rates of the bare NV states and consequently the same for
all the transitions (see Fig. 5.3a). Nevertheless, we confirm this line of reasoning by
applying the general pulse sequence introduced in Sec. 2.3.3 and [131]. For that reason
we probe the relaxation behavior of both |Ψ+1〉 and |Ψ−1〉 and adapt the π-pulses
correspondingly (see Fig. 5.3b).

Varying the time delay τ between the initialization and readout pulses for each
manipulation sequence allows us to extract the relaxation signals as a function of τ .
This procedure results in an exponential decay, as shown for Φ = π/3 in Fig. 5.3b.
We find that independent of the initial dressed state the relaxation signals decay
identically, which verifies that the decay rates Υ between all the dressed states are the
same. The extracted characteristic decay rate is given by Υ ≈ 90 Hz. Considering the
definition of the relaxation time T1 for a three-level system (see Sec. 2.3.3 and [131])
and assuming equal decay rates Υ, we find

1

T1
= 3Υ + Υ = 4Υ . (5.1)

Averaging both relaxation signals and evaluating Eq. (5.1) results in T1 = 2.8(18) ms.
This value of the relaxation time T1 for the dressed states corresponds well to the
one of the bare NV states, T1 = 2.7(9) ms, determined in Sec. 2.3.3. This agreement
is reasonable, as the driving fields only protect the dressed states from dephasing
mechanisms, e.g. magnetic fluctuations, but not from relaxation mechanisms, e.g.
coupling to phonons in the diamond lattice. Note that to ensure a fair comparison
of both extracted relaxation times we perform both measurements with the same
magnetic field applied, i.e. B‖ = 1.82 G. We additionally note that the relaxation
behavior of the dressed states can be studied for any global phase value, but the
resulting relaxation time T1 should not differ from the one determined here at Φ =
π/3, as we expect T1 to be the same as for the bare NV states. Thus, the dephasing
times of both the dressed states and the bare NV states are ultimately limited by the
same T1, characteristic of the spin-phonon coupling.
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Figure 5.3.: Relaxation in the three-level system spanned by the dressed states |Ψk〉
for Φ = π/3. a) Level diagram of the dressed states. The relaxation rates Υ for
all possible transitions are the same. b) The manipulation sequences to extract the
relaxation times are sketched on the right. Various πm,n-pulses between |Ψm〉 and
|Ψn〉 are used to initialize in |Ψi〉 and read out the population in |Ψr〉, giving the
signal Si,r. Independent of the initially prepared dressed state (green data for |Ψ+1〉
and blue for |Ψ−1〉) the decay rates determined by an exponential fit are the same,
Υ ≈ 90 Hz, which shows that all three relaxation rates in the dressed state manifold
are equal. Thus, the (averaged) total relaxation time of the dressed states’ three-level
system is T1 = 1/(4Υ) = 2.8(18) ms, in equivalence with T1 = 2.7(9) ms of the bare
NV states (see Sec. 2.3.3).

5.4. Summary

In conclusion, by using direct MW driving we have achieved coherent manipulation
and control of the three-level dressed states. In particular, we were able to identify the
transition frequencies of the dressed states through phase-dependent ESR. Building
on these results, we demonstrated driven, coherent dynamics of the system in terms of
Rabi oscillations, which allow all three of the dressed states to be prepared and read
out individually. We subsequently performed Ramsey spectroscopy for various global
phases Φ to get direct access to the dressed states’ dephasing times. We confirmed the
long-lived coherence of up to ≈ 100 µs already implied in Chap. 3. Finally, to quantify
the upper limit of the coherence times and to complete our detailed characterization
of the dressed states, we studied their relaxation behavior and showed that their pop-
ulation decay rates are equivalent to the one of bare NV spin states. This indicates
that the coherence of both systems is ultimately limited by the same relaxation mech-
anism, namely spin-lattice relaxation. Our results lay the foundation for establishing
the closed-contour dressed states as a fully controllable platform, thereby opening up
a wide range of possible applications in quantum technologies.

5.5. Outlook

After our complete characterization of the closed-contour dressed states, we can now
turn our attention to exploiting their properties by using the established coherent
control. In particular, the quasi-static dressed state dephasing mechanism could be
mitigated by employing spin echo spectroscopy directly in the dressed state basis,
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thereby gaining insight into the characteristics of the noise environment. To pursue
this route we focus on the dressed state subsystem spanned by |Ψ+1〉 and |Ψ0〉 and
investigate the system’s dynamics under the spin echo sequence for various values of
Φ > 0. This procedure ultimately allows us to determine the homogeneous coherence
time T2. To that end, an additional π-pulse positioned symmetrically between the two
π/2-pulses is inserted in the Ramsey sequence to refocus the dephasing spins. The
MW pulses are on resonance with the selected dressed state transitions, and their
duration has been determined by prior Rabi measurements.

In Fig. 5.4 we present preliminary experimental results of spin echo spectroscopy
for two different global phase values, Φ = 0.23π and Φ = π/3, with τπ = 2.9 µs and
τπ/2 = 1.4 µs for both measurements. Contrary to our expectations based on a free
induction decay time ≈ 100 µs, we observe a fast decay of the signal within < 10 µs in
both measurements. After this initial decay the signal still shows a certain oscillatory
behavior with periods of ≈ 30 µs and ≈ 17 µs for Fig. 5.4a and b, respectively. We
made similar observations for other phase values and observed such oscillatory be-
havior with differing periods between each of the measurements, even for the same Φ.
This indicates an origin in environmental fluctuations, e.g. temperature, or experi-
mental uncertainties, e.g. in defining the pulse durations. The fast initial decay in the
observed signal is yet unclear, as we expect the coherence times T2 to far exceed the
dephasing times T dec

+1,0. We speculate that the decay results from limitations in the
applied pulses. The MW pulses should be as short as possible to ensure fast coherent
control of the states, i.e. the applied manipulation pulse amplitude Ωman should be
large. In our experiments, however, the amplitude is constrained by the splitting of
the two dressed states under investigation to avoid populating the third uninvolved
state. The latter condition (ΩRabi/2π ≤ 200 kHz for Φ ≈ π/4) sets a lower bound
for the π-pulse length of ≈ 2.5 µs, close to the value used in Fig. 5.4. We believe that
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Figure 5.4.: Spin echo manipulation on the dressed state transition |Ψ+1〉 ↔ |Ψ0〉
for two different global phase values, a) for Φ = 0.23π and b) for Φ = π/3. The
pulse sequence is shown in the inset, with τπ = 2.9 µs and τπ/2 = 1.4 µs for both
measurements. Both time evolutions decay within < 10 µs, and then the signal shows
a periodically oscillating behavior around the steady state level of ≈ 0.5. Similar
spectra were also observed for other values of Φ, but are currently not understood.
While the oscillations might be attributed to the interaction with |Ψ−1〉, the fast
decay could be caused by uncertainties in setting the experimental parameters.
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shorter pulse lengths are required to minimize decoherence effects during the control
pulses and to ultimately resolve a spin echo of the dressed states. This limitation on
the pulse length could be lifted by using larger driving field amplitudes Ω1,2,3, which
would be feasible with advanced mechanical resonator structures [192–195]. Another
approach to mitigate pulse errors is to use phase-controlled manipulation pulses, i.e. to
rotate the states along different axes during the π- and π/2-pulses, respectively [124].
By changing the amplitude field’s phase by 90° during the π-pulse, the corresponding
state rotation might be more stable with respect to experimental uncertainties.

Coherent manipulation and spin echo spectroscopy are the basic building blocks
for studying advanced decoupling sequences [124]. From a far-reaching perspective,
our experiments consequently open up new avenues to employ noise spectroscopy [87]
or dynamical decoupling [32–34], directly in the dressed state manifold. Unknown
details of the remaining dressed state dephasing mechanisms could thereby be ex-
plored. In addition, our approach to combine continuous closed-contour and pulsed
dynamical decoupling can be extended to more sophisticated pulse techniques. As
theoretically studied in the context of mixed dynamical decoupling [48], such schemes
might improve the robustness to amplitude fluctuations of the driving fields and thus
prolong coherence times even further.



6. Determination of intrinsic effective
fields and MW polarization analysis

The three-level dressed states extensively discussed and characterized in the previ-
ous chapters hold promise for high sensitivity sensing due to their long dephasing
times. As for the NV itself and other defects in the solid-state, harnessing such a
quantum system as a nanoscale sensor for external fields requires precise characteri-
zation of the local internal field environment, since the strength of intrinsic fields can
be comparable to desired external signals [115]. Specifically, intrinsic fields arising
from lattice strain, paramagnetic impurities, and electric fields induced by surface
charges limit the system’s ability to detect and characterize external fields of interest.
Techniques operating at low magnetic fields, such as zero-field nuclear magnetic res-
onance [199, 200] and low-field magnetometry [201] are especially vulnerable to these
parasitic fields. Their relevance and future prospects motivate extended studies to
carefully characterize the environment surrounding single NV spins.

High-resolution spectroscopy offers a set of tools to study the interaction of various
local intrinsic and externally applied fields. For example, NV ensembles in type-Ib
diamond were probed with MW fields at zero magnetic field to investigate intrinsic
effective fields, which represent the combined effects of strain and electric fields [82,
115]. This ensemble study revealed that for the particular diamonds under study, the
electric field was the dominant contribution to the effective field. A similar technique
was used to determine the orientation of single NVs [202] by simultaneously applying
external electric and magnetic fields. However, a systematic study of the effective
fields for individual NVs in high purity diamond has not been reported so far.

In this chapter, we present high-resolution, low-power ESR spectroscopy on indi-
vidual NV centers in high purity, type-IIa diamond at and around zero magnetic field.
The experimentally observed transitions depend sensitively on the interplay between
the MW probing field and the local intrinsic effective field comprising strain and elec-
tric fields, which act on the NV spin. Based on a theoretical model of the magnetic
dipole transitions and the MW driving field, we extract both the strength and the
direction of the transverse component of the effective field. In contrast to the results
mentioned above [115], we find that in our samples the strain contribution to the
effective field dominates over the electric field. We tentatively assign this discrepancy
to the higher dopant density in the samples of [115]. Moreover, we study hyperfine
interaction between a single NV and an individual, nearby 13C nuclear spin. Finally,
as an additional outcome of our studies, we find that by applying external magnetic
fields and exploiting the magnetic dipole selection rules we can directly probe the po-
larization of the MW field at the NV position. Thus, our results are of importance to
low-field quantum sensing applications using NV spins and form a relevant addition
to the ever-growing toolset for spin-based quantum sensors.

Most of the results presented here have been published in [116].
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6.1. Characterizing the effective field

In the following experiments, we perform ESR measurements on a selection of individ-
ual NVs, and thereby extract information about their local environment. Quantitative
analysis of our results requires a detailed understanding of the NV spin transition
strengths under ESR driving at low fields. Based on the NV’s ground state spin
Hamiltonian in the presence of magnetic, electric, and strain fields (see Sec. 2.2), we
present a model to describe how these fields influence the selection rules of the mag-
netic dipole spin transitions introduced in Sec. 2.3.1. We then calculate the transition
magnetic dipole moments and thereby the fluorescence signal we expect to observe
in our experiments. By comparing our theory to the experimental data, we are then
able to directly characterize the local strain and electric field environment.

6.1.1. Influence on the level structure

Following the discussions of Sec. 2.1.2 and Sec. 2.2, the Hamiltonian of the NV ground
state in the presence of magnetic, electric, and strain fields reads

Ĥ/h = (D0 + Πz)Ŝ
2
z + γNVB · Ŝ +AHFŜz Îz+

+ Πx

(
Ŝ2
y − Ŝ2

x

)
+ Πy

(
ŜxŜy + ŜyŜx

)
. (6.1)

The magnetic field B = (Bx, By, Bz) and the effective field Π = (Πx,Πy,Πz) are
given in the coordinate frame (xyz) of the NV, where z denotes the NV’s symmetry
axis and we choose y to lie in one of the NV’s symmetry planes (see Fig. 6.1a).

To quantify the influence of the effective field Π on the NV hyperfine states |ms,mI〉
(see Fig. 6.1b, left), it is convenient to express the field vectors in components parallel
and perpendicular to the NV axis. In particular, we write the partition of the effective
field vector as Π = (Π⊥ cosϕΠ,Π⊥ sinϕΠ,Π‖) (see Fig. 6.1a), where Π‖ = Πz is the

parallel and Π⊥ = (Π2
x + Π2

y)1/2 the perpendicular effective field amplitude. The
direction of Π⊥ in the transverse xy-plane is set by the azimuthal angle ϕΠ with
respect to the x-axis, i.e. tanϕΠ = Πy/Πx. We will treat B the same, with B‖, B⊥
and ϕB defined similarly.

According to Hamiltonian (6.1), the effective field then affects the level structure
in two ways (see Sec. 2.2.2): First, an axial effective field shifts all |−1,mI〉 and
|+1,mI〉 with respect to |0,mI〉 by an amount Π‖. Second, a transverse effective field
couples |−1,mI〉 and |+1,mI〉, whenever they are near-degenerate. For example,
for B = 0, the transverse effective field mixes and splits the degenerate |−1, 0〉 and
|+1, 0〉, leading to new spin eigenstates given by

|−〉 =
(
eiϕΠ |+1〉+ |−1〉

)
/
√

2 ,

|+〉 =
(
eiϕΠ |+1〉 − |−1〉

)
/
√

2 ,
(6.2)

where we have omitted the label for the nuclear spin projection mI = 0 for clarity. The
corresponding eigenenergies are E± = D0 + Π‖ ± Π⊥ as shown in Fig. 6.1b (right).
Thus, besides the level shift of Π‖ experienced by all nuclear spin projections, the
coupled states |−〉 and |+〉 are split by 2Π⊥ due to the presence of the effective field.
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We stress that the spin is far more susceptible to transverse effective fields when the
electric field dominates, since the electric field susceptibilities fulfill d⊥ ≈ 50d‖ [112]
(see Fig. 2.3). In contrast, all spin-strain susceptibilities are comparable [104–106].
As a result, the average effect of a randomly oriented electric field leads to a large
splitting with negligible common-mode shift (i.e. Π⊥ � Π‖, on average), while in
the case of strain the splitting is accompanied by a common-mode shift in the same
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Figure 6.1.: Schematics and description of the experiment. a) Coordinate system of
the NV center including the relevant fields interacting with the NV spin: The MW
magnetic field (red) for spin manipulation, the effective field comprising strain and
electric field (light blue) intrinsic to the diamond sample and the static magnetic
field (green) externally applied to determine unknown MW polarizations. All fields
are partitioned into components parallel and perpendicular to the NV symmetry axis,
where the perpendicular components are further parametrized by the azimuthal angle
ϕα (α ∈ {mw, Π, B}). b) Simplified level diagram of the NV ground state according
to Hamiltonian (6.1) without and with an effective field in absence of a magnetic field.
The effective field induces a common-mode shift of the |−1〉 and |+1〉 hyperfine states
by Π‖ and additionally splits near-degenerate levels, which have the same nuclear
spin projection (here mI = 0). A MW magnetic field is used to address transitions
between the states. c) Sketch of the experimental setup with a diamond sample and
a nearby bonding wire for MW delivery. The NV spin under study experiences an
approximately linear polarized field, which is used to manipulate the NV spin (the
situation shown corresponds to the one of NV1).
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order of magnitude (i.e. Π⊥ ≈ Π‖, on average). This key difference allows high-
resolution spectroscopy of NV spins to differentiate between the electric field and
strain contributions of the effective field, as we will show in the following.

Note that although we focus here on the case B = 0 and mI = 0, analogous
statements hold for the case γNVB‖ = ±|AHF| and mI = ±1.

6.1.2. Influence on the magnetic dipole transition strengths

In addition to shifting and splitting the hyperfine states, the effective field Π also influ-
ences the dipole moment of the spin transitions (see Sec. 2.3.1). Experimentally, these
spin transitions are probed by a MW field Bmw(t) = Bmw cos(ωmwt) with frequency
ωmw/2π and (complex) amplitude Bmw, which interacts with the corresponding mag-
netic dipole moment. As the dipole moment determines the polarization response of
the transition, it is ultimately linked to the observed transition strengths.

Based on the discussion in Sec. 2.3.1, the Rabi frequencies associated with the
resonant spin transitions |0〉 ↔ |±〉 read

Ω0,± =
1

~
|〈±|−Bmw · µ̂|0〉| = 1

~
∣∣Bmw · µ0,±

∣∣ , (6.3)

where the magnetic dipole moment operator is µ̂ = −hγNVŜ = −2µBŜ and the
related magnetic dipole matrix elements are

µ0,± = 〈±|µ̂|0〉 = −2µB

〈
±
∣∣∣Ŝ∣∣∣0〉 . (6.4)

Using Eq. (6.2) we then find

µ0,+ = −2µB
(

sin (ϕΠ/2), cos (ϕΠ/2), 0
)
,

µ0,− = −2µB
(

cos (ϕΠ/2),− sin (ϕΠ/2), 0
)
,

(6.5)

showing that the azimuthal angle of the effective field is directly linked to the orien-
tation of both dipole moments. Note that the dipole moments are completely real,
implying a linearly polarized response of the transitions. In contrast, when B‖ � Π⊥,
the eigenstates of Hamiltonian (6.1) are |0〉 , |−1〉, and |+1〉, and the transitions show
the familiar circularly polarized response (compare to Eq. (2.17)).

The relative orientation of the dipole moment to the MW field determines the Rabi
frequency of the transition and, therefore, the observed ESR response (see Eq. (6.3)).
The observed transition strengths are then given by A0,± ∝ Ω2

0,± [122]. Writing the
linearly polarized MW field amplitude as Bmw = (Bmw

⊥ cosϕmw, B
mw
⊥ sinϕmw, B

mw
‖ ),

where ϕmw is the azimuthal angle in the xy-plane (see Fig. 6.1a), the transition
strengths between |0〉 and |−〉 or |0〉 and |+〉 read

A0,± ∝
1

~2

(2µBB
mw
⊥ )2

2
[1∓ cos(2ϕmw + ϕΠ)] . (6.6)

Interestingly, the transition strengths contain information about the relative az-
imuthal angles of the effective field and the linearly polarized MW driving field.
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Adapting the formalism of [115] this information can be directly accessed from the
transition imbalance

I =
A0,+ −A0,−

A0,+ +A0,−
= − cos(2ϕmw + ϕΠ) , (6.7)

which is provided by contrast difference of the ESR transitions. Thus, the azimuthal
angle ϕΠ of the effective field Π can be determined up to a reflection symmetry
with respect to 2ϕmw from the contrast imbalance of the ESR transitions, while the
magnitude of Π⊥ can be extracted from the splitting of the ESR transition frequen-
cies. Hence, we have established that both the direction and the magnitude of the
transverse effective field can be extracted from high-resolution ESR.

As mentioned earlier, themI = ±1 hyperfine projections are coupled by the effective
field Π as well. At B = 0, however, the corresponding hyperfine states with the same
mI are split by 2|AHF|, so that the transition imbalance due to the effective field is
mostly suppressed. As we typically find Π⊥ � |AHF| in our samples, an approximate
expression for the imbalance is given by

J ≈ − Π⊥
|AHF|

cos(2ϕmw + ϕΠ) , (6.8)

as derived in App. A.5.

6.2. High-resolution spectroscopy

In order to apply our findings from the previous section to investigate the effective
field Π and to determine the respective weights of the electric field and strain, we
perform high-resolution spectroscopy on single NV centers using the same sample
and experimental setup as introduced in Sec. 3.1. Note that the fabrication steps
performed to structure the cantilevers, e.g. etching, possibly cause a larger intrinsic
strain in the diamond compared to an untreated sample.

For our low-power ESR measurements we make use of MW manipulation of the NV
spins. More precisely the circularly polarized component of the MW field projection
transverse to the NV axis, Bmw

⊥ (see Fig. 6.1a), allows us to drive transitions between
different spin levels with the same mI , as illustrated with the red arrow in Fig. 6.1b.
We realize this MW driving by applying an AC current to the gold wire acting as
a MW source. This configuration leads to an approximately linearly polarized MW
field at the NVs’ locations as sketched in Fig. 6.1c. Note that we employ a pulsed
ESR technique, in which the MW pulse duration exceeds T ∗2 ≈ 2 µs of the NV spins.
In this regime of incoherent manipulation, the observed transition characteristics are
then described by the theory introduced in Sec. 6.1.

Geometric considerations allow us to determine the MW polarization angle required
to interpret the experimental data (see Fig. 6.1 and compare to Eq. (6.7)). We find
ϕmw ≈ 90° for the specific orientation of a particular single NV (‘NV1’)1. We note
that in Sec. 6.5 we will present a technique to determine this MW polarization angle
without the requirement of such a geometric consideration. This technique, which is
based on the controlled rotation of a large transverse magnetic field, yields very good
agreement with our a priori determination of ϕmw.

1NV1 is the NV center on which all measurements in the previous chapters were performed on.
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6.2.1. Spectroscopy around zero magnetic field

We start the characterization of our sample by investigating the response of NV1 to
external magnetic fields. To that end, we first apply an axial magnetic field and record
low-power, (incoherent) pulsed ESR measurements [122] as a function of B‖ (see
Fig. 6.2a). The resulting spectrum shows the six hyperfine resolved spin transitions.
Due to the Zeeman effect, the three nuclear spin projections with ms = +1 (ms = −1)
show a positive (negative) dispersion with magnetic field, i.e. shift to larger (smaller)
frequencies with increasing B‖, as described in Sec. 2.2.1. The order of the nuclear spin
projections can be established from Hamiltonian (6.1) (see Fig. 6.2a). At and above
the maximum values of B‖ we apply, all six ESR transitions show the same contrast, as
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Figure 6.2.: Influence of external fields on the ESR transitions. a) A magnetic field B‖
parallel to the NV axis results in a linear Zeeman splitting of the six possible spin
transitions |0〉 ↔ |±1〉. Whenever two transitions with the same nuclear spin quantum
number mI cross, we observe a reduced ESR contrast, resulting from a coupling of
the corresponding states. b) High-resolution spectrum recorded at B‖ = 0 G with
incoherent MW manipulation including a Gaussian fit to the data (black). The central
line is split by 360(18) kHz into two transitions with an imbalance I = −58(5) %.
The inset shows a control measurement recorded with CW ESR, which confirms the
validity of the result. c) Zoom into the mI = 0 transitions around B‖ ≈ 0 G showing
a clear avoided crossing, indicative of a coupling between the two involved hyperfine
levels. d) Applying a transverse magnetic field B⊥ while maintaining B‖ ≈ 0 G mixes
the spin levels and results in a second-order energy shift (see Sec. 2.2.1 and Sec. 6.5).
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the nuclear spin states are equally (thermally) populated, and thems = −1 (ms = +1)
transitions have right (left) circularly polarized response, whereas we apply a linearly
polarized MW field, which corresponds to an equal superposition of right and left
circular polarization. At the field values, where the transitions corresponding to
different mI cross, no state mixing occurs and the transition contrasts, which are
related to the strengths of both transitions, then sum together, resulting in twice the
fluorescence drop compared to a single transition. When two states, which cross in
energy, have the same nuclear spin projection mI , however, the states do mix and we
observe stark differences to the case of states of unequal mI crossing.

To investigate this effect in more detail, we record a high-resolution ESR spectrum
atB = 0 (see Fig. 6.2b). The spectrum shows a clear splitting of the central transition
into two peaks, both having different amplitudes. This imbalance is attributed to
the influence of the effective field Π, which mixes |−1, 0〉 and |+1, 0〉. Fitting the
experimental data with a superposition of four Gaussian functions allows us to extract
a splitting of 2Π⊥ = 360(18) kHz and a transition imbalance of I = −58(5) %. Note
that for consistency, we also obtained the same results by using CW ESR, instead of
incoherent pulsed ESR (see Fig. 6.1b inset).

To ensure that our findings are not masked by any residual parallel magnetic field,
we perform high-resolution ESR measurements with the parallel magnetic field com-
ponent in the vicinity of the mI = 0 transition crossing (see Fig. 6.2c). We clearly
resolve an avoided crossing of the two transitions, as illustrated by the dashed white
line and consistent with the discussed coupling of the corresponding hyperfine states.
Note that all the measurements presented in Fig. 6.2 and the following are recorded
separately and hence under slightly different experimental conditions (e.g. tempera-
ture), leading to small variations in the zero-field splitting [107].

6.2.2. Comparison of transition strengths

To quantify the strengths of the involved ESR transitions in Fig. 6.2b, we conduct
Rabi oscillation experiments on each transition using the same MW and laser power
(see Fig. 6.3). Note that the MW power used here is higher compared to the mea-
surements shown in Fig. 6.2 allowing for coherent manipulation. Employing Eq. (2.17)
and Eq. (6.5) directly yields a relation between the Rabi frequencies Ωi (i = 1, 2, 3, 4)
of the four different transitions, which reads

Ω2
1 = Ω2

4 =
1

2

(
Ω2

2 + Ω2
3

)
. (6.9)

Here, we labeled the transitions as shown in Fig. 6.3 and defined Ω2
1 = Ω2

4 =
2(µBB

mw
⊥ )2/~2. In close agreement with this prediction, we find from fits to our

data that Ω1/2π = 220(1) kHz ≈ Ω4/2π = 210(1) kHz and [ 1
2 (Ω2

2 + Ω2
3)]1/2/2π =

220(3) kHz, where Ω2/2π = 288(2) kHz and Ω3/2π = 118(6) kHz.
The measured transition strengths are directly linked to the polarization response of

each transition (see Fig. 6.3, right). Transitions ¬ and ¯ each involve two ∆ms = ±1
transitions, such that they both show circular polarization responses. In contrast,
transitions  and ® correspond to transitions from |0〉 to |−〉 and |0〉 to |+〉, respec-
tively (both with mI = 0, see Eq. (6.2)). These states are even and odd superpositions
of |−1〉 and |+1〉 and the transitions, therefore, yield a linearly polarized response (see
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Figure 6.3.: Comparison of the transition strengths measured at B‖ = 0 G by driv-
ing Rabi oscillations on each of the four transitions shown on the right under the
same experimental conditions. To high accuracy we find the expected relation
Ω2

1 = Ω2
4 = 1

2 (Ω2
2 + Ω2

3). Note that panel ® contains two oscillation frequencies, the
slowly oscillating component of transition ® (black) and a higher frequency caused
by off-resonant driving of transition . The level diagram additionally shows the
polarization of the MW drive and the polarization response of each transition.

Eq. (6.5)). Since the polarization of the MW drive is approximately linear, the overlap
of the drive polarization and the transition dipole determine the transition strengths
(refer to Eq. (6.3)).

We note that in the experimental data for transition ®, there are two oscillation
frequencies present (see gray fit). The slowly oscillating component highlighted by
the black line corresponds to driving of transition ®, while the quickly oscillating
component originates from off-resonant driving of transition . Additionally, the
slight mismatch between Ω1 and Ω4 results from coupling between the states |−1,mI〉
and |+1,mI〉 with the nuclear spin quantum numbers mI = ±1 even at B = 0. This
slight mixing, which is suppressed by the hyperfine splitting 2|AHF|, still causes the
transitions to have an observable, slightly elliptically polarized response, rather than
a purely circularly polarized response.

6.3. Characterization of individual NV centers

Having established a technique to characterize the effective field Π a single NV experi-
ences, we now apply this method to investigate the field environment of a selection of
individual NVs. For that we perform high-resolution ESR measurements at B = 0 as
outlined in Sec. 6.2.1 and study the splitting and transition imbalance of the mI = 0
transitions (see Fig. 6.4a). In this we find different behavior for each NV under study,
indicating a different effective field environment for each defect. Comparing the mean
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transition frequency for each NV with the averaged transition frequency over all NVs,
we find that the observed shifts and splittings are of the same order of magnitude,
which indicates that strain is the dominant contribution to the effective field. This
observation differs from the findings of [115], where the electric field originating from
charge impurities was identified as the main effective field contribution in their sam-
ples.

We note that our method does not allow for a complete determination of the effec-
tive field, since we are not able to reliably determine the parallel component Π‖. This
is because the zero-field splitting depends sensitively on temperature (see Sec. 2.2.3),
i.e. both temperature and the parallel effective field component have the same effect on
the observed transition frequencies. Nevertheless, our conclusion of strain being the
major contribution to the effective field holds, as we typically observe peak-to-peak
temperature fluctuations of 0.3 K in our setup corresponding to temperature-induced
shifts of ≈ 23 kHz, much smaller than the shifts observed in Fig. 6.4a.

Using Gaussian fits we extract the splittings 2Π⊥ and transition imbalances I for
each ESR spectrum in Fig. 6.4a and summarize the results in Fig. 6.4b. Eq. (6.7)
allows us to visualize the transverse effective field components in the NV frames up
to a reflection symmetry with respect to 2ϕmw as presented in the inset of Fig. 6.4b.
Here, the transverse effective field amplitudes are normalized with respect to NV1 and
we used the MW polarization angle of NV1 as determined in the Sec. 6.5. Note that
Fig. 6.4 shows NVs with all four possible orientations in the diamond lattice, which
experience different relative MW polarization angles accordingly and, therefore, show
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Figure 6.4.: Characterization of the effective field environment of selected single NV
centers. a) High-resolution ESR spectra for B‖ = 0 G for several single NV centers
showing a splitting of the mI = 0 levels and imbalances of the corresponding transi-
tions. b) Summary of the extracted splittings 2Π⊥ and transition imbalances I from
panel a) and schematic illustration of the transverse effective field component for each
NV (numbers refer to NV labels). Each dataset is consistent with two possible values
for ϕΠ and both possible effective field orientations are shown for each NV.
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different symmetry behavior. Once the polarization angle for a given NV is known,
geometric considerations allow us to infer the corresponding angles for the other NV
orientations. Moreover, we point out that in order to determine ϕΠ without ambiguity,
one could e.g. conduct a second set of measurements with a different MW polarization
angle ϕmw.

6.4. Hyperfine interaction with a nearby nuclear spin

Besides the well-understood ESR spectra of NV1 – NV6 from Fig. 6.4, which show
an effective field induced splitting of the mI = 0 states into two sublevels at zero
magnetic field, we also studied a single NV (‘NV7’), whose spectrum shows in total
six transitions in the high-resolution ESR spectrum at B = 0. Specifically, besides
a splitting of the mI = 0 transitions, all other transitions show a splitting into a
doublet as well. The splitting of all the hyperfine levels into two sublevels persists
independent of an applied parallel magnetic field (see Fig. 6.5a). This observation
indicates a coupling between the NV spin and a nuclear spin (I(C) = 1/2) of a 13C
isotope, which occupies a nearby site in the diamond lattice (see Sec. 2.2.4).

According to Eq. (2.11), the 13C hyperfine induced splittings of the |ms,mI〉 states
with ms = ±1 are in the secular approximation given by

∆(C) =
[
A2
zx +A2

zy + (Azz − γCB‖)
2
]1/2

+ γCB‖ . (6.10)

In the regime of Fig. 6.5a, we find γCB‖ . 1 kHz to be a negligible factor, while the
observed hyperfine splitting of the sublevels is ≈ 700 kHz. Consequently, we define

the 13C hyperfine coupling strength A
(C)
HF = (A2

zx + A2
zy + A2

zz)
1/2, as introduced in

Eq. (2.12). We determine A
(C)
HF by a Gaussian fit of the spectrum at B‖ = 0 G in

Fig. 6.5a (see inset). By evaluating the splitting of the mI = ±1 transitions (outer

transition pairs ¬ and ®) we find A
(C)
HF = 707(14) kHz. The extracted hyperfine

coupling corresponds to a 13C isotope that sits on a lattice site labeled by ‘M’ [89].
Unfortunately, for this group is no correspondence with a specific site in the diamond
lattice available, as the accuracy of underlying ab initio calculation is hardly better
than a few hundred kHz.

Besides the effect of the nuclear spin coupling, the spectrum also reveals the sig-
natures of the effective field, emphasized by the fact that the contrast of the ESR
transitions is not symmetric upon inflection with respect to ωmw/2π ≈ 2870 MHz. As
established in Sec. 6.1, the effective field parameters can be related to the splitting
and imbalance of the mI = 0 transitions (inner transition pair ) at B‖ = 0 G. In
contrast to our considerations in Sec. 6.1, the splitting of these states is now given by

∆
(C)
Π =

[(
A

(C)
HF

)2

+ (2Π⊥)
2

]1/2

, (6.11)

whereas the transition imbalance from Eq. (6.7) is modified to

I(C) = − 2Π⊥√(
A

(C)
HF

)2

+ (2Π⊥)
2

cos(2ϕmw + ϕΠ) . (6.12)
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We note that the prefactor in Eq. (6.12) arises from the fact that B‖ = 0 G does not
correspond to a magnetic field value where the strain-induced coupling between two
hyperfine states is maximal, as the 13C hyperfine splitting is present. This ultimately
reduces the observed transition imbalance. Using the parameters extracted from the

Gaussian fit of the inner transition pair , ∆
(C)
Π = 813(15) kHz and I(C) = −26(4) %,

we obtain the effective field parameters Π⊥ = 200(28) kHz and ϕΠ = 126(10)° or
ϕΠ = 243(10)° (resulting from the symmetry with respect to 2ϕmw).

These parameters allow us to simulate the spectrum from Fig. 6.5a, as shown in
Fig. 6.5b. The underlying calculation is based on Hamiltonian (6.1) including an hy-

perfine interaction term Ĥ(C)
HF /h = A

(C)
HF Ŝz Î

(C)
z (compare to Eq. (2.10)). A comparison

of the simulation with the experimental data yields excellent agreement. Note that
the spectrum exhibits a contrast asymmetry with respect to ωmw/2π ≈ 2870 MHz
that is more pronounced than in Fig. 6.2a, since in the present case the effective field
amplitude is larger.

a) b)
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Figure 6.5.: Hyperfine interaction with a nearby 13C nuclear spin. a) The spectrum of
NV7 while varying the parallel magnetic field B‖ shows a similar behavior compared to
NV1 in Fig. 6.2a, but offers a splitting of each hyperfine transition into two lines. This
splitting is characteristic for a coupling of the NV spin to a nearby 13C nuclear spin.
Still, the effective field induces a splitting of lines crossing around ωmw/2π ≈ 2870 MHz
and introduces a contrast imbalance between higher and lower frequency transitions.
By fitting the spectrum at B‖ = 0 G (inset) we determine the 13C hyperfine coupling

strength A
(C)
HF = 707(14) kHz from the outer transition pairs ¬ and ® as well as the

effective field parameters Π⊥ = 200(28) kHz and ϕΠ = 126(10)° (or ϕΠ = 243(10)°)
from the inner transition pair . b) We use the extracted parameters to calculate
the spectrum based on the Hamiltonians (2.10) and (6.1). The resulting simulation
agrees excellently with the measurement.
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6.5. Determination of the MW polarization angle

We finalize our spectroscopy study of the effective field by establishing a method to
experimentally determine the polarization angle ϕmw of the MW field that is used
to drive the spin transitions (see Fig. 6.1a). To do so, we exploit the response of the
hyperfine spin transitions to a purely transverse magnetic field. Because a transverse
magnetic field couples |−1〉 and |+1〉 states in second order, the transition frequencies
show a quadratic dependence on the field (see Fig. 2.3a and Fig. 6.2d for data on
NV1). Similarly to Fig. 6.2a, the spectrum shows in total six transitions. However,
the corresponding states of the two outer transitions are degenerate, resulting in four
resolvable transitions with the two outer ones exhibit double the contrast relative of
the inner ones. The inner transitions approach the dominant outer transitions for
large fields, indicating a tilting of the spin quantization axis towards the transverse
field axis, which defines the new eigenstates of the system, |0̃〉, |−̃〉, and |+̃〉.

At B⊥ = 32 G (the largest achievable transverse magnetic field amplitude in our
setup) we study the influence of the azimuthal angle of the transverse field ϕB while
setting B‖ = 0 G (within our experimental resolution). In this situation, we change
ϕB and perform pulsed ESR measurements on the hyperfine transitions (see Fig. 6.6a).
We observe clear oscillations of the contrasts of the four transitions as a function of
ϕB . Specifically, the contrasts of the two lower frequency transitions at ωmw/2π ≈
2871 MHz and ωmw/2π ≈ 2872.5 MHz (labeled with ¬ and ) oscillate in phase, as
do the contrasts of the two higher frequency transitions at ωmw/2π ≈ 2875.5 MHz
and ωmw/2π ≈ 2877 MHz (labeled with ® and ¯). However, the oscillations of the
contrasts of these two pairs of transitions with ϕB are not in phase and exhibit a
phase shift ≈π/2. In other words the lower frequency transitions ¬ and  have
highest contrast when the higher frequency transitions ® and ¯ have low contrast,
and vice versa.

Using a similar theoretical model as introduced in Sec. 6.1.2, we calculate the tran-
sition strengths based on Hamiltonian (6.1). As we consider the regime γNVB⊥ �
Π⊥, |AHF|, the effective field and hyperfine coupling can be neglected in the first or-
der. The eigenstates of the Hamiltonian thus read |0̃〉 ≈ |0〉, |−̃〉, and |+̃〉, where
|−̃〉 and |+̃〉 are mixed states of |−1〉 and |+1〉 due to the presence of the transverse
magnetic field. In analogy to our results in Sec. 6.1.2, we find the transition strengths

A0,±̃ ∝ Ω2
0,±̃ =

1

~2

∣∣Bmw · µ0,±̃
∣∣2

≈ 1

~2

(2µBB
mw
⊥ )2

2
[1± cos(2ϕB − 2ϕmw)] , (6.13)

where we have used the magnetic dipole matrix elements µ0,±̃ = −2µB
〈
±̃
∣∣Ŝ∣∣0〉.

According to Eq. (6.13), rotating the transverse magnetic field component by changing
ϕB leads to oscillations in the transition strengths of the involved transitions, i.e. in
their experimentally observed contrasts. The π-periodicity of these oscillations is
induced by the periodic change of the overlap of the fixed MW polarization and the
varying orientation of the dipole moments and is mirrored by the alternating ESR
contrast in the experiment. The phase offset of these oscillations is related to the MW
polarization angle ϕmw. By analyzing the oscillations in the data shown in Fig. 6.6a
we find ϕmw = 89.2(8)° in the reference frame of NV1.
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Figure 6.6.: Determination of the MW polarization angle ϕmw by rotating the trans-
verse magnetic field component around the quantization axis of NV1. a) Experimental
data for B⊥ = 32 G and B‖ = 0 G. The transition strengths of all states oscillate.
Additionally, the transition frequencies show periodic ‘wiggles’. b) Calculated spec-
trum based on Hamiltonian (6.1) considering the intrinsic strain in the diamond lattice
while the magnetic field rotation is assumed to be perfectly circular (flattening f = 0).
The calculated transition frequencies are highlighted (gray dots). The transitions at
higher frequency show ‘wiggles’, which are out of phase compared to the measure-
ment. c) By including an imperfect, elliptic magnetic field rotation with a flattening
f = 0.039 the simulation reproduces the experimental data. This allows us to de-
termine the MW polarization angle in the transverse plane. In the reference frame
of NV1, we find ϕmw = 89.2(8)° with respect to the x-axis. To quantify the relative
contributions of intrinsic strain and the elliptic magnetic field rotation, we show the
calculated transition frequencies (light blue dots) besides the ones extracted from the
simulation in panel b) (gray dots). d) Visualization of the polarization response of
each of the six transitions on the Poincaré sphere for 0 ≤ ϕB < π (from dark to
light coloring). Due to symmetry the behavior for π ≤ ϕB < 2π is identical. While
the transitions  and ® have a purely linearly polarized response, the transitions ¬
and ¯ have an elliptic polarization response as their mutual coupling is affected by
the hyperfine interaction. Note that the transitions with lower frequency (¬ and )
are phase-shifted by ∆ϕB = π/2 with respect to the transitions with higher frequency
(® and ¯).
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Eq. (6.13) reproduces the experimentally observed oscillations in the transition con-
trast and offers some intuition for interpreting the data. According to the presented
model, however, the frequencies of the observed transitions should not be affected by
varying ϕB . One reason for this discrepancy is that in Eq. (6.13) we have neglected
the influence of the effective field. Including the effective field in the theory, however,
does no longer allow for an analytical treatment. We, therefore, numerically model
the impact of the effective field on the ESR spectrum by simulating our experiment
based on Hamiltonian (6.1), using the parameters extracted from Fig. 6.2b. As shown
in Fig. 6.6b, including the intrinsic strain in the simulation gives rise to ‘wiggles’ of the
transition frequencies (gray dots). While the calculated lower frequency transitions ¬
and  reproduce the wiggling observed in the measurement, the ‘wiggles’ of the calcu-
lated higher frequency transitions ® and ¯ are phase-shifted by π/2 compared to the
experimental data. This phase shift is attributed to two effects, an imperfect align-
ment of the magnetic field axis and the influence of an imperfect, elliptical rotation
of the transverse magnetic field amplitude. The imperfect field alignment induces a
varying, non-zero parallel magnetic field component. As we discuss in App. A.1.1, this
is, however, negligible in the present case. To take account of the second effect, we
consider a realistic ellipticity of the transverse magnetic field rotation characterized
by a flattening2 of f = 0.039. Thereby we are able to reproduce both the wiggling
of the transition frequencies and the asymmetric shift of the transition contrast (see
Fig. 6.6c). To characterize the relative contributions of the effective field and the
imperfect magnetic field rotation, Fig. 6.6c further shows the simulated transition
frequencies for both situations. This allows us to compare the calculated transition
frequencies including both aspects (blue dots) with the case where only the known ef-
fective field is considered, while the magnetic field rotation is assumed to be perfectly
circular (gray dotted, see also Fig. 6.6b). From this comparison it becomes apparent
that only the pair of the higher frequency transitions ® and ¯ is significantly affected
by the ellipticity of the magnetic field, as the states involved in these transitions are
more susceptible to transverse magnetic fields than the ones pertaining to the low-
frequency pair of transitions ¬ and  (see Fig. 2.3a). Moreover, the amplitude of
the wiggles induced by the ellipticity is very similar to the amplitude of the wiggles
induced by the effective field, thus both effects are of comparable order. Nevertheless,
we conclude from our simulations that this experimental imperfection does not affect
any of the other findings we report on here.

Finally, Fig. 6.6d illustrates the polarization response for each of the transitions as
a function of ϕB on the Poincaré sphere following the analysis outlined in Sec. 2.3.1.
The trajectories of the transitions  and ® evolve along the equator, implying a
linearly polarized response with a rotating polarization axis, as expected. Thus, the
overlap of the magnetic dipole matrix elements and the MW driving field changes
periodically with ϕB from zero to its maximum. This corresponds to the experimen-
tal observations, where both transitions periodically lose their contrast completely.
On the contrary, the transitions ¬ and ¯ comprise elliptic polarization responses to
both circulation directions. This is a direct consequence of the interplay between
the magnetic field mixing and the hyperfine interaction between the involved states.
Therefore, the magnetic dipole matrix element and the MW driving field have always

2The flattening f characterizes the aspect ratio of the ellipse in terms of the semi-major and
semi-minor axes a and b, respectively. It is defined as f = 1− b/a.
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a non-zero overlap, resulting in an observable contrast independent of ϕB . To visu-
alize the evolution of the trajectories, we encoded the variation of ϕB in their color
gradients, starting at ϕB = 0 (dark blue and red) and evolving to ϕB = π (light
blue and red). Due to the periodicity of Eq. (6.13) the response of the transitions for
π ≤ ϕB < 2π is the same. The color-coding makes the phase shift between the lower
frequency (¬ and ) and higher frequency (® and ¯) transitions visible. Both pairs
of transitions rotate symmetrically with respect to the S3-axis, which is consistent
with the π/2 phase shift along the ϕB-axis observed in the experimental data. The
offset of the starting points for ϕB = 0 with respect to the S1-axis is directly linked
to the azimuthal angle ϕΠ of the effective field Π. Hence, modeling the polarization
response of the transitions on the Poincaré sphere gives an illustrative intuition for
the observed contrast oscillations.

6.6. Conclusion and outlook

In summary, we presented high-resolution ESR spectroscopy studies on single NV
defect centers in diamond to characterize their local effective field environment. Our
approach is based on a detailed examination of the NV spin’s allowed magnetic dipole
transitions, which are affected by the interaction of the MW probing field and the
intrinsic effective field. In our case of single NVs in high purity diamonds, we find that
strain is the major contribution to the effective field. These findings contrast previous
studies on NV ensembles in more strongly doped diamonds, where the electric field
was the dominant over strain [115]. We also showed that our results apply to more
complex NV environments, e.g. induced by the coupling to nearby nuclear spins.
In addition, we established a new method for performing single spin-based, linear
polarization analysis of MW fields using low-power ESR in well-controlled bias fields.
Thus, our method offers a characterization tool for both the intrinsic effective field
and the MW manipulation field.

However, there remain unexplained experimental observations that require further
investigations. In this context, Fig. 6.7 shows the spectrum of NV8 in a parallel
magnetic field. Compared to the spectrum of NV1 in Fig. 6.2a, NV8 offers an
additional splitting at the avoided crossings of nuclear spin states with the same mI .
For instance, at B‖ = 0 G there are four transitions associated with mI = 0, whereas
the mI = ±1 transitions are not affected at all at this magnetic field strength. The
same behavior with interchanged roles is observed at B‖ = ±|AHF|/γNV for the
other nuclear spin projections. This spectrum cannot be explained by a coupling to
a 13C nuclear spin. The hyperfine interaction given by Eq. (2.10) is linear in Ŝ and,
therefore, does not couple |−1〉 and |+1〉 states, as this requires terms quadratic in Ŝ.
This argument also holds if the secular approximation is not considered. Instead, the
additional splitting of NV8 might be caused by an effective field environment, in which
strain or the electric field fluctuates between two distinct values. When these fluctua-
tions happen on a timescale faster than our data acquisition, we effectively measure a
time average, which shows both possible values of the effective field splitting. To ver-
ify this approach to an explanation we suggest a time-resolved set of measurements.
Another possibility is that two 13C nuclear spins are located at particular lattice sites
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Figure 6.7.: Spectrum of NV8 while varying the axial magnetic field B‖. Besides
the familiar linear Zeeman shift of the transitions, the spectrum exhibits a splitting
into four lines at the avoided crossings of two spin transitions with equal nuclear
spin projection mI . The origin of this additional splitting cannot be explained by a
hyperfine interaction with a single nearby 13C nuclear spin, but might be a signature
of two coupled 13C nuclear spins or a fluctuating effective field environment, which
can attain only two distinct values. As of now, the spectrum is not explained and
requires further investigations.

in the vicinity of NV8, whose mutual couplings with the NV affect each other and
give rise to the observed behavior. Yet, the complete description of the spectrum is
an open question.

Nevertheless, the fact that our conclusions on the nature of the local effective field
of the single NV spins differ from recent studies on NV ensembles [115], highlights
the importance of characterizing such fields in a quantitative and effective way. Such
precise characterization is then particularly relevant for NV-based quantum sensing
applications where low-field operation is of primary importance. Examples for these
include the application of the three-level dressed states extensively discussed within
the scope of this work [148, 183], nanoscale magnetic imaging of magnetically sensitive
samples [203], or NV-based low-field techniques like zero and ultra-low field nuclear
magnetic resonance [204]. The novel MW polarization analysis we demonstrated
could find applications in NV-based MW imaging [205, 206], which until now was
only demonstrated for sensing of circularly polarized MWs [207]. Our results extend
these capabilities and the existing toolset of NV-based quantum sensing modalities.
For instance, it would in principle allow for determining the full polarization state of
MW fields with nanoscale resolutions, which has relevance in MW electronics [208] or
spintronics devices [209].



7. Summary and outlook

The protection of electron spins from environmentally induced decoherence is a fun-
damental challenge in quantum science. Within the scope of this thesis, we reported
on the experimental implementation and extensive analysis of a novel continuous de-
coupling scheme to address this impediment. To that end, we dressed the ground
state spin levels of an individual NV spin in diamond with resonant and continu-
ous driving fields in a closed interaction contour, thereby establishing a new resource
for coherence protection from magnetic fluctuations. The detailed characterization
we provided constitutes a major step towards the future applications of the dressed
states in quantum technologies.

7.1. Summary

We started this thesis with a brief introduction to the foundations of the NV center in
Chap. 2, including the general description of the spin ground state by its Hamiltonian
and a discussion of NV’s response to static external fields. We also explained the two
employed mechanisms for coherent spin control, MW magnetic fields and time-varying
strain fields. By combining both manipulation techniques, we were able to realize a
closed-contour interaction scheme in the NV’s three-level ground state, which also
constitutes an appealing continuous dynamical decoupling scheme for other few-level
quantum systems.

The closed-contour dressed states that emerge from such driving were at the heart
of this thesis. In Chap. 3 we presented a comprehensive study of the system’s dynam-
ics as a function of the global phase, i.e. the relative phase of the three driving fields.
Besides demonstrating a non-reciprocal character of the dynamics, we found that the
dressed states under study exhibit robust coherence properties even in the presence
of magnetic field fluctuations, i.e. they are efficiently decoupled from their spin-bath
environment. This coherence protection is based on the unique nature of the dressed
states we realized, which suppresses their response to magnetic noise. Our measure-
ments thereby indicated coherence times up to nearly two orders of magnitude longer
compared to the undriven NV spin.

While our initial results were obtained by performing measurements on a superpo-
sition of dressed states, we addressed the initialization of a pre-defined, single dressed
state in Chap. 4. To that end, we employed state transfer protocols based on the
adiabatic theorem and recently developed STA protocols to realize high-fidelity and
reversible initialization of a particular dressed state. By comparing both approaches
we achieved a more than twofold speedup for the STA protocol with state transfer
fidelities ≈ 99 %. This performance is the direct result of the fast, high-efficiency
initialization with STA protocols and of the remarkable coherence protection of the
closed-contour dressed states.



80 Summary and outlook

By establishing the initialization and remapping processes, we provided a basis for
the coherent manipulation and control of the dressed states in their own manifold.
This allowed us to accurately characterize the dressed states’ properties. We thereby
gained direct access to the dressed state subspace that offers the best coherence pro-
tection and verified that the corresponding coherence time is improved by nearly two
orders of magnitude over the undressed case. Our results constitute an important
step towards further studies of the remaining, unknown dressed state decoherence
processes, which could be explored by employing noise spectroscopy and dynamical
decoupling directly in the dressed state basis. In addition to this, the closed-contour
decoupling mechanism will have impact on any quantum technology where pulsed
decoupling protocols cannot be employed.

Finally, we characterized the local effective field environment of single NV centers
by high-resolution ESR spectroscopy in Chap. 6. Based on a theoretical model of the
magnetic dipole transitions and the MW driving field, we extracted both the strength
and the direction of the transverse component of the effective field. A thorough
examination of several single NVs revealed that in our case of a high purity diamond,
strain is the major contribution to the effective field. Moreover, by applying external
magnetic fields and exploiting the magnetic dipole selection rules we directly probed
the MW polarization at the NV position. Thus, our method offers a characterization
tool for both the intrinsic effective field and the MW manipulation field.

7.2. Outlook

In this outlook, we motivate further routes that can be taken with our dressed states
under closed-contour interaction and discuss general proposals that are within reach
with our experimental methods.

Our results yielded a nearly 100-fold improvement of coherence times for the dressed
states compared to the undriven NV system. However, the enhancement was limited
by temperature drifts and driving field noise. To push the coherence of the dressed
states to the T1 limit, we suggest stabilizing the environmental conditions by working
with active temperature stabilization, in vacuum and/or in a cryostat, and to use
driving fields with less amplitude noise. Overcoming the limitations imposed by these
fluctuations and thus extending the coherence times represents a key step towards the
construction of a quantum memory [188, 189] or the establishing of the dressed states
as a resource for sensing of gigahertz fields on the nanoscale [47, 156]. In such sens-
ing schemes, the tunability and coherence protection of our system offer interesting
avenues for enhanced sensitivities and phase-tuning of the sensing frequencies.

The phase dependence of the closed-contour system further gives rise to phase-
induced transparency, in which the phase of the MW driving fields tunes the absorp-
tion of the mechanical driving field [144]. In optomechanics experiments with NV
centers, this may allow a phase-controlled switch to rapidly gate spin-phonon interac-
tions [134]. Additionally, changing the phases of the applied fields offers the possibility
to direct the population dynamics. By changing the global phase the populations, and
thereby the absorption properties of the system are affected. This method could be
used to create effective MW modulators [49]. In combination with the non-reciprocal



7.2. Outlook 81

character of the dynamics for certain phase values, elements such as MW circulators
or directional amplifiers could be envisioned [157].

Although demonstrated on a single NV spin here, we believe that our closed-contour
driving scheme offers an attractive technique to extend coherence times in all few-
level systems that suffer from magnetic noise, such as solid-state and atomic systems
with suitable optical and MW transitions, e.g. ion-doped crystals, quantum dots, and
trapped ions. In this context, the combination of the closed-contour decoupling with
a robust sequence of phased pulses provides an innovative way to protect the system
not only from environmental noise but also from driving field noise [48]. Such a
mixed dynamical decoupling approach might lead to an even larger increase in the
coherence time, which is of great significance for sensing protocols as it allows for
enhanced sensitivities.

Based on our findings, we also believe that our system will serve as a powerful
resource for quantum information processing. To that end, the construction of fault-
tolerant quantum operations that are protected against noise and control errors must
be examined [42]. In particular, we advocate the experimental implementation of
non-Abelian geometric quantum gates. These build on the concept of geometric
phases, which can be induced within the subspace of two degenerate eigenstates in
a triangular three-level system like ours [159, 210]. In such a degenerate subspace a
universal set of quantum gates can be implemented by using adiabatic non-Abelian
geometric phases. In analogy to our state transfer protocols, these adiabatic geometric
quantum gates can be accelerated in terms of STA methods. The combination of the
intrinsic geometric characteristic and STA would offer fast quantum operations that
are robust against noise and certain control errors and that achieve high operation
fidelity [159].

Another interesting route to be pursued in the future is the exploration of the
coherent coupling between the closed-contour system and nearby nuclear spins [158].
For example, instead of addressing all three NV spin transitions resonantly, we suggest
driving one transition with a detuning that is resonant with the Zeeman splitting of the
nuclear spins. Under the condition that the driving fields’ amplitudes are much larger
than the detuning, it will still be possible to define a global phase value for at least
one circulation period of the population in the three-level system. Depending on the
global phase the nuclear spin transitions is then only be addressed in the direction that
is determined by the dynamics of the interaction contour. The resulting controlled
manipulation of the nuclear spin transitions will allow for polarization of the nuclear
spins and ultimately for cooling of nuclear spin ensembles in diamond. Such coupling
would also offer new perspectives with respect to the detection and polarization of
spins external to the diamond.

Quantum synchronization is an additional highly topical research area, in which
our three-level system serves as an ideal experimental testbed. Theoretical studies
revealed that three-level systems are the smallest possible systems that are able to
show synchronization to an external signal, i.e. that offer stable limit cycle oscillations
in phase space [211]. Besides individual control of the external driving fields (here
e.g. two weak MW tones or all three driving fields to address all ground state tran-
sitions) that we provide in our system, an experimental implementation also requires
engineering incoherent dissipation of the |−1〉 and |+1〉 states to |0〉 at particular
rates. In the case of asymmetric decay rates, it is predicted that the system is able
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to synchronize to, for example, the difference phase of the applied weak MW driving
fields [212]. Such dissipation processes may be realized by including optical transi-
tions to the excited state and making use of the intersystem crossing or by applying
additional incoherent fields to address the |0〉 ↔ |±1〉 transitions.

Finally, we point out some more far-reaching perspectives for the hybrid spin-
mechanical system we used in this thesis. Based on the employed spin-strain coupling
mechanism, the next steps could aim for the implementation of quantum coherent
interactions between the spin and the mechanical oscillator. Specifically, collective
strain-coupling of spin ensembles to nanomechanical oscillators can in principle be
exploited to generate spin-squeezing, i.e. entanglement [213]. Such entangled spins
form an attractive resource for quantum metrology, but methods for entanglement
generation are currently too inefficient to implement practical sensing schemes. More-
over, coherent spin-phonon interactions may allow for the possibility of using an NV
spin to probe the position of the mechanical resonator with uncertainty limited by
the Heisenberg principle or conversely of making a quantum nondemolition readout
of the NV spin state through a measurement of the cantilever displacement. Using
spin-mechanical backaction further allows for the study of spin-induced cooling of the
mechanical resonator to the quantum ground state by driving Raman like transitions
on embedded spins in the resolved sideband regime [214–216]. This would enable
fundamental studies of quantum mechanics in macroscopic objects and may be used
to generate non-classical states of the mechanical resonator, such as Schrödringer
cat states. Alternatively, phonons can also be employed to mediate quantum-state
transfer and generate effective interactions between separate NV spins [217]. An-
other exciting avenue consists of integrating our hybrid spin-optomechanical system
into optical cavities to realize a coherent, tripartite spin-phonon-photon system. The
realization of all these challenging prospects can, however, only be speculated with
our current experimental conditions [114]. An actual implementation would require
several improvements, e.g. going to cryogenic temperatures, limiting surface-induced
spin decoherence and spectral diffusion of the NV center, making use of new types of
mechanical resonators such as diamond optomechanical crystals [192–194] or surface
acoustic wave cavities [195], and employing the stronger excited state spin-strain [216]
or orbital-strain coupling [218]. Thus, in the future each of these challenges must be
mastered experimentally in their own right.



A. Appendix

A.1. Details on the experimental setup

In this section, we discuss two essential components of the employed experimental
setup, the static magnetic field control and the MW field generation. For a detailed
description of the other parts of the setup, e.g. the confocal microscope, we refer the
reader to [114].

A.1.1. Alignment and control of the magnetic field

To apply and control external magnetic fields, our experimental setup comprises
three pairs of coils arranged in a Helmholtz-like setup, i.e. the spatial separation
between corresponding coils matches their diameter (X,Y -pairs) or their radius (Z-
pair) [114, 116]. Each pair is driven by a constant-current source (Agilent E3644A)
enabling software-based three-dimensional magnetic field control. The calibration of
the magnetic field was performed with a Teslameter (Projekt Elektronic, FM 302 with
transverse probe AS-NTM).

In order to align the magnetic field to a desired NV orientation, we use the procedure
described in detail in [219]. The method relies on the controlled spatial rotation of
the magnetic field and the resulting effect on the NV’s ESR frequency. Comparing
the experimental data from Fig. 6.6a with corresponding simulations allows us to
estimate two important parameters: First, the simulations show that the achieved
alignment uncertainty is within < 0.2° from a desired NV direction, otherwise the
outer two degenerate states would be split. Second, we estimate that the ellipticity
of the magnetic field rotation mentioned in Sec. 6.5 is characterized by a flattening
f < 0.04, otherwise the observed wiggles in Fig. 6.6a would be larger. The fact that
we observe such an ellipticity may be attributed to uncertainty in the calibration of
the coils.

Both facts, however, only appear when a large perpendicular magnetic field is
applied and rotated. Thus, within this work it is only relevant for the data of Fig. 6.6,
where B⊥ = 32 G. For all the other measurements and in particular the ones we use
to extract the effective field parameters in Sec. 6.2.1 and Sec. 6.3, the applied magnetic
fields are static and only used to cancel external magnetic fields, e.g. earth magnetic
field. The extracted effective field parameters are, therefore, not affected.

A.1.2. Creation of arbitrary MW field pulse shapes with
phase-locking

To generate the driving fields for our experiments we use the setup as shown schemat-
ically in Fig. A.1 and presented in [183]. The envelopes of the MW field amplitudes
used for driving the |0〉 ↔ |±1〉 transitions are created through an I/Q frequency
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modulation technique. Specifically, a carrier signal at frequency ωc is modulated with
appropriate modulation signals I and Q. Both modulation signals are composed of
two individually generated pairs of (I,Q) signals at the frequencies ωIQ,1 for (I1,Q1)
and ωIQ,2 for (I2,Q2), respectively. Within each (I,Q) pair, the amplitudes are con-
stant and equal, although the amplitudes of the pair (I1,Q1) differ in general from
those of (I2,Q2). However, the relative phases of the signals within a pair differ from
each other, i.e. I1 (I2) is phase shifted with respect to Q1 (Q2). This phase shift,
which is φIQ,1 = −π/2 and φIQ,2 = π/2, allows for the suppression of one modu-
lation sideband for each (I,Q) signal pair. Thus, after combining both modulation
pairs, the resulting modulated frequency spectrum contains two remaining frequency
components, namely ω1 = ωc − ωIQ,1 and ω2 = ωc + ωIQ,2. To arbitrarily shape the
amplitudes of both MW driving fields and thereby generate the desired ramps for
state initialization, we modify each (I,Q) pair’s amplitude with well-defined envelope
functions using an arbitrary waveform generator (AWG) and a four-quadrant voltage
multiplier (MP).
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Figure A.1.: Setup used for arbitrary waveform control of the MW driving fields. The
two MW driving tones with frequencies ω1 = ωc−ωIQ,1 and ω2 = ωc+ωIQ,2 are created
via I/Q frequency modulation of a carrier signal with frequency ωc. Therefore, two
pairs of (I,Q) signals with frequencies ωIQ,1/2π = 2.4 MHz and ωIQ,2 = ω3 − ωIQ,1

are combined. Each pair exhibits an appropriate phase shift of the I and Q signal
to suppress one modulation sideband. Additionally, the (I,Q) pairs’ amplitudes are
modified by multiplication with the signals (M1,M2) of an AWG using a four-quadrant
MP. The mechanical driving field is created by a function generator actuating the
Piezo element near-resonant with frequency ω3/2π. We establish phase-locking of
the three driving fields to a global phase Φ by pulsed output synchronization and
locking of the MW, I/Q and Piezo function generators to the same 10 MHz reference
signal. An additional MW probe field (ωman) is added to the MW driving fields for
manipulation of the dressed spin states.
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To ensure phase-locking between the three driving fields, the MW source (Standford
Research Systems, SG384) and the function generators supplying the Piezo actuation
and the (I,Q) signals (Keysight, 33522B) are connected to the same 10 MHz reference
signal. To set the global phase to a well-defined value Φ, the output of the Piezo
function generator is triggered via a software command. After receiving a trigger
pulse, a subsequent trigger is forwarded to the I/Q function generators to start their
outputs.

The (I,Q) signals’ envelopes are synthesized by an AWG (Tektronix, AWG 5014C),
whose signals modifies the (I,Q) pairs’ amplitudes via four-quadrant multiplication
(Analog Devices, AD734). After that, both (I,Q) pairs are combined (MiniCircuits,
ZFSC-2-6+). For I/Q modulation we then use the in-built I/Q modulator of our MW
source.

The additional MW field used for manipulation in the dressed state manifold
(Rhode & Schwarz, SMB 100A) is added to the MW driving fields via a MW combiner
(MiniCircuits, ZFRSC-42-S+). All MW pulses are controlled via digital pulses from
a fast pulse generator card (SpinCore, PBESR-PRO-500), which triggers the AWG
and the MW switches (MiniCircuits, ZASWA-2-50DR+).

Creating the MW pulses in the described way is limited by the vertical resolution of
the four-quadrant MP, which exhibits a noise spectral density of 1 µV/

√
Hz. Hence,

the estimated noise amplitude within the 10 MHz bandwidth of the MP is 3.2 mVrms.
The finite jumps at the beginning and at the end of our driving field ramps are de-
termined by the parameter ε (see Sec. 4.2) scaled with the maximum output of the
AWG, given by 4.5 V. As additional noise is added within the I/Q modulation, choos-
ing ε = 10−3 yields a discontinuity step that is comparable to the noise amplitude of
our MW signals.

A.2. State transfer dynamics

In Chap. 4 and in [183], our experimental observations and theoretical calculations of
the state transfer process are based on reading out the population

P|0〉(t) = |〈0|ψ(t)〉|2 , (A.1)

where |ψ(t)〉 is the system’s state after the time evolution t (see Fig. 4.1c). The
Hamiltonian determining the evolution of the state |ψ(t)〉 is Ĥ0(t) from Eq. (4.1). In
particular, for t > tr we find Ω1,2(t) = Ω, i.e. Ĥ0(t) = Ĥ0(tr). Thus, for t > tr the
time evolution is given by

|ψ(t)〉 = e−i(t−tr)Ĥ0(tr)/~ |ψ(tr)〉 , (A.2)

where |ψ(tr)〉 is the state after the state transfer is accomplished.
If we successfully prepare our system in a single dressed state, i.e. |ψ(tr)〉 = |Ψ+1〉,

its evolution reads

|ψ(t)〉 = e−i(t−tr)Ĥ0(tr)/~ |Ψ+1〉 = e−i(t−tr)E+1/~ |Ψ+1〉 , (A.3)

where E+1 denotes the eigenenergy corresponding to |Ψ+1〉. Thus, the eigenenergy
characterizes the dynamical phase its eigenstate accumulates during the evolution. As
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we read out the state |0〉 = (|Ψ−1〉+|Ψ0〉+|Ψ+1〉)/
√

3, the measured population P|0〉(t)
can be expressed as

P|0〉(t) =
1

3

∣∣∣∣∣ ∑
k=0,±1

〈
Ψk

∣∣∣e−i(t−tr)E+1/~
∣∣∣Ψ+1

〉 ∣∣∣∣∣
2

=
1

3
. (A.4)

Equivalent considerations hold for the other two dressed states, |Ψ0〉 and |Ψ−1〉. Thus,
for a perfect state transfer into a single dressed state (in our case |Ψ+1〉), the measured
population for t > tr is time-independent with a value of 1/3.

If, however, we do not prepare a single dressed state, but rather a mixture of dressed
states, we start the time evolution in t = tr in |ψ(tr)〉 =

∑
j cj |Ψj〉, with cj ∈ C and∑

j |cj |2 = 1 (j = 0,±1). In this case, the evolution of the state reads

|ψ(t)〉 = e−i(t−tr)Ĥ0(tr)/~
∑

j=0,±1

cj |Ψj〉 =
∑

j=0,±1

cj e−i(t−tr)Ej/~ |Ψj〉 , (A.5)

as each dressed state |Ψj〉 accumulates a dynamical phase corresponding to its eigen-
energy Ej . During the readout we then measure

P|0〉(t) =
1

3

∣∣∣∣∣ ∑
j,k=0,±1

〈
Ψk

∣∣∣cj e−i(t−tr)Ej/~
∣∣∣Ψj

〉 ∣∣∣∣∣
2

=
1

3

∣∣∣∣∣ ∑
j=0,±1

cj e−i(t−tr)Ej/~

∣∣∣∣∣
2

.

(A.6)

Thus, the measured time-dependent population is characterized by a beating of the
transition frequencies of the dressed states with amplitudes depending on the weight-
ing factors cj . This can be easily illustrated for the extreme case, where we do
not ramp the MW fields at all, but rather switch them on simultaneously, implying
tr = 0. In this instance, we start for t = 0 in |0〉, i.e. cj = 1/

√
3 for all j. According

to Eq. (A.6) the measured population then is

P|0〉(t) =
1

3
+

2

9

[
cos(2π∆−1,0t) + cos(2π∆+1,0t) + cos(2π∆+1,−1t)

]
, (A.7)

with ∆m,n = (Em − En)/h. This scenario exactly describes the dynamics observed
in Fig. 3.2a [114, 148].

A.3. Details on the TD correction

In this section we provide details on the transformation of Hamiltonian Ĥ0(t) from
Eq. (4.1) to the adiabatic basis [168, 183]. For the considered case of Φ = π/2 we find
in the {|−1〉 , |0〉 , |+1〉} basis

Ĥ0(t)/~ =
Ω

2

 0 sin[θ(t)] i
sin[θ(t)] 0 sin[θ(t)]
−i sin[θ(t)] 0

 . (A.8)

The corresponding eigenvectors |ψk(t)〉 with k = 0,±1 are the instantaneous adiabatic
eigenstates, which diagonalize Ĥ0(t) at each instant in time. In the frame, where Ĥ0(t)
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is diagonal, we denote these adiabatic eigenstates |ψk〉, as they are time-independent.
The unitary transformation from the {|ms〉} basis to the adiabatic frame then reads

Û(t) =
∑

k=0,±1

|ψk〉〈ψk(t)| , (A.9)

which maps the adiabatic eigenstates |ψk(t)〉 onto the time-independent states |ψk〉.
Specifically, we obtain Û(t) from its inverse Û†(t), whose columns contain the |ψk(t)〉.
We find

Û†(t) =


1
2 + i

2
√

2−cos[2θ(t)]
− sin[θ(t)]√

2−cos[2θ(t)]

1
2 −

i

2
√

2−cos[2θ(t)]
sin[θ(t)]√

2−cos[2θ(t)]
− i√

2−cos[2θ(t)]
− sin[θ(t)]√

2−cos[2θ(t)]

1
2 −

i

2
√

2−cos[2θ(t)]

sin[θ(t)]√
2−cos[2θ(t)]

1
2 + i

2
√

2−cos[2θ(t)]

 . (A.10)

To yield the Hamiltonian in the adiabatic frame, we have to consider the Schrödinger
equation. For a state |ξ〉 in the adiabatic frame, whose equivalent in the {|ms〉} basis
is given by |ξ(t)〉 = Û†(t) |ξ〉, the Schrödinger equation reads

i~ ∂t
[
Û†(t) |ξ〉

]
= Ĥ0(t)

[
Û†(t) |ξ〉

]
. (A.11)

Multiplying both sides with Û(t) from the left and rearranging the terms results in

i~ ∂t |ξ〉 = Ĥad
0 (t) |ξ〉 , (A.12)

where the Hamiltonian in the adiabatic frame is given by

Ĥad
0 (t) = Û(t) Ĥ0(t) Û†(t)− i~ Û(t) ∂tÛ†(t) , (A.13)

as stated in Eq. (4.10). Using Eq. (A.10) and Eq. (A.13) yields the expression of
Eq. (4.11),

Ĥad
0 (t)/~ =


Ω
2

√
2− cos[2θ(t)] cos[θ(t)] ∂tθ(t)

2−cos[2θ(t)] 0
cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] 0 − cos[θ(t)] ∂tθ(t)

2−cos[2θ(t)]

0 − cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] −Ω

2

√
2− cos[2θ(t)]

 .

(A.14)

To get rid of the off-diagonal elements in Ĥad
0 (t), the TD correction adds additional

control fields expressed by ĤTD(t) to the Hamiltonian. Motivated by Eq. (A.13) the
correction reads

ĤTD(t) = i~
[
∂tÛ†(t)

]
Û(t) , (A.15)

such that Û(t) ĤTD(t) Û†(t) = i~ Û(t) ∂tÛ†(t) cancels the second term on the right
hand side in Eq. (A.13). Note that Eq. (A.13) is in the adiabatic basis, whereas
Eq. (A.15) is in the {|ms〉} basis. Inserting the corresponding expressions into
Eq. (A.15) yields in the {|−1〉 , |0〉 , |+1〉} basis,

ĤTD(t)/~ =

 0 cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] 0

cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] 0 − cos[θ(t)] ∂tθ(t)

2−cos[2θ(t)]

0 − cos[θ(t)] ∂tθ(t)
2−cos[2θ(t)] 0

 . (A.16)
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Adding this correction to the initial Hamiltonian (A.8), we find that the TD corrected
MW pulses are

Ω1,(2)(t) = Ω sin[θ(t)] +
(−) 2 · cos[θ(t)] ∂tθ(t)

2− cos[2θ(t)]
. (A.17)

Experimentally we can easily implement TD corrected MW pulses with 0 ≤
Ω1,2(t) ≤ Ω, which require the parameter ν to be ν ≤ Ω/2. If we choose ν > Ω/2,
however, the TD corrected ramps would lead to negative amplitude values, which
we cannot realize in our current setup, as flipping the phase of the signal generation
fields does not influence the final driving fields’ phases (see App. A.1.2). In Fig. A.2a
we illustrate an example for such a ramp for ν = 3Ω/4. For even higher values of
ν some amplitudes additionally overshoot the steady state driving amplitude Ω (see
Fig. A.2b for ν = 5Ω/4).

The theoretically derived TD corrections from Eq. (A.17) do not account for the
unavoidable experimental uncertainties that cause the residual small oscillations in
P|0〉(t) after the state transfer (see Fig. 4.3c). Most importantly, our measurements
are affected by slow fluctuations in the magnetic environment of the NV caused by
nearby nuclear spins (14N or 13C) and by uncertainties in setting the driving field
parameters. To estimate the influence of these errors we simulate our measurements.
The magnetic fluctuations are characterized by a zero-mean Gaussian distribution of
the MW field detunings with a width of σT∗2 /2π = 1/(

√
2πT ∗2 ) = 107 kHz [220], where

T ∗2 = 2.1(1) µs is the NV’s dephasing time (see Sec. 2.3.3). As the timescale of these
fluctuations is typically long compared to a single simulated measurement run, but
far shorter than the total measurement time, we keep these detunings constant during
a single run but change them between different runs. The uncertainties in setting the
driving field parameters mostly affect the MW field strengths. We measure the driving
strengths by performing Rabi oscillations on each of the MW transitions of the bare
NV states and extract the Rabi frequency by fitting with an exponentially decaying
single sinusoid. Due to fluctuations in, for example, the sample-antenna separation,
as well as the MW amplifier, the measured Rabi frequencies show, however, relative
deviations of up to 2 % for the same applied MW power (≈ 4 dBm from the MW
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Figure A.2.: Theoretically calculated TD corrected envelopes of the MW driving
fields ν > Ω/2. a) For ν = 3Ω/4 one of the optimized ramps has negative ampli-
tude values, which we cannot implement in our current setup. b) Increasing ν further
additionally leads to overshoots in the other ramp, e.g. here displayed for ν = 5Ω/4.
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Figure A.3.: Simulated influence of experimental uncertainties on the state prepa-
ration process. While the unperturbed system shows no oscillations after the state
transfer (black), considering experimental uncertainties in the simulations reveals the
experimentally observed oscillations (orange). The choosen parameters are: ν = Ω/2,
Ω/2π = 510 kHz, Ωmax

1 /2π = 520 kHz, Ωmax
2 /2π = 500 kHz (i.e. 2 % opposing devia-

tion for both MW fields), Φ = 0.495 ·π/2. The perturbed simulation is averaged over
100 times, with each iteration using a different MW detuning drawn from a zero-mean
Gaussian distribution characterized by σT∗2 /2π = 107 kHz.

generator in our case). Moreover, setting the global phase value exactly to Φ =
π/2 has experimental limitations. We determine the corresponding phase value by
sweeping the mechanical phase with a finite sampling rate while maintaining the
MW fields constant and fitting the averaged time traces of the resulting interference
pattern (see Fig. 3.2a) for evolution times between 1 µs and 1.7 µs. This allows us to
determine the value of the global phase with a 2σ uncertainty of 0.9°.

Considering these effects, we simulated the time evolution of P|0〉(t) averaged over
100 normally distributed MW detunings (see Fig. A.3). Thereby, we include the
mentioned uncertainties in a worst-case scenario, i.e. using the maximum global phase
error and the maximum deviation in drive strengths. As a result, the time evolution
clearly shows residual oscillations after the state transfer, similar to those observed
in the experiment.

We note that there are additional sources for experimental uncertainties that we
neglect in our simulation, for example, the feedthrough of the MW signals, which leads
to non-vanishing MW amplitudes at the beginning of the state transfer, amplitude and
frequency noise of the driving fields, as well as fluctuations in the zero-field splitting
of the NV induced by variations in temperature or environmental strain or electric
fields (see Sec. 2.2).

A.4. STA for arbitrary global phase values

In Chap. 4, we focused on the global phase of Φ = π/2 for demonstrating the initial-
ization of dressed states with STA. This particular phase value allows for a straight-
forward and analytical calculation of the TD correction, which fulfills our experi-
mental conditions, i.e. no time-dependent phase control of the MW fields and no
time-dependent control of the mechanical amplitude. However, for other phase values
the TD corrections cannot be calculated analytically anymore and/or does not satisfy
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the experimental requirements. In this case, STA can be found by using the dressed
state approach introduced in [185]. As presented in [183], the basic idea is to modify
the MW fields of the Hamiltonian Ĥ0(t) from Eq. (4.1) in such a way that the state
transfer is realized without errors even when the protocol time is not long compared
to the instantaneous adiabatic gap. These modifications can be described by an addi-
tional control term Ŵ(t) added to the initial Hamiltonian, i.e. Ĥ0(t)→ Ĥ0(t)+Ŵ(t).
We can parametrize Ŵ(t) as

Ŵ(t) = W1(t) |−1〉〈0|+W2(t) |+1〉〈0|+ H.c. , (A.18)

where we require W1,2(t) to be real valued functions in order to ensure no time-
dependent phase control of the MW driving fields. We, however, note that if time-
dependent phase control is available, then W1,2(t) can also be complex valued. We

also note that Ŵ(t) does not include couplings of |−1〉 and |+1〉, as this would require
control of the mechanical driving field. Taking possible time-dependent control of the
mechanical field into account, Eq. (A.18) can be generalized even further.

There is an infinite amount of possible Ŵ(t), each of them being associated with
a specific dressing of the instantaneous eigenstate used to realize the adiabatic state
transfer. To keep things simple, we choose Ŵ(t) such that in the dressed adiabatic
frame the evolution of the dressed state used for state transfer is trivial. In other
words, we want to stay in this particular dressed state for the whole duration of the
protocol. In our case, the transformation from the adiabatic frame to the dressed
adiabatic frame can be generated by the unitary operator

Ûdr(t) =
∏
j

eiϕj(t)Λ̂j , (A.19)

where Λ̂j are the generators of SU(3) and ϕj(t) must obey the conditions ϕj(0) =
ϕj(tr) = 0 to ensure that the dressed states correspond to the adiabatic states at the
beginning (|0〉, |−〉, and |+〉) and at the end (|Ψ0,±1〉) of the protocol. This condition
ensures that one starts and ends in the desired state.

To be more specific, we explicitly derive the equations to determine Ŵ(t) in our
case. We start by calculating the instantaneous adiabatic eigenstates |ψk(t)〉 of Ĥ0(t)
for a general Φ. To that end, we need to solve the eigenvalue problem

Ĥ0(t) |ψk(t)〉 = Ek(t) |ψk(t)〉 , (A.20)

with k = 0,±1. We find the instantaneous eigenenergies

Ek(t)/~ =
Ω√
3

√
1 + 2R(t)2 · cos

[
1

3
cos−1

(
3
√

3 · cos(Φ)R(t)2

[1 + 2R(t)2]3/2

)
− 2π

3
k

]
,

(A.21)

where R(t) = Ω1,2(t)/Ω = sin[θ(t)]. The associated adiabatic eigenstates read

|ψk(t)〉 =
1

Nk(t)

(
R(t)

[
Ωe−iΦ + 2Ek(t)

]
|+1〉 −

[
Ω2 − 4Ek(t)

]
|0〉+

+ R(t)
[
ΩeiΦ + 2Ek(t)

]
|−1〉

)
, (A.22)
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where the normalization factor is

Nk(t) =
([

Ω2 − 4E2
k(t)

]2
+ 2R(t)2

[
Ω2 + 4Ek(t) (Ω cos(Φ) + Ek(t))

])1/2

.

(A.23)

As introduced in Eq. (4.9), the unitary transformation to the adiabatic frame is

Û(t) =
∑

k=0,±1

|ψk〉〈ψk(t)| , (A.24)

where |ψk〉 are the time-independent eigenstates in the adiabatic frame. By definition,
the transformation Û(t) Ĥ0(t) Û†(t) diagonalizes Ĥ0(t) at each instant in time.

With that, we can express the dressed adiabatic Hamiltonian as

Ĥdr
0 (t) = Ûdr(t)

[
Û(t) Ĥ0(t) Û†(t)− i~ Û(t) ∂tÛ†(t) + Û(t) Ŵ(t) Û†(t)

]
Û†dr(t)+

− i~ Ûdr(t) ∂tÛ†dr(t) , (A.25)

and the corresponding dressed adiabatic states as

|ψ̃k〉 = Ûdr(t) |ψk〉 . (A.26)

In this new dressed adiabatic frame defined by Ûdr(t) the dressed states |ψ̃k〉 have no
intrinsic time dependence. In our case the adiabatic state transfer is realized through
|ψ+1(t)〉 (see Fig. 4.1b). To ensure the desired trivial dynamics in the dressed adiabatic
frame, we, therefore, ask |ψ̃+1〉 to be decoupled from the other dressed states. This
condition can be written as

〈ψ̃+1|Ĥdr
0 (t)|ψ̃j〉 = 0 , (A.27)

with j = 0,−1. Solving this system of equations for a chosen dressing finally gives
the correction Ŵ(t).

As an example, we consider the case Φ = 0. For this value of Φ the TD correction
only has purely imaginary matrix elements and the SATD correction [185] requires to
control the detunings of all states and the amplitude of the mechanical drive. None
of these corrections can be implemented with our current setup. However, using
the dressed state method presented above, one can find a STA that respects the
constraints of our system. We choose a dressing of the form

Ûdr,Φ=0(t) = e−iβ(t)/2(|ψ0〉〈ψ+1|+H.c.) . (A.28)

By using Eq. (A.27) we find that the equation 〈ψ̃+1|Ĥdr
0 (t)|ψ̃−1〉 = 0 can be fulfilled

by choosing W1(t) = W2(t), while 〈ψ̃+1|Ĥdr
0 (t)|ψ̃0〉 = 0 can be fulfilled by solving

β(t) = tan−1

 4
√

2 cos[θ(t)] ∂tθ(t)√
1 + 8 sin2[θ(t)]

[
Ω
(
1 + 8 sin2[θ(t)] + 16W1(t) sin[θ(t)]

)]
 ,
(A.29a)

0 =

√
2W1(t)√

1 + 8 sin2[θ(t)]
− ∂tβ(t)

2
. (A.29b)
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Inserting Eq. (A.29a) into Eq. (A.29b) reveals a differential equation for W1(t), which
can be solved numerically.

As an example, we numerically solved Eq. (A.29a) and Eq. (A.29b) for Φ = 0 and re-
cently performed preliminary measurements employing the resulting STA ramps (see
Fig. A.4). To that end, we choose the same values for the discontinuity ε = 10−3 and
the slope parameter ν = Ω/2 as in Chap. 4. In the experiment we set Ω/2π = 470 kHz,
resulting in the ramp time tr = 7.4 µs. Note that in contrast to the analytic TD ap-
proach, which we have chosen at Φ = π/2 in Sec. 4.3, the numerical method yields that
both MW fields are ramped simultaneously. To benchmark the experimental result
we also calculate the expected coherent time evolution of P|0〉(t) by solving the time-
dependent Schrödinger equation using Hamiltonian (4.1). Importantly, we assume no
detunings of the driving fields in our calculations. Under this condition, two dressed
states are degenerate at Φ = 0 (compare to Fig. 3.3), so that a perfect state transfer
initializes into this degenerate subspace. Based on our calculations we find that in this
scenario P|0〉(t) theoretically converges to 2/3 after the ramp time. The experimental
time evolution agrees with the theoretical prediction up to t . 5 µs. However, the
measured population then decays from 2/3 to the time-independent value of ≈ 1/3,
where it stabilizes for t & tr. Thereby, the decay rate is slower compared to the
decay of the initial evolution for t . 5 µs. We attribute this discrepancy between
experiment and calculation to the presence of detunings, which lift the degeneracy of
the dressed states at Φ = 0 (see Fig. 3.3). We, therefore, do no longer prepare the
system in the degenerate dressed state subspace, but rather a single dressed state,
corresponding to a population of P|0〉(t > tr) ≈ 1/3 as observed. Due to temperature
drifts, the detunings additionally fluctuate during the data acquisition, which results
in an effective averaging over different detunings. In this context, we note that the
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Figure A.4.: Implementation of the STA based on the dressed state approach for
Φ = 0. a) Modified MW field amplitudes for ν = Ω/2, Ω/2π = 470 kHz, and ε = 10−3.
Here, both MW fields are modified similarly with respect to the optimized STIRAP
pulse shape (gray dashed). b) Time evolution of measured population P|0〉(t) (green)
with corresponding calculation (black). The measurement agrees with the simulation
up to t . 5 µs. Then, the measured population drops to ≈ 1/3, but with a slower rate
compared to the initial process. This indicates the preparation of a single dressed
state rather than initialization into the degenerate subspace at Φ = 0. Thus, the high
vulnerability of the system to environmental noise present at this value of Φ might
limit the experiment.
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data reveals a kink at t ≈ 5 µs, which might indicate a successful state transfer to the
desired dressed state subspace at the beginning of certain measurements runs. Then,
however, fluctuations destabilize the subspace and the system decays into a single
dressed state. To successfully realize state transfer at Φ = 0 in future experiments
we have to overcome the present experimental limitations, i.e. we need to mitigate
unwanted detunings of the driving fields from the transitions and additionally avoid
uncertainties in setting the global phase to the desired value. Another approach is
to consider possible detunings in the calculation to find STA ramps that are robust
against them.

A.5. Derivation of the transition imbalance

To derive the transition imbalance for the mI = ±1 hyperfine projections at B = 0
(see Eq. (6.8)), we follow [116] and consider the Hamiltonian

Ĥ/h = (D0 + Πz)Ŝ
2
z ∓ |AHF|Ŝz + Πx

(
Ŝ2
y − Ŝ2

x

)
+ Πy

(
ŜxŜy + ŜyŜx

)
. (A.30)

Note that the sign of the hyperfine interaction is flipped compared to Eq. (6.1) as
AHF < 0. Following [115], we use the same procedure as described in Sec. 6.1 and
first calculate the corresponding eigenstates

|−〉 =
1√

1 + λ2

(
eiϕΠ |+1〉+ λ |−1〉

)
,

|+〉 =
1√

1 + λ2

(
λ eiϕΠ |+1〉 − |−1〉

)
,

(A.31)

where we have defined

λ =
|AHF|
Π⊥

√1 +

(
Π⊥
|AHF|

)2

− 1

 . (A.32)

Using Eq. (6.3) and Eq. (6.4), we find for the transition strengths

A0,± ∼
1

~2

(2µBB
mw
⊥ )2

2

1 + λ2 ∓ 2λ cos(2ϕmw + ϕΠ)

2(1 + λ2)
. (A.33)

Thus, the transition imbalance J of the mI = ±1 nuclear spin projections at B = 0
is given by

J =
A0,+ −A0,−

A0,+ +A0,−
= − 2λ

1 + λ2
cos(2ϕmw + ϕΠ) . (A.34)

Considering the case Π⊥ � |AHF|, we can approximate λ ≈ Π⊥
2|AHF| and then find to

first order that the imbalance reads

J ≈ − Π⊥
|AHF|

cos(2ϕmw + ϕΠ) , (A.35)

as stated in Eq. (6.8).
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A.6. Simulation of ESR spectra

In this section we present the Matlab code that was used to simulate the ESR
spectra in Chap. 6. In particular, we provide the code to generate the NV ground
state Hamiltonian, to generate the interaction Hamiltonian with a MW magnetic
field, and to calculate the ESR transition strength for a given set of external fields.

A.6.1. Ground state spin Hamiltonian

1 function [Hgs] = NV GS Hamiltonian(BField, EField, Stress)
2 % NV GS Hamiltonian generates the ground state Hamiltonian of the
3 % NV spin under external perturbations including hyperfine structure
4 % Refer to Eq. (2.1), (2.3), (2.4), and (2.5)
5

6 % Input parameters
7 % BField = [Bx, By, Bz] (in G): Magnetic field vector in NV frame
8 % EField = [Ex, Ey, Ez] (in V/m): Electric field vector in NV frame
9 % Stress = [Mx, My, Mz, Nx, Ny] (in MHz): Spin-stress interaction ...

parameters
10

11 % Output parameter
12 % Hgs (in MHz): NV ground state spin Hamiltonian
13

14

15 %% Constants and definitions
16

17 % NV fine and hyperfine constants
18 D0 = 2870; % Zero-field splitting (in MHz)
19 Apar = -2.14; % Axial hyperfine parameter (in MHz)
20 Aperp = -2.7; % Non-axial hyperfine parameter (in MHz)
21 PQ = -4.95; % Electric quadrupole parameter (in MHz)
22

23 % Magnetic coupling constants
24 muB = 9.274e-24; % Bohr magneton (in J/T)
25 gNV = 2.0028; % Electron-g-factor (scalar)
26 muN = 5.051e-27; % Nuclear magneton (in J/T)
27 gN = 0.404; % N14 nuclear-g-factor (scalar)
28 h = 6.626e-34; % Planck's constant (in Js)
29

30 gammaNV = muB*gNV/h/1e10; % NV gyromagnetic ratio (in MHz/G)
31 gammaN = muN*gN/h/1e10; % N14 gyromagnetic ratio (in MHz/G)
32

33 % Electric coupling constants
34 dpar = 0.35e-8; % Axial electric field susceptibility (in MHz m/V)
35 dperp = 17e-8; % Transverse electric field susceptibility (in MHz ...

m/V)
36

37 % Spin-1 operators
38 Sx = 1./sqrt(2).*[0 1 0; 1 0 1; 0 1 0];
39 Sy = 1./sqrt(2)./1i.*[0 1 0; -1 0 1; 0 -1 0];
40 Sz = [1 0 0; 0 0 0; 0 0 -1];
41 SI = [1 0 0; 0 1 0; 0 0 1];
42

43

44
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45 %% Hamiltonian
46

47 % Fine and hyperfine terms
48 HZFS = D0.*kron(Sz*Sz - 2/3*SI,SI); % Zero-field splitting
49 HHFPar = Apar.*kron(Sz,Sz); % Axial hyperfine interaction
50 HHFPerp = Aperp.*(kron(Sx,Sx) + kron(Sy,Sy)); % Non-axial ...

hyperfine interaction
51 HNucQ = PQ.*kron(SI,(Sz*Sz - 2/3*SI)); % Nuclear quadrupole ...

interaction
52

53 % Magnetic field coupling terms
54 HBEl = gammaNV.*kron(BField(1).*Sx + BField(2).*Sy + ...

BField(3).*Sz,SI); % Electric Zeeman coupling
55 HBNuc = gammaN.*kron(SI,BField(1).*Sx + BField(2).*Sy + ...

BField(3).*Sz); % Nuclear Zeeman coupling
56

57 % Electric field coupling terms
58 HEl0 = dpar.*EField(3).*kron(Sz*Sz - 2/3*SI,SI); % Axial electric ...

field coupling
59 HEl2 = dperp.*EField(1).*kron(Sy*Sy - Sx*Sx,SI) + ...

dperp.*EField(2).*kron(Sx*Sy + Sy*Sx,SI); % Transverse ...
electric field coupling

60

61 % Spin-stress coupling terms
62 HStrain0 = Stress(3).*kron(Sz*Sz,SI);
63 HStrain1 = Stress(4).*kron(Sx*Sz + Sz*Sx,SI) + ...

Stress(5).*kron(Sy*Sz + Sz*Sy,SI);
64 HStrain2 = Stress(1).*kron(Sy*Sy - Sx*Sx,SI) + ...

Stress(2).*kron(Sx*Sy + Sy*Sx,SI);
65

66 % Total NV ground state Hamiltonian
67 Hgs = HZFS + HHFPar + HHFPerp + HNucQ + HBEl + HBNuc + HEl0 + ...

HEl2 + HStrain0 + HStrain1 + HStrain2;
68

69 % Reference all energies to the energy of |0,0>
70 Hgs = Hgs - eye(9,9).*Hgs(5,5);
71 end
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A.6.2. Interaction Hamiltonian with a MW magnetic field

1 function [Hint] = NV GS Hamiltonian MWprobe(Bmw)
2 % NV GS Hamiltonian MWprobe generates the interaction Hamiltonian of
3 % the NV ground state with a MW magnetic field
4 % Refer to Eq. (2.3)
5

6 % Input parameter
7 % Bmw = [Bmwx, Bmwy, Bmwz] (in G): MW field amplitude vector in NV ...

frame
8

9 % Output parameter
10 % Hint (in MHz): Interaction Hamiltonian between NV spin and MW field
11

12

13 %% Constants and definitions
14

15 % Magnetic coupling constants
16 muB = 9.274e-24; % Bohr magneton (in J/T)
17 gNV = 2.0028; % Electron-g-factor (scalar)
18 muN = 5.051e-27; % Nuclear magneton (in J/T)
19 gN = 0.404; % N14 nuclear-g-factor (scalar)
20 h = 6.626e-34; % Planck's constant (in Js)
21

22 gammaNV = muB*gNV/h/1e10; % NV gyromagnetic ratio (in MHz/G)
23 gammaN = muN*gN/h/1e10; % N14 gyromagnetic ratio (in MHz/G)
24

25 % Spin-1 operators
26 Sx = 1./sqrt(2).*[0 1 0; 1 0 1; 0 1 0];
27 Sy = 1./sqrt(2)./1i.*[0 1 0; -1 0 1; 0 -1 0];
28 Sz = [1 0 0; 0 0 0; 0 0 -1];
29 SI = [1 0 0; 0 1 0; 0 0 1];
30

31

32 %% Interaction Hamiltonian
33

34 % Magnetic field coupling terms
35 HintEl = gammaNV.*kron(Bmw(1).*Sx + Bmw(2).*Sy + Bmw(2).*Sz,SI); ...

% To electric spin
36 HintNuc = gammaN.*kron(SI,Bmw(1).*Sx + Bmw(2).*Sy + Bmw(3).*Sz); ...

% To nuclear spin
37

38 % Total interation Hamiltonian
39 Hint = HintEl + HintNuc;
40 end
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A.6.3. Simulation of ESR spectra

1 function [Tstrength] = Simulate ESR(MWfreq, MWangle, BField, EField, ...
Stress, Linewidth)

2 % Simulate ESR calculates the ESR transitions strengths in the NV ground
3 % state under external perturbations
4

5 % Input parameters
6 % MWfreq (in MHz): Frequency range of MW probe field
7 % MWangle (in deg): MW polarization angle in xy-plane
8 % BField = [Bx, By, Bz] (in G): Magnetic field vector in NV frame
9 % EField = [Ex, Ey, Ez] (in V/m): Electric field vector in NV frame

10 % Stress = [Mx, My, Mz, Nx, Ny] (in MHz): Spin-stress interaction ...
parameters

11 % Linewidth (in MHz): Transition linewidths
12

13 % Output parameter
14 % Tstrength (scalar): Transition strengths (to be normalized)
15

16 % MW interaction Hamiltonian
17 Bmw = [cosd(MWangle), sind(MWangle), 0]; % Normalized MW field ...

amplitude
18 Hint = NV GS Hamiltonian MWprobe(Bmw); % Interaction Hamiltonian
19 nMW = length(MWfreq); % Number of frequency points
20

21 % NV ground state Hamiltonian
22 Hgs = NV GS Hamiltonian(BField,EField,Stress);
23 [eVecs,eVals] = eig(Hgs);
24 eVals = diag(eVals);
25

26 % Calculate transition strengths
27 TS = zeros(nMW,9,9); % Initialize state resolved transition ...

strength parameter
28 for initS = 1:9 % Sweep over all initial states
29 initFreq = eVals(initS); % frequency
30 initVec = eVecs(:,initS)./norm(eVecs(:,initS)); % state
31

32 for finS = initS:9 % Sweep over all final states
33 finFreq = eVals(finS); % frequency
34 finVec = eVecs(:,finS)./norm(eVecs(:,finS)); % state
35

36 % Transition matrix element and transition amplitude
37 TME = conj(finVec)'*Hint*initVec;
38 TA = conj(TME)*TME;
39

40 for aMW = 1:nMW % Sweep MW field
41 TS(aMW,initS,finS) = ...

TA.*Linewidth.ˆ2./4./((MWfreq(aMW) - ...
abs(finFreq-initFreq)).ˆ2 + Linewidth.ˆ2./4);

42 end
43 end
44 end
45 % Sum over all final states per initial state
46 TSinit = sum(TS,3);
47 % Sum over all initial states
48 Tstrength = sum(TSinit,2);
49 end
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[122] A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and
V. Jacques, Avoiding power broadening in optically detected magnetic resonance
of single NV defects for enhanced dc magnetic field sensitivity, Physical Review
B 84, 195204 (2011).

[123] E. L. Hahn, Spin echoes, Physical Review 80, 580 (1950).

[124] H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear
magnetic resonance experiments, Physical Review 94, 630 (1954).

[125] S. R. Hartmann and E. L. Hahn, Nuclear double resonance in the rotating frame,
Physical Review 128, 2042 (1962).

[126] I. I. Rabi, Space quantization in a gyrating magnetic field, Physical Review 51,
652 (1937).

[127] B. K. Ofori-Okai, S. Pezzagna, K. Chang, M. Loretz, R. Schirhagl, Y. Tao,
B. A. Moores, K. Groot-Berning, J. Meijer, and C. L. Degen, Spin properties
of very shallow nitrogen vacancy defects in diamond, Physical Review B 86,
081406 (2012).
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