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Abstract: Many promising applications of single crystal diamond and its color centers as sensor
platform and in photonics require free-standing membranes with a thickness ranging from several
micrometers to the few 100 nm range. In this work, we present an approach to conveniently fabricate
such thin membranes with up to about one millimeter in size. We use commercially available
diamond plates (thickness 50µm) in an inductively coupled reactive ion etching process which
is based on argon, oxygen and SF6. We thus avoid using toxic, corrosive feed gases and add an
alternative to previously presented recipes involving chlorine-based etching steps. Our membranes
are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1µm over
≈200 × 200µm2). Due to an improved etch mask geometry, our membranes stay reliably attached to
the diamond plate in our chlorine-based as well as SF6-based processes. Our results thus open the
route towards higher reliability in diamond device fabrication and up-scaling.
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1. Introduction

Single-crystal diamond (SCD) represents an outstanding material platform for quantum
technologies including fields like sensing and photonics: For the latter, its bandgap of 5.5 eV creates a
wide transparency window, whereas its refractive index of ≈2.4 [1] for visible light enables efficient
light confinement, e.g., in photonic crystal cavities [2] or in one-dimensional waveguides that enable
tailored light-matter-interaction even on the single photon level [3]. In sensing applications, using
chemically-stable, bio-compatible, ultra-hard SCD ensures reliable operation in various extreme
environments. For radiation sensors, SCD additionally offers high carrier mobility, radiation hardness
and breakdown voltage [4]. In addition to the outstanding material properties of diamond itself,
individual, optically-active point defects in diamond, so-called color centers, supply additional
functionality, e.g., as single spin quantum systems. A prominent example is the nitrogen vacancy
(NV) color center which serves as an extremely versatile sensor for magnetic and electric fields as
well as temperature and strain [5–9]. In this context, diamond enables high precision sensing as its
main carbon isotope 12C has no nuclear spin. Consequently, electronic spins of color centers can have
long coherence times even at room temperature rendering them very sensitive, fully-stable sensors for
fields external to the host crystal. However, only ultrapure SCD with high crystal quality consistently
preserves those advantageous properties of color centers.
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Many of these promising applications of SCD and its color centers require free-standing
membranes with a thickness ranging from several micrometers to the few 100 nm range: Radiation
and pressure sensing [4,10] as well as radioisotope batteries [11] require thin membranes. Color centers
incorporated into thin SCD membranes have been coupled to cavities (e.g., 2D photonic crystal
cavities [12], micro-Fabry-Pérot cavities [13]) or to nano-mechanical structures [9]. Thin membranes
also form the starting point to fabricate SCD scanning probes [14–16] that enable, e.g., magnetic sensing
with nanoscale resolution [17]. A significant challenge for SCD applications arises from the fact that
thin (<50µm, [18]) SCD films with good crystal quality cannot be grown on a non-diamond substrate.
Only such growth would allow for straightforward creation of thin, free-standing membranes
supported by a frame of substrate material by selectively (wet-)etching of the substrate. Consequently,
convenient processes forming thin membranes from homoepitaxially-grown, high-quality SCD plates
are of high technological relevance.

In this work, we optimize a process to create a few µm thin, smooth SCD membranes with up to
about one millimeter lateral size starting from commercially available SCD plates (initial thickness
of ≈50µm). To achieve the thinning, we use inductively coupled reactive ion etching (ICP-RIE).
Our process avoids etching the whole surface of the plate but rather aims for membrane windows
(up to 1 × 1 mm2). Thus, the surrounding SCD plate is conserved as a holding frame and eases
handling for subsequent fabrication of free standing structures like scanning probes, cantilevers or
transferable micro-membranes. We report a simplified RIE process based on cycling steps using the
non-toxic, non-corrosive gases argon, oxygen and SF6. Together with an optimized shadow mask for
RIE, our process reliably enables fabricating smooth SCD membranes in standard ICP-RIE machines.
We compare different RIE recipes and characterize the membranes using scanning electron microscopy
(SEM), atomic force microscopy (AFM) as well as laser scanning microscopy (LSM).

Previous work employed a lift-off process, where a µm-deep, buried layer in SCD is graphitized
after ion bombardment [19,20]. However, due to residual ion damage it is necessary to overgrow the
lifted-off membrane with pristine SCD in a chemical vapor deposition (CVD) process. Subsequently,
RIE removes the original material. Thus, RIE as well as customized SCD deposition are involved
adding to the complexity of the process. Similar approaches based on focused ion beam milling of
thin membranes result in low-quality, highly-contaminated membranes [21]. A very recent approach
to free-standing devices is undercutting structures fabricated in single crystal diamond by using an
isotropic plasma etch [22]. First results with this approach indicate challenges concerning thickness
gradients in the devices. We also point out that this approach cannot be used to fabricate membranes
fully clamped on all sides. Previous work on fabricating thin membranes via RIE reported separation
of the membranes from the surrounding thick plate due to inhomogeneous etching [14]. Moreover,
often chlorine(Cl2)-based plasma chemistry was used [9,14,16,23]. Though being highly-advantageous
for ultra-smooth SCD etching [24], this chemistry requires avoiding plasma contact of silicon or SiO2

parts as this would contaminate the etching process, leading to roughening of the membranes [14].
SiO2 and silicon parts are, however, commonly used in many ICP-RIE etching systems. Moreover,
Cl2-based plasma processes pose high restrictions concerning gas safety and handling, treatment of
RIE exhaust gas as well as the mandatory use of a load-lock in the RIE reactor.

2. Shadow Mask Manufacturing and Starting Material

Mechanical polishing typically forms plates with down to roughly 20µm thickness [4]. However,
to ensure mechanical stability during handling and processing, we start with plates with an initial
thickness of 50µm. The commercially-available SCD plates have been mechanically polished by
Delaware Diamond Knives or Almax Easy Lab to a roughness of Ra < 3 nm (lateral size 2 × 4 or
3 × 3 mm2). We use two different purity grades of CVD SCD: electronic grade SCD (Element Six,
[Ns]0 < 5 ppb and [B] < 1 ppb) and optical grade SCD ([Ns]0 < 1 ppm and [B] < 5 ppb) according to
manufacturer specifications. We now face the challenge to remove almost 50µm of diamond using
ICP-RIE while preserving or even enhancing surface quality. We note that wet etching of diamond is



Micromachines 2018, 9, 148 3 of 9

not feasible. Lithographically defined masks, e.g., metal or resist masks typically feature thicknesses
in the micrometer range and might fully erode during the required etch. We thus employ quartz
cover slips as etch masks (SPI supplies, thickness 75–125µm). This comparably cheap, high-purity
material allows for the etching of thin membranes with high surface quality [14,16]. However, a thick
mask with vertical sidewalls induces a significantly inhomogeneous etch profile (see Figure 1a): In an
anisotropic plasma, highly-energetic ions hit the mask’s walls at grazing angles (>80◦) and undergo
specular reflection while mostly retaining their energy. The reflected ions reach the diamond surface
close to the base of the mask’s sidewall and add to the ion flux directly impinging in this region and
thus locally enhance the etch rate. The locally enhanced etch rate induces a trench [25] which, for thin
membranes, cuts through the membrane and destabilizes it.

Mask

Diamond

(a)

Diamond

(b)

Mask

(c) (d)

60 mm50 mm

2 mm

2 mm

30°

Figure 1. Quartz mask layout and morphology: (a) Formation of a trench close to the sidewalls:
deflected ions (solid arrows) locally enhance the etch rate in comparison to regions that are only
hit by non-deflected ions (dashed arrows); Part (b) depicts the improved mask layout and its effect
on the trench formation. By cutting the mask’s sidewalls under an angle of roughly 30◦, we avoid
ion deflection on the mask’s sidewalls; Laser-cut quartz masks before (c) and after RIE cleaning
(d) of the laser cut edge [low magnification images: etching time 30 mins, plasma parameters see
Table 1, SF6/Ar cleaning (O)]. A change of morphology indicates the removal of the deposit in the
laser cut as discernible from the insets [inset: etching time 60 min, plasma parameters see Table 1,
SF6/Ar cleaning (S)]. Note that all masks initially undergo cleaning in a boiling tri-acid mixture (1:1:1
HNO3:H2SO4:HClO4, 5 mL each) and subsequent ultrasonic cleaning in acetone and isopropanol to
coarsely remove deposit and residual glue/resist.

To avoid the risk of the membrane detaching from the surrounding diamond, a step-wise reduction
of the etched area using different shadow masks during the thinning process was necessary when using
water jet cut masks with vertical sidewalls [14]. Exchanging and aligning shadow masks, however,
possibly contaminates the etched area, is time consuming and highly-challenging in the case of parallel
processing of membranes. To avoid this delicate step, we optimize the mask’s geometry via laser
cutting (see Figure 1b, manufacturer: Photonik Zentrum Kaiserslautern, Kaiserslautern, Germany).
The trenches into the quartz masks were laser cut by ultra-fast laser machining (laser system: HYPER 25,
Coherent Kaiserslautern GmbH, Kaiserslautern, Germany). The pulse duration was in the 10 ps range
using a laser wavelength of 532 nm. A galvanometer scanner with focusing objective (HurrySCANII
14, SCANLAB AG, Munich, Germany) was used to deflect the laser beam with a spot diameter of
12µm onto the surface in order to cut the trenches and the outline of the masks precisely. By varying
the cutting speed, the pulse repetition rate of the laser pulses and the processing sequences, the quality
of the trenches was optimized and cracking was avoided. Figure 1b depicts a typical layout of our
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improved mask design. We choose the outer dimensions of the mask to fully cover the SCD plate.
While laser cutting allows us to almost freely choose the sidewall angle of our mask (here: ≈30◦),
laser ablation creates deposit of silica debris all over the mask. Preliminary tests clearly revealed
that this deposit mostly consists of amorphous silica and leads, independent of plasma chemistry,
to micro-masking and roughening of the thinned diamond. Using a protective layer (sandwiching
between sacrificial glass cover slips or coating with a resist layer) avoids deposit in remote areas but
not in direct proximity to the laser, i.e., especially on the side wall itself. Removing this deposit via wet
etching (KOH or HF) significantly roughened the side walls. Alternatively, we use ICP-RIE etching
(Oxford, PlasmaLab100 and Sentech, ICP 500): Figure 1c,d show scanning electron microscope (SEM)
images of the mask’s sidewall before and after cleaning in SF6/Ar plasma. Table 1 summarizes the
etch parameters. The masks have been thinned by 3µm (low magnification image Figure 1d) or 10µm
(inset Figure 1d) in the etching. The sidewall morphology changes, indicating full removal of the
deposit induced by laser cutting for both procedures. No roughening of mask or sidewalls occurs
during our plasma cleaning.

Table 1. Plasma recipes used in this work. Ar/SF6 cleaning removes deposit from laser cutting from
the quartz masks. The recipes used in the Sentech reactor in Basel, marked with (S), and the Oxford
reactor in Saarbrücken, marked with (O), slightly differ but lead to comparable results. We note that
the Cl2-based recipe is run on a ceramic based carrier system, while the SF6-based deep etch is run on
standard silicon carrier wafers. Anode temperature is set to 20 ◦C. For the SF6-based deep etch, the etch
rate in parenthesis gives the rate at which the Ar/SF6/O2 erode the quartz mask.

Plasma ICP Power RF Power DC Bias Gas Flux Pressure Etch Rate
(W) (W) (V) (sccm) (Pa) (nm/min)

Ar/SF6 700 100 170 SF6 10 1.2 97
Mask clean (O) Ar 20

Ar/SF6 700 220 150 SF6 25 2 161
Mask clean (S) Ar 50

Cl2-based 400 100 200 Ar 25 1 35
Diamond deep etch Cl2 40
(S) 700 50 110 O2 60 1.3 126

SF6-based 700 100 170 SF6 10 1.2 67
Diamond deep etch Ar 20
(O) 700 100 160 Ar 15 1.6 87(51)

SF6 7
O2 22

3. Etching of SCD Membranes

Prior to etching, we subject the SCD plates to cleaning in a boiling tri-acid mixture (1:1:1
HNO3:H2SO4:HClO4, 5 mL each) as well as solvent cleaning (acetone, isopropanol) to remove any
contamination arising from polishing. Failure to start etching on a clean surface induces micro-masking
(e.g., needle formation) and consequently destroys the surface integrity. The SCD plates which we
place on a carrier chip (silicon for SF6-based processes, Al2O3 for Cl2-based processes) are then covered
with the shadow mask. We attach the mask using an adhesive (crystal bond 509) or vacuum grease
(Dow Corning, high vacuum grease) to the carrier chip. We use two recipes that employ an alternating
sequence of plasma types: in the SF6-based approach [Oxford, Plasmalab 100, Saarbrücken (SB)],
we start with 10 min Ar/SF6 followed by 20 min Ar/SF6/O2 plasma and cycle this sequence. In the
Cl2-based recipe (Sentech, SI 500 ICP-RIE etch chamber, Basel, Switzerland), we start with 5 min
Ar/Cl2. Then, the cycling part of the recipe starts consisting of 5 min Ar/Cl2 and 10 min O2 plasma.
Cycling continues until the membrane reaches the desired thickness. We terminate etching with an
O2-containing step. We note that to keep the temperature in the etching chamber low, we insert a
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cooling step of 4 min (Basel) or 5 min (SB) after each 5 min of etching. To enable efficient cooling,
we purge the reactor using Ar during this period (Basel: 100 sccm, 13.2 Pa, SB: 30 sccm, 1 Pa). In these
cycling recipes, O2-containing plasma steps etch SCD fast, while not inducing too fast mask erosion
(see Table 1). The O2-free steps help to ensure a smooth surface. For the SF6-based recipe, SF6 hinders
the re-deposition of sputtered mask material in the O2-containing steps [26]. We thus ensure a clean
etching process that ensures smooth surfaces and low contamination (see below).

The starting phase of the etching procedure is particularly critical: First, mechanically polished
SCD plates often contain sub-surface, structural defects due to polishing within the first micrometers
below the surface [27]. O2-containing plasmas have been found to transform such polishing damage
into etch pits and thus roughen the surface [28] which motivates starting both recipes with the O2-free
plasma step. Second, despite careful cleaning, transferring the plate to the etch chamber might result
in minor contamination. Also from this point of view starting with the O2-free plasma is advantageous
as this potentially more efficiently removes contaminants either by Ar physical etching or by chemical
etching. Note that the approach employed here leads to an enhanced surface quality compared
to previous approaches using only Ar/SF6/O2 with the same ratio of gases in a more simple RIE
machine [29].

Our Sentech SI 500 ICP-RIE etch chamber permits in situ etch rate measurements via a laser
interferometer (SenTech SLI 670, Sentech, Krailling, Germany). For the processes performed in the
Oxford Plasmalab 100, we perform ex situ measurements using cross-sectional scanning electron
microscopy SEM (Hitachi S800, Hitachi, Chiyoda, Japan) or tip-based measurements (Veeco Dektak
150, Stylus 5µm radius, resolution 0.067µm/sample ). Etch rates of the respective plasma steps are
given in Table 1. Taking into account the necessary cooling steps, removing ≈50µm of diamond leads
to an overall etching process time of typically less than 20 h which is comparable for both approaches.

4. Membrane Roughness and Trenching

We first compare the trenching for different etch recipes, as well as different mask geometries.
The trenching at the edge of the membrane is measured via cross-sectional SEM images (see Figure 2a)
and checked via laser scanning confocal microscopy for membranes with a thickness of less than
6.5µm. For both etch recipes, the optimized mask geometry as depicted in Figure 1b clearly reduces
the trenching. For the SF6-based recipe, though showing a strong scatter of the observed trench
depths, we reduce the trenching depth to less than 2µm. For more than half of the etched membranes,
the trench depth reduces to less than 1µm or might even be negligible. For the Cl2-based recipe,
the reduction of the trenching is even more pronounced: often only a very shallow (<200 nm) trench
forms, which is not recognizable in the SEM images. We point out, however, that the trench depth
shows strong local variations: We use a confocal laser scanning microscope (LSM) to investigate these
local variations of the trenches. The local brightness variation (fringes) that we record in Figure 3
corresponds to areas of destructive and constructive interference of the laser light reflected by the front
and back surfaces of our membrane that arise when the focused laser is being scanned over the sample.
The changes thus precisely reflect local thickness variations of our SCD membrane. From the laser
wavelengths and the refractive index (n = 2.4) of SCD, we calculate that between two dark fringes
the membrane thickness changes by ≈85 nm. For the position marked in Figure 3b, the trench depth
locally increases to 400–800 nm (corresponding to 5–10 fringes). Thus, the optimized mask geometry
allows to fabricate stable membranes with roughly down to 1µm thickness.

One technical advantage of the SF6-based approach is that the outer edge of the membrane
remains smooth during etching. For the Cl2-based recipe, a wall of needles forms often times possibly
due to re-deposition of Al2O3 or amorphous carbon on the sidewall of the diamond plate. The latter
is reported to potentially have high etch resistance in multiple plasma chemistries [30]. Indeed,
measurements using energy dispersive X-ray spectroscopy (EDX) revealed the presence of aluminum,
oxygen, silicon and chlorine under the shadow mask close to the etched area. Removing these deposits
can be straightforwardly performed using HF and is thus not influencing subsequent processing
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steps. However, to gain full access to the membrane, e.g., for resist coating, it is often necessary to
remove these needles mechanically, which can break the membrane. For the SF6-based approach,
EDX measurements show weaker contamination with aluminum, oxygen and fluorine under the
shadow mask close to the etched area. In the SF6-based approach, the contaminants did not result in
needle formation on the membrane’s outer edge.

Figure 2. Electron microscopy characterization of the etched membranes: (a) Cross-sectional view of a
membrane etched using our SF6-based recipe. The membrane’s thickness at its edge as deduced from
this image is 2.8µm. A trench with a depth of 0.8µm is visible in the image; (b) View of a membrane
etched using the Cl2-based process (taken under ≈80 ◦). For the membrane etched in the Cl2-based
process, the mask is still attached. In case of the Cl2-based process, a needle wall had to be removed
mechanically from the outer edge of the membrane. This process occasionally leads to cracks in the
membrane. In contrast the outer edge of the membrane etched in the SF6-based process is smooth
without further treatment.

Figure 3. Interference fringes of the etched membranes recorded using a confocal laser scanning
microscope (LSM): (a) Thickness homogeneity of a membrane etched with the SF6-based recipe.
The thickness of the membrane at the outer edge (thinnest point) is 2.5µm as measured using SEM.
The diamond membrane shows a thickness variation of 3.6µm along its long edge and a variation of
0.8µm along its short edge direction. Measured using a LEXT OLS4100 LSM (Olympus, Shinjuku, Japan)
equipped with a 405 nm laser; (b) Membrane etched using the Cl2-based process, compare Figure 2b.
The thickness of this membrane at its outer edge is 2µm as measured using SEM. The encircled area
illustrates the local variation of the trenching as described in the text. Measured using a VK-X210 LSM
(Keyence, Osaka, Japan) equipped with a 408 nm laser.

We use constructive and destructive interference fringes recorded in a confocal laser scanning
microscope (LSM) to investigate the thickness homogeneity of our membranes as discussed above.
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Figure 3 displays two examples of thin membranes etched with the two recipes. In general, we find
that the geometry of the etched membrane influences its thickness homogeneity. Especially for square
membranes, the central part shows a thickness variation of less than 1µm over ≈200 × 200µm2.
The homogeneity reached for these membranes is suitable for the fabrication of e.g., scanning probe
nanostructures. Our new mask geometry does not seem to influence the homogeneity significantly
compared to previous results [14].

To quantitatively analyze the surface quality of the membranes, we use AFM measurements
in tapping mode. Before etching, we find an RMS surface roughness of 0.8 nm in accordance with
manufacturer specifications. For the etched membranes, we measure a roughness of 0.3 nm (SF6-based
process, area 1µm2, optical grade, see Figure 4a) and 0.5 nm (Cl2-based process, area 1µm2, electronic
grade, see Figure 4b). Though these numbers can be only estimates due to the limited resolution of the
AFM and a roughness almost on the atomic scale, they clearly prove the very high surface quality of the
membranes which renders them usable for many applications including photonics and nanomechanics.
We note that in both processes the membranes have been smoothed during the etching process and the
polishing direction that was often visible before the etch is not discernible anymore in the AFM images.

Figure 4. (a) Surface roughness of a membrane etched with the SF6-based plasma process to thickness
of 2.5µm. Image recorded using a FastScan-ScanAsyst atomic force microscopy (AFM, Bruker, Billerica,
MA, USA) in tapping mode. The four encircled bumps exceed the chosen scale bar and are 9.3 nm
high; (b) Membrane etched using the Cl2-based process to a thickness of 9µm. Image recorded using a
Dimension 3100 AFM in tapping mode. The two encircled bumps marked exceed the chosen scale bar
and are 18 nm high.

5. Conclusions and Outlook

We introduce a cycling etching recipe for thin SCD membrane etching. The recipe uses argon,
oxygen and SF6 and reaches similar performance as the previously published recipe using argon,
chlorine and oxygen concerning surface quality, homogeneity and etch rate. Furthermore, the SF6-based
process creates membranes without needles close to the outer edge that can hinder subsequent
processing. As we avoid the use of toxic and highly-corrosive feed gases, the recipe can be operated
on standard ICP reactors and is closer to processes from semiconductor technology. We present
a new mask geometry for a shadow mask manufactured out of quartz cover slides. With these
masks, we reduce the trenching of the membranes for SF6-based and Cl2-based processes. These new
approaches potentially foster the up-scaling of SCD thin membrane formation via parallel processing
of several membrane windows.

Beyond this study, further optimization of our process will consider the charge state stability
and spin coherence of color centers created close to the etched surfaces (distance <10 nm) of our
membranes. Our Cl2-based recipe has already been used for sensing applications with NV centers
and enables stable NV centers with roughly 75µs coherence time at a depth of 9 nm [14]. However,
both plasma recipes introduced here use partly physical etching with a high bias voltage and argon
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admixture in the plasma. Such approaches allow us to reliably remove several tens of micrometers
of SCD with a high etch rate while conserving smooth surfaces. Nevertheless, our highly-biased
plasma recipes potentially damage the surface [31]. Future optimization will include finishing the
etching using the promising approach of a low-bias, low-damage plasma step with low etch rate [31].
Furthermore, the surface termination of the SCD membranes is crucial for shallow color centers as it
influences their charge state. We aim at controlling the surface termination, e.g., via dedicated plasma
treatments [32].
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