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Spin-lattice relaxation of individual solid-state spins
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Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing
nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical
microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively
charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems.
Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the
quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium.
Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with
recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher
temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature
scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to
confirming a T 5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement
with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a
wide range of temperatures where different temperature scalings might be expected.
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I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV−) center in
diamond is a promising solid-state system with remarkable
applications in quantum sensing with atomic-scale spatial reso-
lution [1,2], fluorescent marking of biological structures [3–5],
single photon sources [6], and quantum communications [7].
However, most of these quantum-based applications crucially
depend on the longitudinal (1/T1) and transverse (1/T2) spin
relaxation rates associated with the ground state spin degree of
freedom [8].

From experiments and theory, we know that lattice phonons
in diamond are important for the spin-lattice relaxation dynam-
ics of the spin degree of freedom of the NV− center and that the
temperature plays a fundamental role in this relaxation process
[8–12]. Phonons can be understood as collective quantum
vibrational excitations that propagate through the lattice and
directly interact with the orbital states of the point defect. The
intensity of this interaction depends on the electron-phonon
coupling between the defect and all possible phonon modes
in the lattice (acoustic, optical, and quasilocalized phonon
modes) [13–15]. Theoretical and numerical studies show that
the strain field of the diamond lattice and perturbative correc-
tions given by the spin-orbit and spin-spin interactions intro-
duce interesting spin-phonon dynamics between the ground
state spin degree of freedom of the NV− center and lattice
phonons [16,17].

Several theoretical works have addressed the problem
of finding the relaxation rate by considering the interac-
tion between the spin degree of freedom with two-phonon

Raman [18,19] and Orbach-type [20] processes. In general,
the problem of estimating the thermal dependence of each
relaxation process is translated into the problem of calculating
the transition rates predicted by the Fermi golden rule for
different phonon processes [12,18–21]. Using this reasoning,
it is reported that the second-order Raman process induced
by a linear spin-phonon interaction leads to 1/T1 ∝ T 5 [19],
while the first-order Raman process induced by a quadratic
spin-phonon interaction leads to 1/T1 ∝ T 7 [18], where T is
the environment temperature.

The ground triplet state of the NV− center in diamond has
a natural zero-field splitting D/2π = 2.87 GHz originated
from the dipole-dipole interaction between electronic spins
[22,23]. This energy gap is low compared to typical optical
phonon energies ωph/2π ∼ 15−40 THz and sets a charac-
teristic thermal gap associated with the spin system Tgap =
h̄D/kB ≈ 0.14 K. Experimental observations at high temper-
atures, from 300 K to 475 K, have shown that different samples
with different NV− center concentrations present a dominant
two-phonon Raman process that leads to (1/T1)Raman ∝ T 5

[8,11]. At low temperatures, between 4 K and 100 K, the
relaxation rate is dominated by Orbach and spin-bath interac-
tions. The former is associated with a quasilocalized phonon
mode with energy ωloc ≈ 73 meV [8,24] and contributes
with a temperature dependence relaxation rate (1/T1)Orbach ∝
(exp(h̄ωloc/kBT ) − 1)−1. This closely matches the numerical
vibrational resonance predicted by ab initio studies [13].
Meanwhile, it is observed that dipole-dipole interactions be-
tween neighboring spins lead to a constant sample-dependent
relaxation rate which dominates at this temperature range [8].
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In contrast, at lower temperatures (below 1 K) recent experi-
mental observations and ab initio calculations concluded that
the longitudinal relaxation rate is dominated by single-phonon
processes, and is given by (1/T1) ∝ �0(1 + 3n̄(T )), where
�0 = 3.14×10−5 s−1, and n̄(T ) = (exp(h̄D/kBT ) − 1)−1 is
the mean number of phonons at the zero-field splitting fre-
quency [12]. However, a microscopic model that predicts the
temperature dependence of the longitudinal relaxation rate for
a wide range of temperatures, to the best of our knowledge, is
still missing.

Here, we present a microscopic model for the spin-lattice
relaxation dynamics associated with the ground state of the
NV− center in diamond. In our model, we introduce a general
spin-phonon Hamiltonian to describe the spin relaxation dy-
namics using the quantum master equation associated with the
electronic spin degree of freedom under the effect of a phononic
bath. We focus on the estimation of the longitudinal relaxation
rate by evaluating the rate of the Fermi golden rule transitions
to first and second order considering the effect of acoustic and
quasilocalized phonons. In Sec. II, we give the Hamiltonian
of the whole system and introduce the spin-phonon interaction
between the triplet state of the spin degree of freedom and
lattice vibrations, by considering one-phonon and two-phonon
interactions. Section III introduces the phonon relaxation rates
for one-phonon and two-phonon processes, by using the Fermi
golden rule, the Debye approximation, and a model for strong
interactions with quasilocalized phonon modes. In Sec. IV
we introduce the quantum master equation associated with
the spin-lattice relaxation dynamics of the ground state and
include the role of a stochastic magnetic noise. Finally, in
Sec. V we discuss the longitudinal relaxation rate at low and
high-temperature regimes and the role of a static magnetic field
on the relaxation rate for low temperatures.

II. SPIN DEGREE OF FREEDOM AND PHONONS

We consider a system composed of a single NV− center
in diamond interacting with lattice phonons. In this scenario,
local vibrations induce a mixing between orbital states of
the defect by means of the electron-phonon interaction. This
phonon-induced mixing effect generates an effective interac-
tion between the spin degree of freedom and lattice phonons.
In order to model the spin-phonon relaxation dynamics, we use
the following Hamiltonian

Ĥ = ĤNV + Ĥs−ph + Ĥph, (1)

where the first, second, and third terms represent the ground
state spin Hamiltonian of the NV− center, the interaction
Hamiltonian between the spin state and lattice phonons, and
the phonon bath, respectively.

The NV− center is composed of a substitutional nitrogen
atom next to a vacancy in a diamond lattice. The symmetry
of the center is captured by including the three carbon atoms
adjacent to the vacancy [25]. The atomic configuration of
this point defect is associated with the C3v symmetry group.
The electronic structure of this point defect is modeled as a
two electron-hole system with electronic spin S = 1. In this
representation, the electronic wave functions of the excited
and ground state are linear combinations of two-electron wave
functions [26], where the single-electron orbitals of the NV−
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FIG. 1. The energy levels and the atomic structure of the NV−

center are shown. Here, |X〉 and |Y 〉 are the orbital degenerate excited
states, and |A2〉 is the orbital ground state. The zero-phonon line
energy is given by E0 = 1.945 eV. The spin triplet states are rep-
resented by |ms = 0〉 and |ms = ±1〉. Such spin states are separated
by the zero-field splitting constant D/2π = 2.87 GHz and the static
magnetic field which we have assumed is aligned along the symmetry
axis of the center. Phonons are represented by a continuous band that
interacts with the ground state, and its transitions are represented by
the labels (1), (2), and (3).

center can be written in terms of the carbon and nitrogen
dangling bonds [27,28]. In the absence of external perturba-
tions, such as lattice distortions or electromagnetic fields, the
orbital excited states |X〉 and |Y 〉 are degenerate due to the
C3v symmetry and belong to the irreducible representation
E. Meanwhile, the orbital ground state |A2〉 belongs to the
irreducible representation A2.

In the presence of a static magnetic field B0 along the z axis,
the spin Hamiltonian of the NV− center is given by (h̄ = 1)

ĤNV = DS2
z + γsB0Sz, (2)

where S = (Sx,Sy,Sz) are the Pauli matrices for S = 1 (di-
mensionless), D/2π = 2.87 GHz is the zero-field splitting
constant, and γs/2π ≈ 2.8 MHz/G is the gyromagnetic ratio.
Figure 1 shows the energy diagram of the system, including
the orbital states, spin degrees of freedom, and the atomic
configuration of the NV− center.

Quantum systems with spin S = 1 are traditionally called
non-Kramers systems [29,30]. Interestingly, there is a nontriv-
ial connection between the spin number and the temperature
dependence of the relaxation rate [19,20,27]. Therefore, in
order to obtain the correct temperature dependence of the
spin relaxation rate of the ground triplet state of the NV−

center we consider the most general spin-phonon interaction
Hamiltonian for spin S = 1 systems given by [29]

Ĥs−ph = EzS
2
z + Ex

(
S2

x − S2
y

) + Ey(SxSy + SySx)

+Ex ′ (SxSz + SzSx) + Ey ′ (SySz + SzSy), (3)

where the operators Ez,Ex,Ey,Ex ′ , and Ey ′ have units of
energy. In addition, the operators Ex,Ex ′ , Ey , and Ey ′ belong
to the irreducible representation E, while the operator Ez

is characterized by the irreducible representation A1 [29].
Physically, the Ei operators can be derived from perturbative
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corrections of the spin-spin and spin-orbit interactions due
to the effect of the strain field [17]. These operators are
proportional to the nuclear displacements, and therefore, can
be quantized using phonon modes [17]. In order to introduce
these quantized vibrations, we expand the Ei operators in terms
of lattice phonon-mode operators classified by each symmetry,
including the linear and the quadratic terms, as the following

Ei =
∑
k∈E

λk,i x̂k +
∑

k⊗k′∈E

λkk′,i x̂kx̂k′ , i 	= z (4)

Ez =
∑
k∈A1

λk,zx̂k +
∑

k⊗k′∈A1

λkk′,zx̂kx̂k′ . (5)

Here, λk,i and λkk′,i are the linear and quadratic spin-phonon
coupling constants, respectively. The operator x̂k is given by
x̂k = b̂k + b̂

†
k where b̂k and b̂

†
k are the boson annihilation and

creation operators, respectively, satisfying [b̂k,b̂
†
k′ ] = δk,k′ . The

linear term given in Eqs. (4) and (5) has the same symmetry
as the corresponding Ei operators, and phonons with these
symmetry are considered in the summation. In the quadratic
term we are considering combinations of phonons such that
the product belongs to the irreducible representation E or A1.
As a consequence of the multiplication rules A2 ⊗ A2 = A1

and A2 ⊗ E = E, phonon modes with A2 symmetry only
contribute to the quadratic term. Therefore, the most general
spin-phonon Hamiltonian for a system with spin S = 1 is given
by

Ĥs−ph =
∑

i

⎡
⎣∑

k∈�i

λk,i x̂k +
∑

k⊗k′∈�i

λkk′,i x̂kx̂k′

⎤
⎦F̂i(S), (6)

where i = x,y,x ′,y ′,z is the spin label, �x,y,x ′,y ′ = E,
and �z = A1 are the irreducible representations of the
C3v point group. The spin functions are given by
F̂x(S) = S2

x − S2
y ,F̂y(S) = SxSy + SySx, F̂x ′ (S) = SxSz +

SzSx,F̂y ′ (S) = SySz + SzSy , and F̂z(S) = S2
z .

Using the spin basis that diagonalizes the spin Hamiltonian
given in Eq. (2), i.e., |ms = 1〉 = (1,0,0), |ms = 0〉 = (0,1,0),
and |ms = −1〉 = (0,0,1), we explicitly obtain

F̂x(S) =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠, F̂x ′(S) = 1√

2

⎛
⎜⎝

0 1 0

1 0 −1

0 −1 0

⎞
⎟⎠,

(7)

F̂y(S) =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, F̂y ′ (S) = 1√

2

⎛
⎜⎝

0 −i 0

i 0 i

0 −i 0

⎞
⎟⎠,

(8)

F̂z(S) =

⎛
⎜⎝

1 0 0

0 0 0

0 0 1

⎞
⎟⎠. (9)

We observe that only the terms F̂x(S) and F̂y(S) induce spin
transitions between the states ms = +1 and ms = −1, where
the selection rule is �ms = ±2. On the other hand, the terms

F̂x ′ (S) and F̂y ′ (S) induce spin transitions between ms = ±1
and ms = 0, in this case the selection rule is �ms = ±1.

Finally, the phonon Hamiltonian can be written as

Ĥph =
∑

k

h̄ωkb̂
†
kb̂k, (10)

where ωk is the frequency of each vibrational mode of the
lattice (including the color center), and the summation takes
into account the contribution of all phonon modes of the dia-
mond lattice. In the next section, we will introduce the phonon-
induced spin relaxation rates and the temperature dependence
associated to the spin-phonon Hamiltonian given in Eq. (6) by
considering the effect of acoustic and quasilocalized phonons
in thermal equilibrium. We will show that the dimension and
the symmetry of the lattice play a fundamental role in the
temperature dependence of the longitudinal relaxation rate for
two-phonon processes.

III. FERMI GOLDEN RULE AND PHONON-INDUCED
SPIN RELAXATION RATES

In order to formally introduce the phonon-induced relax-
ation rates, we use the Fermi golden rule to first and second
order by using the spin-phonon Hamiltonian given in Eq. (6).
Using this procedure, it is possible to model first and second-
order Raman-like processes, as well as direct absorption and
emission associated with one-phonon processes. In particular,
the energies associated with the spin transitions in the ground
state of the NV− center are given by ω1 = 2γsB0, ω2 = D +
γsB0, and ω3 = D − γsB0. For typical magnitudes of the static
magnetic field B0 ∼ 0–2000 G and taking into account the
zero field splitting constant D/2π = 2.87 GHz, we obtain
that ω1 ∼ 0–11.2 GHz, ω2,3 ∼ 2.87–8.47 GHz. These are the
typical energies of acoustic phonons which belong to the linear
branch of the phonon dispersion relation for diamond [31].
Acoustic phonons in diamond have energies of the order of
ωacous ∼ 0–10 THz. Therefore, the main fraction of acoustic
phonons satisfy the frequency condition ωacous � ωi .

For the case of Raman-like processes the frequency con-
dition is ωph,1 − ωph,2 = ωi (i = 1,2,3). Due to the condition
ωacous � ωi we assume in our model that the most significant
contribution to two-phonon processes comes from acoustic
phonons that satisfy ωph,1 � ωi and ωph,2 � ωi . On the other
hand, high energy phonons in diamond, with frequencies of the
order of ωph ∼ 15–40 THz, can be included by considering the
strong interaction with quasilocalized phonons. Therefore, in
what follows we will consider the contribution of acoustic and
quasilocalized phonons.

A. One-phonon processes: Acoustic phonons

In the case of one-phonon processes, we need to distinguish
between the absorption and the emission of a particular
phonon mode with frequency ωk , which must be resonant
with a transition between the spin energy levels of the NV−

center in diamond. In order to introduce the temperature, we
assume a phonon environment in thermal equilibrium, i.e.,
phonons that satisfy the Bose-Einstein distribution. Thus, we
have 〈b̂†kb̂k〉 = n(ωk) and 〈b̂kb̂

†
k〉 = 1 + n(ωk), where n(ωk) =

[exp(h̄ωk/kBT ) − 1]−1 is the mean number of phonons at
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thermal equilibrium with kB and h̄ being the Boltzmann and
Planck constant, respectively.

For one-phonon processes the absorption and emission
transition rates associated with the spin transition |ms〉 → |m′

s〉
are given by the first order Fermi golden rule as

�
ms→m′

s

abs = 2π

h̄2

∑
k

|〈m′
s ,nk − 1|Ĥs−ph|ms,nk〉|2

× δ
(
ωm′

s ,ms
− ωk

)
, (11)

�
ms→m′

s
em = 2π

h̄2

∑
k

|〈m′
s ,nk + 1|Ĥs−ph|ms,nk〉|2

× δ
(
ωm′

s ,ms
− ωk

)
, (12)

where ωm′
s ,ms

= ωm′
s
− ωms

is the frequency difference be-
tween the spin sublevels, and |nk〉 is the number of phonons in
the mode k (Fock state). Using the spin-phonon Hamiltonian
given in Eq. (6), the spin relaxation rates associated with
one-phonon processes are given by

�
1,1−ph
abs = 2π

h̄2 n(ω1)J1(ω1), �1,1−ph
em = 2π

h̄2 (n(ω1)+1)J1(ω1),

(13)

�
2,1−ph
abs = π

h̄2 n(ω2)J2(ω2), �2,1−ph
em = π

h̄2 (n(ω2)+1)J2(ω2),

(14)

where the superscript “1” and “2” represent the spin transitions
|ms = −1〉 ↔ |ms = 1〉 and |ms = 0〉 ↔ |ms = +1〉, respec-
tively. Here, J1(ω) and J2(ω) are the spectral density functions

J1(ω) =
∑
k∈E

(
λ2

k,x + λ2
k,y

)
δ(ω − ωk), (15)

J2(ω) =
∑
k∈E

(
λ2

k,x ′ + λ2
k,y ′

)
δ(ω − ωk), (16)

where λk,i are the linear spin-phonon coupling constants, ωk

are the phonon frequencies, and both summations consider
the contribution of E phonons. For the transition |ms = 0〉 ↔
|ms = −1〉 the gap frequency ω3 = D − γsB0 can be positive
or negative depending on the strength of the external magnetic
field B0. For ω3 > 0 the absorption and emission relaxation
rates are given by

�
3,1−ph
abs = π

h̄2 n(ω3)J2(ω3), (17)

�3,1−ph
em = π

h̄2 (n(ω3) + 1)J2(ω3), (18)

where the superscript “3” represents the spin transition
|ms = 0〉 ↔ |ms = −1〉. In this case, the spin state |ms = 0〉
is the lowest spin energy level and the absorption is defined by
the transition |ms = 0〉 → |ms = −1〉. In the opposite case,
i.e., when ω3 < 0, the relaxation rates can be written as the
following

�
3,1−ph
abs = π

h̄2 n(|ω3|)J2(|ω3|), (19)

�3,1−ph
em = π

h̄2 (n(|ω3|) + 1)J2(|ω3|). (20)

FIG. 2. The solid black lines are the energy levels of the ground
triplet state of the NV− center in diamond as a function of the external
magnetic field along the z axis. For a given absorption and emission
transition between two spin states |ms〉, we observe three different
spin relaxation processes represented by colored arrows (1 = red,
2 = green, and 3 = blue). The relaxation rates �

i,1−ph
abs and �i,1−ph

em

are the absorption and emission spin relaxation rates for one-phonon
processes.

In this case the spin state |ms = −1〉 is the lowest spin
energy level, and the absorption is defined by the transition
|ms = −1〉 → |ms = 0〉. Figure 2 shows the phonon-induced
spin relaxation rates associated with the ground triplet state of
the NV− center as a function of the external magnetic field B0.
The absorption and emission relaxation rates associated with
the transitions |ms = 0〉 ↔ |ms = −1〉 are shown only for the
case ω3 < 0. The total phonon-induced spin relaxation rate
associated with one-phonon processes is defined as the sum
of the absorption and emission transition rates of each process
and is given by

�1−ph =
3∑

i=1

(
�

i,1−ph
abs + �i,1−ph

em

) =
3∑

i=1

Ai coth

(
h̄ωi

2kBT

)
.

(21)

This total phonon-induced spin relaxation rate will be relevant
for the general solution associated with the populations of
the spin states and the observable 〈Sz(t)〉 [see Sec. V B and
Eqs. (71) and (74)]. In addition, this transition rate, i.e., the
sum of absorption and emission of all the transitions, is the
rate that limits the coherence time T2 [32]. The parameters
Ai depend on the value of the spectral density function at the
resonant frequencies, i.e., A1 = 2πJ1(ω1),A2 = πJ2(ω2), and
A3 = πJ2(|ω3|).

In the limit of continuous frequency, i.e., ωk → ω, we can
introduce the following scaling for the linear spin-phonon
coupling constants [33]:

λk,i → λi(ω) = λ0i

(
ω

ωD

)ν

, 0 � ω � ωD, (22)
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where λi(ω) is the one-phonon coupling constant for acoustic
phonons, λ0i = λi(ωD) is the strength of the one-phonon cou-
pling constant at the Debye frequency ωD = (3/(4πn))1/3vs ,
where n is the atom density, and vs is the speed of sound. For
the diamond lattice the Debye frequency is given by ωD/2π =
38.76 THz [34]. The parameter ν is a phenomenological
parameter that models the strength of the coupling for acoustic
phonons and depends on the symmetry of the lattice. In the
absence or presence of cubic symmetry we have ν = 1/2 or
ν = 3/2, respectively [33]. For the NV− center in diamond we
use the value ν = 1/2, because of the presence of the color
center with C3v symmetry that breaks the symmetry of the
whole system (lattice and point defect).

We introduce the density of states for acoustic phonons with
E symmetry for a d-dimensional lattice, with a dispersion re-
lation ωk = vs |k| in the Debye approximation (ω�ωD=vskD):

D(d)(ω) = 


∫
ddk

(2π )d
δ(ω − vs |k|)

= 


(2π )d

∫
d
̂d

∫ kD

0
dk kd−1δ(ω − vsk)

= D0

(
ω

ωD

)d−1

�(ωD − ω). (23)

Here, we have used d-dimensional spherical coordinates with
measure ddk = d
̂ddkkd−1, with 
̂d the solid angle in d

dimensions and ωD = vskD the Debye frequency for the
diamond lattice. In the last line, we have defined the positive
normalization constant D0 = 

̂dω

d−1
D /((2π )dvd

s ) > 0, for
d = 1,2,3 the dimension of the lattice. In Eq. (23) we have
taken the continuum limit of the sum, 
 is the volume of
a unit cell, vs = 1.2×104 m/s is the speed of sound in a
diamond lattice, and ωD = vskD is the Debye frequency for
the diamond lattice. The frequency domain is truncated in
the upper limit to the Debye frequency by the Heaviside
function �(ωD − ω). For a three-dimensional lattice we obtain
D0 = 
ω2/(2π2v3

s ). In the limit of continuous frequency and
considering a three dimensional lattice, the spectral density
functions can be written as

J1(ω) =
∑
k∈E

[
λ2

x(ωk) + λ2
y(ωk)

]
δ(ω − ωk)

→ 


∫
d3k

(2π )3

[
λ2

x(ωk) + λ2
y(ωk)

]
δ(ω − ωk)

= [
λ2

x(ω) + λ2
y(ω)

]



∫
d3k

(2π )3
δ(ω − ωk)

= [
λ2

x(ω) + λ2
y(ω)

]
D(3)(ω). (24)

Similar manipulations lead to J2(ω) = [λ2
x ′ (ω) + λ2

y ′(ω)]D(3)

(ω). As a result, the parameters Ai are given by

A1 = 

(
λ2

0x + λ2
0y

)
πv3

s ωD

(2γsB0)3, (25)

A2 = 

(
λ2

0x ′ + λ2
0y ′

)
2πv3

s ωD

(D + γsB0)3, (26)

A3 = 

(
λ2

0x ′ + λ2
0y ′

)
2πv3

s ωD

(D − γsB0)3. (27)

Therefore, the available number of phonons in the lattice,
the density of phonon states, and the spin-phonon coupling
constants will determine the intensity of each transition rate.
In this context, the temperature is the control parameter in
the laboratory that, at a quantum level, introduces available
phonons that collectively act as a source of relaxation. At
zero magnetic field, we have A1 = 0 and A2 = A3. In the
high-temperature regime, kBT � h̄ωi , the one-phonon spin
relaxation rates scales linearly with the temperature, i.e.,
�i,1−ph ∝ T . In the opposite case, when kBT � h̄ωi , the
one-phonon spin relaxation rates scales as a constant. In the
next section we introduce the second-order corrections to the
Fermi golden rule using both linear and bilinear terms in the
spin-phonon interaction Hamiltonian.

B. Two-phonon processes: Acoustic phonons

The second-order transition rate associated with the spin
transition |ms〉 → |m′

s〉 is defined as

�ms→m′
s
=

∑
k,k′

∑
l,l′

�
m′

s ,nl ,nl′
ms,nk,nk′ , ms,m

′
s = 0,±1, (28)

where the sum is over all possible initial and final two-phonon
modes, with |i〉 = |ms,nk,nk′ 〉 and |f 〉 = |m′

s ,nl,nl′ 〉 being the
initial and final states, respectively. The transition rate inside
the sum in Eq. (28) is given by the Fermi golden rule formula
to second-order

�
m′

s ,nl ,nl′
ms,nk ,nk′ = 2π

h̄2

∣∣∣∣∣∣∣
V

m′
s ,nl ,nl′

ms ,nk ,nk′ +
∑

m′′
s =0,±1

∑
p,p′

V
m′′

s ,np,np′
m′

s ,nl ,nl′
V

ms,nk,nk′
m′′

s ,np,np′

Ems,nk ,nk′ − Em′′
s ,np,np′

∣∣∣∣∣∣∣

2

× δ
(
ωm′

s ,ms
+ nlωl + nl′ωl′ − nkωk − nk′ωk′

)
,

(29)

where V
j

i = 〈i| Ĥs−ph |j 〉 , |m′′
s 〉 is the spin state of the in-

termediate state, and |np〉 , |n′
p〉 are the intermediate phonon

states. The resonant frequencies of the system, i.e., ω1 ∼
0–11.2 GHz and ω2,3 ∼ 2.87–8.47 GHz are very low com-
pared to the frequency of the acoustic phonons in diamond
ωacous ∼ 0–10 THz. Therefore, to second order we assume
that the most significant contribution comes from phonons that
satisfy the frequency condition ωk,k′ � ωms,m′′

s
.

We introduce four different types of two-phonon pro-
cesses: two-phonon direct transition (Direct), Stokes transition
(Stokes), anti-Stokes transition (anti-Stokes), and spontaneous
emission followed by absorption (Spont), see Fig. 3. The
direct two-phonon transition is characterized by the frequency
condition ωk + ωk′ = ωm′

s ,ms
and its absorption and emission

relaxation rates are given by

�
abs,Direct
ms→m′

s
=

∑
k,k′

�
m′

s ,nk−1,nk′ −1
ms,nk,nk′ , (30)

�
em,Direct
m′

s→ms
=

∑
k,k′

�
ms,nk+1,nk′ +1
m′

s ,nk,nk′ . (31)

On the other hand, we have the Stokes and Anti-Stokes
transitions which are characterized by the frequency condition
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FIG. 3. The red arrows represent the absorption and emission of
two phonons between two different spin states |ms〉 and |m′

s〉. The
direct two-phonon process is associated to the energy condition ωk +
ωk′ = ωm′

s ,ms
, where ωm′

s ,ms
= ωm′

s
− ωms

is the frequency gap. The
Stokes scattering is associated to the energy condition ωk − ωk′ =
ωm′

s ,ms
.

ωk − ωk′ = ωm′
s ,ms

and are given by

�Stokes
ms→m′

s
=

∑
k,k′

�
m′

s ,nk−1,nk′ +1
ms,nk,nk′ , (32)

�Anti−Stokes
m′

s→ms
=

∑
k,k′

�
ms,nk−1,nk′ +1
m′

s ,nk,nk′ . (33)

For the spontaneous emission followed by absorption process
we define

�
abs,Spont
ms→m′

s
=

∑
k,k′

�
m′

s ,nk+1,nk′ −1
ms,nk,nk′ , (34)

�
em,Spont
m′

s→ms
=

∑
k,k′

�
ms,nk+1,nk′ −1
m′

s ,nk,nk′ . (35)

For acoustic phonon modes, i.e., phonons with a linear disper-
sion relation ωk = v|k|, we can use the Debye model in order
to represent two-phonon processes. In order to study the spin-
relaxation rate as a function of the dimension of the system, we
used the density of phonon states for a d-dimensional lattice
given in Eq. (23). We can introduce the following scaling for
the quadratic spin-phonon coupling constant for the acoustic
phonon modes in the limit of continuous frequency [33]

λkk′,i → λi(ω,ω′) = λ00i

(
ω

ωD

)ν(
ω′

ωD

)ν

, (36)

where λi(ω,ω′) is the two-phonon coupling constant for
acoustic phonons, λ00i = λi(ωD,ωD) is the strength of the
two-phonon coupling constant at the Debye frequency ωD ,
and ν > 0 is a phenomenological factor that models the spin-
phonon coupling in the acoustic regime.

Using the second-order Fermi golden rule given in Eq. (A1)
and only considering acoustic phonons, we obtain the follow-
ing absorption and emission transition rates

�abs
ms→m′

s
= �

abs,Direct
ms→m′

s
+ �Stokes

ms→m′
s
+ �

abs,Spont
ms→m′

s
, (37)

�em
ms→m′

s
= �

em,Direct
ms→m′

s
+ �Anti−Stokes

ms→m′
s

+ �
em,Spont
ms→m′

s
, (38)

TABLE I. The table shows the expected temperature dependence
of linear and bilinear spin-phonon interactions considered to first and
second order in spin lattice relaxation rate. The bilinear term to second
order is zero. When both linear and bilinear terms are considered a
mixed term appears only to second order. The last column indicates
the temperature scaling for a three-dimensional, noncubic lattice.

Hamiltonian First order Second order
d = 3

ν = 1/2

Ĥ =
∑
k,i

λki x̂k coth

(
h̄ω

kBT

)
T 4ν+2d−3 T 5

Ĥ =
∑
k,k′,i

λkk′,i x̂k x̂k′ T 4ν+2d−1 0 T 7

Mixed term 0 T 4ν+2d−2 T 6

where each transition rate is defined as

�
process
ms→m′

s
= a

process
ms,m′

s
(xD)T 4ν+2d−3 + b

process
ms,m′

s
(xD)T 4ν+2d−2

+ c
process
ms,m′

s
(xD)T 4ν+2d−1, (39)

where process = {Direct, Stokes, Anti-Stokes, Spont}, xD =
h̄ωD/kBT is a dimensionless parameter, T is the temperature,
and the coefficients a

process
ms,m′

s
, b

process
ms,m′

s
, and c

process
ms,m′

s
are given

in Appendix A. Using ν = 1/2 and d = 3, we obtain the
following total two-phonon spin relaxation rate

�2−ph =
∑

ms 	=m′
s

(
�abs

ms→m′
s
+ �em

ms→m′
s

)

= A5T
5 + A6T

6 + A7T
7. (40)

This total spin relaxation rate will be relevant for the general
solution associated with the physical observable 〈Sz(t)〉 [see
Sec. V B and Eq. (74)]. In Table I, we have shown the different
temperature dependence of the spin relaxation rate associated
with two-phonon processes in the acoustic limit. We observe
that the symmetry of the lattice ν and the dimension of the
system d determine the temperature response of the spin-lattice
relaxation dynamics of the system at high temperatures.

In summary, by only considering the contribution of acous-
tic phonons to first and second order, we see three different
temperature scalings of the form (T s,T s+1,T s+2), where s =
4ν + 2d − 3. We observe 1/T1 ∝ T s for a linear second-order
Raman-like scattering, 1/T1 ∝ T s+2 for a quadratic first-order
Raman-like scattering, and 1/T1 ∝ T s+1 for the mixed term
between the linear and quadratic contributions to second order.

C. Two-phonon processes: Quasilocalized phonons

Quasilocalized phonons, or vibrational resonances between
a single-color-center and lattice vibrations, are good candidates
for dissipative processes due to the strong electron-phonon
coupling. The NV− center has a strong electron-phonon cou-
pling associated with vibrational resonances, with a continuum
of vibrational modes centered at ωres = 65 meV, and a full
width at half maximum of about � = 32 meV as regularly
observed in the phonon sideband of the NV fluorescence
spectrum under optical excitation [13]. Because of the small
zero-field splitting constant induced by spin-spin interaction
(D/2π = 2.87 GHz or h̄D = 0.012 meV), we have ωres � D,
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and therefore, these high-energy phonons can only be present
in a two-phonon process associated with the condition ωk −
ωk′ = ωi (ωk ≈ ωk′). Strong interactions with high energy
phonons can be introduced in Orbach-type processes [9]. It is
shown experimentally that different NV− center samples have
an activation energy of 73 meV [8], which is close to the vibra-
tional resonance frequency ωres = 65 meV. In our formalism,
quasilocalized phonons can be phenomenologically modeled
by a Lorentzian spectral density function of the form [15,35]

JLoc(ω) = JLoc

π

1
2�

(ω − ωloc)2 + (
1
2�

)2 , 0 < ω < ωmax. (41)

In this equation, JLoc is the coupling strength, � is a character-
istic bandwidth, h̄ωmax = 168 meV is the maximum phonon
energy in a diamond lattice [36], and ωloc is the frequency
of the localized phonon mode. As a simpler model we can
consider the interaction with only one quasilocalized phonon
mode (� → 0)

λk,i = λi,locδ(ω − ωloc), (42)

where λi,loc is the coupling strength. Using the above equation
and calculating the second-order transition rate induced by the
linear spin-phonon interaction, we can obtain the following
relaxation rate associated with quasilocalized phonons

�loc = A4(1 + n(ωloc))n(ωloc) ≈ A4

eh̄ωloc/kBT − 1
, (43)

whereA4 is a constant of units of frequency. The approximation
(1 + n(ωloc))n(ωloc) ≈ n(ωloc) is valid for temperatures below
T = 300 K. For such temperatures, the mean number of
phonons is low, n(ωloc) ≈ 0.1, therefore we can write (1 +
n)n ≈ n + O(n2). In the next section we derive the spin-lattice
relaxation dynamics using the quantum master equation.

IV. SPIN-LATTICE RELAXATION DYNAMICS

In this section, we present the general equation associated
with the spin-lattice relaxation dynamics of the ground triplet
state of the NV− center. We use the Markovian quantum
master equation [37] for the reduced density operator ρ̂(t) =
Trph(ρ̂NV+ph). We assume that the initial state at time t0 is
given by the uncorrelated state ρ̂NV+ph(t0) = ρ̂NV(t0) ⊗ ˆρph(t0)
(Born approximation) and that the phonon bath is in thermal
equilibrium. In the weak-coupling limit, and using the spin-
phonon Hamiltonian given in Eq. (6), we obtain

˙̂ρ = 1

ih̄
[ĤNV,ρ̂] + L1−phρ̂ + L2−phρ̂ + Lmagρ̂, (44)

where the first term in Eq. (44) describes the free dynamics
induced by the NV− center Hamiltonian [Eq. (2)]. The second
and third terms are given by

L1−phρ̂ =
3∑

i=1

[
�

i,1−ph
abs L[Li

+]ρ̂ + �i,1−ph
em L[Li

−]ρ̂
]
, (45)

L2−phρ̂ =
3∑

i=1

[
�

i,2−ph
abs L[Li

+]ρ̂ + �i,2−ph
em L[Li

−]ρ̂
]
, (46)

which describe the dissipative spin-lattice dynamics induced
by one-phonon and two-phonon processes, with the index
i = 1,2,3 representing the spin transitions of the system (see
Fig. 1). In Eqs. (45) and (46) we have defined the Lindblad
superoperator L[Ô]ρ̂ = Ôρ̂Ô† − 1

2 {Ô†Ô,ρ̂} and the spin op-
erators

L1
+ = |ms = 1〉 〈ms = −1| = (L1

−)†, (47)

L2
+ = |ms = 1〉 〈ms = 0| = (L2

−)†, (48)

L3
+ = |ms = −1〉 〈ms = 0| = (L3

−)†. (49)

The last term in Eq. (44) is an extra term that describes a
phenomenological dynamics induced by magnetic impurities
and is given by

Lmagρ̂ = −1

4
�mag

∑
i=x,y,z

[Si,[Si,ρ̂(t)]], (50)

where �mag is the magnetic relaxation rate induced by an
isotropic magnetic noise [38], and Si are the Pauli matrices for
S = 1. From previous works, it is expected that the parameter
�mag will proportionally depend on the concentration of neigh-
boring NV− centers [8] and temperature. Therefore, �mag is a
sample-dependent parameter that models magnetic impurities.
The exact temperature dependence of �mag is beyond the scope
of this paper, but we expect it to change as temperature reaches
Tgap = h̄D/kB ≈ 0.14 K. In addition, in this paper we neglect
the effect of electric field fluctuations. This is relevant for
experiments that involve optical illumination and readout of
the electronic states [32].

Now, we study the longitudinal relaxation rate at low
and high temperatures. In the low-temperature limit we also
investigate the effect of magnetic field on the longitudinal
relaxation rate.

V. DISCUSSION

A. Low-temperature limit

In this section we discuss the low-temperature limit (below
1 K) associated to the spin-lattice relaxation dynamics of the
ground state of the NV− center in diamond. For low temper-
atures, only one-phonon processes contribute to the transition
rates. Therefore, we can deduce the spin-lattice dynamics
from the quantum master equation by setting L2−phρ̂ = 0.
From Eq. (44) we can find the dynamics of the spin popula-
tions p1 = 〈ms = 1| ρ̂ |ms = 1〉 , p2 = 〈ms = 0| ρ̂ |ms = 0〉,
and p3 = 〈ms = −1| ρ̂ |ms = −1〉. For an arbitrary magnetic
field B0 along the z axis, using �mag = 0, and considering only
one-phonon processes, the equations at low temperatures are
given by

dp1

dt
= −(γ+− + 
+0)p1 + 
0+p2 + γ−+p3, (51)

dp2

dt
= −(
0+ + 
0−)p2 + 
+0p1 + 
−0p3, (52)

dp3

dt
= −(
0− + γ−+)p3 + γ+−p1 + 
0−p2, (53)
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FIG. 4. Direct relaxation rates induced by one-phonon processes.
The spin populations associated with the spin states |ms = 0,±1〉
are modified by the absorption (γ−+,
0−,
0+) and emission rates
(γ+−,
−0,
+0). For magnetic fields γsB0 > D (B0 > 1000 G), the
state |ms = −1〉 is the lowest energy state and the role of 
0− and

−0 are exchanged.

where the direct relaxation rates between the spin states are
given by γ+− = A1(1 + n1), γ−+ = A1n1,
+0 = A2(1 + n2),

0+ = A2n2,
−0 = A3(1 + n3), and 
0− = A3n3 (see
Fig. 4), where ni = [exp(h̄ωi/kBT ) − 1]−1 is the mean
number of phonons at thermal equilibrium. Here,
ω1 = 2γsB0, ω2 = D + γsB0, and ω3 = D − γsB0 are
the resonant frequencies associated with the spin energy
levels. The Ai parameters are defined in Eqs. (25)–(27)
and are estimated as a function of the magnetic field B0 in
the next section [see Eqs. (63)–(65)]. For experiments in
quantum information processing and magnetometry these
direct relaxation rates play a fundamental role.

In the following we obtain the longitudinal relaxation rate
for the physical observables 〈S2

z (t)〉 and 〈Sz(t)〉 at different
magnetic field regimes. However, this model can be used to
determine any other physical observable, for instance, direct
relaxation rates between spin states and their magnetic field
and temperature dependence.

1. Zero magnetic field

At zero magnetic field (B0 = 0) and neglecting the effect of
strain, the spin states |ms = 1〉 and |ms = −1〉 are degenerate
(see Fig. 1). As a consequence, the emission and absorption
rates associated with the spin transitions |ms = 0〉 ↔ |ms = 1〉
and |ms = 0〉 ↔ |ms = −1〉 are equal.

Therefore, the system can be modeled as a simple two-
level system with the degenerate excited states described by
|ms = ±1〉. In addition, the transition rate between |ms = ±1〉
vanishes if we neglect the effect of electric field fluctuations
[32]. In such scenario, the absorption and emission rates are
given by�abs = �0n̄ and�em = �0(n̄ + 1), respectively, where
n̄ = [exp(h̄D/kBT ) − 1]−1 is the mean number of phonons
at the zero-field splitting frequency D/2π = 2.87 GHz. The
parameter �0 is obtained from Eqs. (26) and (27) for B0 = 0
and is given by

�0 = 
D3
(
λ2

0x ′ + λ2
0y ′

)
2πv3

s ωD

. (54)

From Eqs. (51)–(53), we obtain

dp1

dt
= �0(1 + n̄)p1 + �0n̄p2, (55)

dp2

dt
= −2�0n̄p2 + �0(1 + n̄)p1 + �0(1 + n̄)p3, (56)

dp3

dt
= �0(1 + n̄)p1 + �0n̄p3. (57)

Using 〈S2
z (t)〉 = p1(t) + p3(t) and p1(t) + p2(t) + p3(t) = 1

we obtain

d
〈
S2

z (t)
〉

dt
= −�0(1 + 3n̄)

〈
S2

z (t)
〉 + 2�0n̄, (58)

dp2

dt
= −�0(1 + 3n̄)p2(t) + �0(1 + n̄). (59)

Using arbitrary initial conditions pi(0) = pi0 (i = 1,2,3), we
have

〈
S2

z (t)
〉 = 〈

S2
z (T )

〉
st − (〈

S2
z (T )

〉
st − p10 − p30

)
e−�0(1+3n̄)t ,

p2(t) = (p2(T ))st − ((p2(T ))st − p20)e−�0(1+3n̄)t , (60)

where the steady states are given by

〈
S2

z (T )
〉
st = 2

eh̄D/kBT + 2
, (61)

(p2(T ))st = eh̄D/kBT

eh̄D/kBT + 2
. (62)

Therefore, the phonon-induced spin relaxation rate associated
with 〈S2

z (t)〉 and p2(t) (ground state population) are given by
1/T1 = �0(1 + 3n̄). In order to compare our model to real
systems, we extract the value of �0 from recent experimental
results [12] which is �0 = 3.14×10−5 s−1 [see Fig. 5(a)].
Using Eq. (54) and assuming λ0x ′ ≈ λ0y ′ ≈ λ0x ≈ λ0y , we
estimate λ0x ′ to be approximately 78.38 GHz. We note that
other recent experimental results seem to suggest an order of
magnitude smaller values for �0 [39]. Nevertheless, with this
approximation for the λ0 factors and combining Eqs. (25)–(27)
with Eq. (54), we can estimate the following magnetic field
dependence for the one-phonon spin relaxation rates

A1 ≈ 2�0

(
2γsB0

D

)3

, (63)

A2 ≈ �0

[
(D + γsB0)

D

]3

, (64)

A3 ≈ �0

[
(D − γsB0)

D

]3

. (65)

Note that 〈Sz(t)〉 is zero as the states |ms = +1〉 and |ms = −1〉
are degenerate at zero magnetic field. In the next section we
introduce the effect of low magnetic field on the longitudinal
relaxation rate associated with 〈Sz(t)〉.
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FIG. 5. (a) Relaxation rate of 〈S2
z (t)〉 at zero magnetic field. The

symbols represent experimental spin relaxation rates measured at
low temperatures (below 1 K) for different NV samples (Astner
et al. [12]). The dotted lines represent the theoretical fit given by
1/T1 = �0(1 + 3n̄) + �mag. We observe that at low temperatures, the
relevant contribution comes from the emission of a phonon and the
magnetic noise induced by the environment. (b) Two-dimensional pa-
rameter plot of the longitudinal relaxation rate of 〈Sz(t)〉 in logarithm
scale at magnetic fields ranging from 0 to 1500 G, temperature ranging
from 10 mK to 1 K, and �mag = 0.

2. Low magnetic field

We define the limit of low magnetic fields when γsB0�D

so that n(D + γsB0) ≈ n(D − γsB0) ≈ n̄. By considering
one-phonon processes, we obtain the following set of equations

d
〈
S2

z (t)
〉

dt
= −�0(1 + 3n̄)

〈
S2

z (t)
〉+ 3ε�0(1 + n̄)〈Sz(t)〉+ 2�0n̄,

(66)

d〈Sz(t)〉
dt

= −[�BnB + 3ε�0(1 + 3n̄)]
〈
S2

z (t)
〉 + 6ε�0n̄

− [�B(1 + 2nB) + �0(1 + n̄)]〈Sz(t)〉, (67)

where ε = γsB0/D � 1 is a perturbative dimensionless
parameter, �B ≈ �0(2γsB0/D)3, and nB=[exp(2h̄γsB0/

kBT ) − 1]−1 is the mean number of phonons at the resonant
frequency ω1 = 2γsB0. In addition, the mean number of
phonons satisfies nB � n̄ due to the condition γsB0 � D.

At low magnetic fields, the longitudinal relaxation rate
associated with 〈Sz(t)〉 is given by

1

T1
≈ 2�0(1 + 2n̄) + �B(1 + 2nB). (68)

The steady states satisfy the relation〈
S2

z (T )
〉
st

〈Sz(T )〉st
= �0(1 + n̄) + �B(1 + 2nB)

nB�B

. (69)

In the next section we obtain the longitudinal relaxation rate
associated with 〈Sz(t)〉 for arbitrary values of the magnetic field
B0.

3. Arbitrary magnetic field values

At nonzero magnetic fields, the spin states |ms = −1〉
and |ms = 1〉 are split due to the Zeeman interaction (see
Fig. 1). This implies that the system can be modeled as a
dissipative three-level system consisting of the spin states
|ms = 0〉 and |ms = ±1〉. From Eqs. (51)–(53), the dynamics
for the longitudinal spin component is given by

d2〈Sz(t)〉
dt2

+ 1

T1

d〈Sz(t)〉
dt

+ ω2〈Sz(t)〉 = A0, (70)

where the parameters are given by

1

T1
= A1(1 + 2n1) + A2(1 + 2n2) + A3(1 + 2n3), (71)

ω2 = 1

2

{
A1[A3(1 + n3) − A2(1 + n2)] − A2

2n2(3 + n2)

−A2
3n3(3 + n3) + A2A3(2 + n2 + n3 + 4n2n3)

}
,

A0 = 1

2

[
2A1(A2 + A3) + A2

2(1 + n2)2

+ 2A2A3(n2 − n3) − A2
3(1 + n3)2

]
. (72)

We observe that the relaxation rate 1/T1 is given by the total
one-phonon spin relaxation rate given in Eq. (21). The general
solution is that of a driven damped harmonic oscillator, where
the longitudinal relaxation rate is given by

1

T1
≈ �0

D3
ω3

1(1 + 2n1) + �0

D3

[
ω3

2(1 + 2n2) + ω3
3(1 + 2n3)

]
,

(73)

where ω1 = 2γsB0, ω2 = D + γsB0, and ω3 = D − γsB0. In
this approximation we have assumed that λ2

0x ′ + λ2
0y ′ ≈ λ2

0x +
λ2

0y [see Eqs. (25)–(27)]. At low magnetic fields, γsB0 � D,
we recover the previous result given in Eq. (68). Figure 5(b)
shows the expected longitudinal relaxation rate at low tem-
peratures for magnetic fields ranging from 0 to 1500 G. As
the magnetic field increases, the longitudinal relaxation rate
increases as well.
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B. High-temperature limit

In this section, we consider higher temperatures for which
the relaxation rate is dominated by quasilocalized phonons and
two-phonon processes, usually for temperatures higher than
100 K. By solving the quantum master equation we obtain that
the longitudinal spin relaxation rate of 〈Sz(t)〉 (see Appendix B)
is approximately given by

1

T1
≈ �mag + �1−ph + �loc + �2−ph,

= �mag +
3∑

i=1

Ai coth

(
h̄ωi

kBT

)
+ A4

eh̄ωloc/kBT − 1

+A5T
5 + A6T

6 + A7T
7. (74)

In the above equation, ω1 = 2γsB0, ω2 = D + γsB0, and ω3 =
D − γsB0 are the resonant frequencies of the ground triplet
states of the NV− center in diamond in the presence of the static
magnetic field B0 along the z axis, and T is the temperature.
Similar formulas for the longitudinal relaxation rate were
obtained phenomenologically in order to fit the experimental
data for different NV− center samples [8,9]. However, our
work formally incorporates the phonon-induced spin relax-
ation rates by including the contribution of stochastic magnetic
noise, direct one-phonon processes, strong interactions with
quasilocalized phonon modes, and the effect of the acoustic
phonons to first and second order. This is crucially different
from previous works [8,9,11,12] but validates both high and
low-temperature experimental observations in which electric
field fluctuations are not present (see Fig. 6). Our model can
also be useful to understand the temperature dependence of
the longitudinal spin relaxation rate of other color centers in

FIG. 6. The symbols represent experimental spin relaxation rates
measured for different NV− samples in the temperature regime
4–475 K [8,9,11]. The dotted lines are the theoretical fit of the
longitudinal spin relaxation rate 1/T1 given in Eq. (74) for different
values of the magnetic noise �mag. The temperature at which the
contribution from quasilocalized phonons and second-order phonon
processes dominates is sample dependent.

diamond. For instance, it is consistent with the observed T 7

temperature dependence of the neutral silicon-vacancy color
center in diamond at high temperatures [40].

Using experimental data from Refs. [8,12], we can fit our
free parameter �mag in order to model the magnetic noise
induced by magnetic impurities in samples with different NV−

concentrations. On the other hand, we consider that the Ai

parameters, which are related to the spin-phonon coupling
constants, are not sample dependent. The A1, A2, and A3

parameters can be found by fitting to the experimental data
at low temperature (below 1 K) [12] as described in Sec. V A.
The parameters A4, A5, A6, A7, and ωloc can be found by fitting
to the experimental data for temperatures ranging from 4 K to
475 K [8].

Figure 6 shows the temperature dependence of the
longitudinal relaxation rate for different samples at high
temperatures. For the two-phonon processes we obtain A4 =
1.96(5)×10−3 s−1, A5 = 2.06(5)×10−11 s−1 K−5, A6 =
9.11(2)×10−16 s−1 K−6, A7 = 2.55(3)×10−20 s−1 K−7, and
ωloc = 73(5) meV. We observe a good agreement between our
results and the experiments performed at high temperatures
[8,9,11]. The largest contribution at high temperatures,
300 K < T < 500 K, is due to the second-order scattering
(see Table I and Fig. 3) usually known as the second-order
Raman scattering [19] which leads to the observed 1/T1 ∝ T 5

temperature dependence [8,9,11] due to the linear spin-phonon
coupling to second order. Between 50 K < T < 200 K the
main contribution arises from Orbach-type processes [20]
which can be attributed to a strong spin-phonon interaction
with a quasilocalized phonon mode with energy ≈73 meV [8].
On the other hand, the magnetic noise rate �mag is dominant in
samples with a high NV concentration (red, green, and black
dashed curves in Fig. 6). Therefore, the effect of one-phonon
processes (emission and absorption) can be neglected if the
magnetic noise is larger than the one-phonon spin relaxation
rates. We note that we are not considering other sources of
relaxation such as fluctuating electric fields, in which case
a relaxation with an inverse magnetic field dependence is
expected [32].

VI. CONCLUSIONS

In summary, we have presented a microscopic model for
estimating the effect of temperature on the longitudinal relax-
ation rate 1/T1 of NV− centers in diamond. In this model,
we introduced a general spin-phonon interaction between the
ground-state spin degree of freedom and lattice vibrations.
We estimated the value of the phonon-induced spin relaxation
rates by applying the Fermi golden rule to first and second
order. The microscopic spin-lattice relaxation dynamics was
derived from the quantum master equation for the reduced
spin density operator. In the relaxation dynamics, we included
the effect of a phononic bath in thermal equilibrium and phe-
nomenologically modeled magnetic impurities. Acoustic and
quasilocalized phonons were included in the phonon processes
in order to model a more general temperature dependence of
the longitudinal relaxation rate.

At low temperatures, we provided a set of microscopic
equations in order to study the spin-lattice relaxation dynamics
induced by one-phonon processes. In this limit and considering
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zero magnetic fields, B0 = 0, we analytically obtained the
relaxation rate 1/T1 = �0(1 + 3n̄) associated with 〈S2

z (t)〉,
where �0 depends on microscopic constants. This relaxation
rate is in agreement with recent experiments and ab initio
calculations [8], as well as theoretical calculations [41]. In
addition, for low magnetic fields, γsB0 � D, we obtained
the relaxation rate 1/T1 = 2�0(1 + 2n̄) + �B(1 + 2nB) asso-
ciated with 〈Sz(t)〉, where �B scales as B3

0 .
At high temperatures, we have modeled multiple two-

phonon processes where the fitted relaxation rate associated
to 〈Sz(t)〉 is in agreement with experimental observations
[8,9,11]. We included both linear and bilinear lattice interac-
tions that lead to several different temperature scaling in a
spin-boson model. In particular, for NV centers in diamond
the dominant temperature scaling is T 5 for temperatures
larger than 200 K. Moreover, our model will be useful to
evaluate the contribution of second-order phonon processes
that give different temperature scaling (T s,T s+1,T s+2) for
other spin-boson systems. The power of the temperature s =
4ν + 2d − 3 depends on the dimension of the system and the
symmetry of the lattice, where d = 3 and ν = 1/2 for the NV−

center.
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APPENDIX A: FERMI GOLDEN RULE

In this section we derive the analytic form of the second-
order phonon-induced spin relaxation rates introduced in
Sec. III B. To second order in time-dependent perturbation
theory the transition rate between an initial |i〉 and final state
|f 〉 is given by

�i→f = 2π

h̄

∣∣∣∣∣Vf i +
∑
m

Vf mVmi

Ei − Em

∣∣∣∣∣
2

δ(Ei − Ef ), (A1)

where Vij = 〈i| Ĥs−ph |j 〉, with Ĥs−ph being the perturba-
tion. In Eq. (A1) the sum over m denotes all possi-
ble intermediate states |m〉 for which Vf mVmi 	= 0. Here,
Ei,Ef , and Em are the energies of the initial, final,
and intermediate states, respectively. For the Stokes tran-
sition the initial and final states are given by |i〉 =
|ms,nk,nk′ 〉 and |f 〉 = |m′

s ,nk − 1,nk′ + 1〉. Let us write
the spin-phonon Hamiltonian given in Eq. (6) as Ĥs−ph =
V (1) + V (2) with V (1) = ∑

i

∑
k∈�i

λk,i(b̂k + b̂
†
k)F̂i(S) and

V (2) = ∑
i

∑
k⊗k′∈�i

λkk′,i(b̂k + b̂
†
k)(b̂k′ + b̂

†
k′)F̂i(S) being the

linear and quadratic spin-phonon interactions, respectively.
It is straightforward to verify that V

(2)
f mV

(2)
mi = V

(1)
f mV

(2)
mi =

V
(2)
f mV

(1)
mi = 0 for every intermediate state |m〉 with initial and

final states for Stokes transition, i.e., |i〉 = |ms,nk,nk′ 〉 and
|f 〉 = |m′

s ,nk − 1,nk′ + 1〉. In other words, the contribution
of the quadratic term V (2) is zero to second order. This implies
that lower order perturbation theory combined with higher
order phonon coupling wins over higher order perturbation
theory with lower order coupling [21]. Similar arguments can
be applied to the other two-phonon processes.

The nonzero contributions to the transition rate can be ob-
tained if we expand the phonon part of the summation for the in-
termediate states |np,np′ 〉 = {|nk − 1,nk′ 〉 , |nk,nk′ + 1〉}, we
obtain

�
m′

s ,nk−1,nk′ +1
ms,nk,nk′ = 2π

h̄
nk(nk′ + 1)

∣∣∣∣∣∣
∑

i

g
m′

s ,ms

i λkk′,i + 1

h̄

∑
m′′

s

∑
i,j

λk′,iλk,j

⎛
⎝g

m′
s ,m

′′
s

i g
m′′

s ,ms

j

ωk

− g
m′′

s ,ms

i g
m′

s ,m
′′
s

j

ωk′

⎞
⎠

∣∣∣∣∣∣
2

× δ
(
ωm′

s ,ms
− ωk + ωk′

)
, (A2)

where g
ms,m

′
s

i = 〈ms | F̂i(S) |m′
s〉, and the summation over i and j is over x,y,x ′,y ′,z. Here, we have used the approximation

ωk,k′ � ωms,m′′
s
. By taking the continuous limit and using the density of phonon states given in Eq. (23) we obtain

aStokes
ms,m′

s
(xD) = 2πD2

0

h̄3ω4ν+2d−2
D

∫ xD

0
n(x)

(
n
(
x − xm′

s ,ms

) + 1
)
x2ν+d−1(x − xm′

s ,ms

)2ν+d−1

×
∣∣∣∣∣∣
∑
m′′

s

∑
i,j

λ0iλ0j

⎛
⎝g

m′
s ,m

′′
s

i g
m′′

s ,ms

j

x
− g

m′′
s ,ms

i g
m′

s ,m
′′
s

j(
x − xm′

s ,ms

)
⎞
⎠

∣∣∣∣∣∣
2

dx, (A3)

bStokes
ms,m′

s
(xD) = 2πD2

0

h̄2ω4ν+2d−2
D

∫ xD

0
n(x)

(
n
(
x − xm′

s ,ms

) + 1
)
x2ν+d−1

(
x − xm′

s ,ms

)2ν+d−1

× 2Re

⎡
⎣∑

m′′
s

∑
i

∑
i ′,j ′

λ00iλ0i ′λ0j ′

⎛
⎝g

m′
s ,m

′′
s

i ′ g
m′′

s ,ms

j ′

x
− g

m′′
s ,ms

i ′ g
m′

s ,m
′′
s

j ′(
x − xm′

s ,ms

)
⎞
⎠

⎤
⎦dx, (A4)
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cStokes
ms,m′

s
(xD) =

2πD2
0

∣∣∣∑i g
m′

s ,ms

i λ00i

∣∣∣2

h̄ω4ν+2d−2
D

∫ xD

0
n(x)

(
n
(
x − xm′

s ,ms

) + 1
)
x2ν+d−1

(
x − xm′

s ,ms

)2ν+d−1
dx. (A5)

where for a three dimensional lattice D0 = 
ω2
D/(2πv3

s ), ωD

is the Debye frequency, d is the dimension of the lattice, ν is the
scaling of the spin-phonon coupling for acoustic phonons [see
Eq. (22)]. Here, xD = h̄D/(kBT ), xm′

s ,ms
= h̄ωm′

s ,ms
/(kBT ), in

which ωm′
s ,ms

= ωm′
s
− ωms

, kB is the Boltzmann constant, h̄ is
the Planck constant, and T is the temperature. Similar formulas
can be obtained for the other processes (direct, anti-Stokes, and
spontaneous emission).

APPENDIX B: QUANTUM MASTER EQUATION

In this section we solve the quantum master equation
for the ground state spin degree of freedom of the NV−

center in diamond. By solving the quantum master equa-
tion given in Eq. (44), for the spin populations p1 =
〈ms = 1| ρ̂ |ms = 1〉 , p2 = 〈ms = 0| ρ̂ |ms = 0〉, and p3 =
〈ms = −1| ρ̂ |ms = −1〉, we obtain

ṗ1 = −�′
1p1 + �′

2p2 + �3p3, (B1)

ṗ2 = −�′
4p2 + �′

5p1 + �′
6p3,

ṗ3 = −�′
7p3 + �8p1 + �′

9p2, (B2)

where �′
i = �i + �mag/2, and the phonon-induced spin relax-

ation rates are given by

�1 = �1,1−ph
em + �1,2−ph

em + �2,1−ph
em + �2,2−ph

em , (B3)

�2 = �
2,1−ph
abs + �

2,2−ph
abs , (B4)

�3 = �
1,1−ph
abs + �

1,2−ph
abs , (B5)

�4 = �
2,1−ph
abs + �

2,2−ph
abs + �

3,1−ph
abs + �

3,2−ph
abs , (B6)

�5 = �2,1−ph
em + �2,2−ph

em , (B7)

�6 = �3,1−ph
em + �3,2−ph

em , (B8)

�7 = �
1,1−ph
abs + �

1,2−ph
abs + �3,1−ph

em + �3,2−ph
em , (B9)

�8 = �1,1−ph
em + �1,2−ph

em , (B10)

�9 = �
3,1−ph
abs + �

3,2−ph
abs , (B11)

where �1 = �5 + �8, �4 = �2 + �9, and �7 = �3 + �6,
which implies that ṗ1 + ṗ2 + ṗ3 = 0, and therefore, Tr(ρ̂) = 1.
The analytic solution for the populations pi(t) are determined
by the following general solution⎛

⎜⎝
p1(t)

p2(t)

p3(t)

⎞
⎟⎠ =

3∑
i=1

Civie
λi t , (B12)

where vi and λi are the eigenvectors and eigenvalues associated
to the set of coupled linear equations of motions given by
Eqs. (B1) and (B2). The eigenvalues are given by

λ1 = − 1
2 [�mag + �ph + √

�], (B13)

λ2 = − 1
2 [�mag + �ph − √

�], (B14)

λ3 = 0, (B15)

where

�ph = �1 + �2 + �7 =
3∑

i=1

(
�i

abs + �i
ems

)
(B16)

is the total phonon-induced spin relaxation rate, and

� = �2
mag + 2�mag(�9 − �8) + �2

2 + �2
3 + (�1 − �6 − �9)2

−2�2(�7 − �5 + �8 − �9 − �mag)

−2�3(�5 − �6 − �8 + �9 + �mag). (B17)

If we consider the initial condition ρ00(0) = 1 (ground state)
and considering that 〈Sz(t)〉 → 0 when t → ∞, we finally
obtain

〈Sz(t)〉 = e−(�mag+�ph)t sinh(�t) ∝ e−t/T1 . (B18)

Therefore, by assuming that (2�mag + �ph)/2 > �, we can
recover the longitudinal relaxation rate given in Eq. (74).
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