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Hybrid quantum systems, which combine quantum-mechanical systems with macroscopic mechanical os-
cillators, have attracted increasing interest as they are well suited as high-performance sensors or transducers
in quantum computers. A promising candidate is based on diamond cantilevers, whose motion is coupled to
embedded nitrogen-vacancy (NV) centers through crystal deformation. Even though this type of coupling has
been investigated intensively in the past, several inconsistencies exist in available literature, and no complete and
consistent theoretical description has been given thus far. To clarify and resolve these issues, we here develop a
complete and consistent formalism to describe the coupling between the NV spin degree of freedom and crystal
deformation in terms of stress, defined in the crystal coordinate system XY Z , and strain, defined in the four
individual NV reference frames. We find that describing crystal deformation in XY Z significantly simplifies
the formalism and therefore constitutes the preferred approach for future advances in the field. Furthermore,
we illustrate how the developed formalism can be employed to extract values for the spin-stress and spin-strain
coupling constants from data published by Teissier et al. [Phys. Rev. Lett. 113, 020503 (2014)].
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I. INTRODUCTION

Hybrid systems combine quantum-mechanical two-level
systems with macroscopic mechanical oscillators and have
attracted increasing attention recently, largely with the goal
of employing them as high-performance nanoscale sensors
or transducers in multiqubit networks [1]. Such systems can
furthermore serve as testbeds to study macroscopic objects in
the quantum regime, provided the coupling between resonator
motion and the two-level system resides in the high coop-
erativity regime [2]. An extensive variety of hybrid systems
are already being studied. These include superconducting
circuits coupled capacitively [3–6], ultracold atoms linked by
radiation pressure forces [7–9], and quantum dots or solid-
state spins coupled by magnetic field gradients [10–13] or
crystal stress [14–18,28], to mechanical oscillators of different
materials and shapes.

Hybrid spin-oscillator systems, in which the motion of a
diamond resonator is coupled to the spin-degree of freedom
of an embedded nitrogen-vacancy (NV) color center, are of
particular interest [2]. The NV center provides a promising
solid-state platform for quantum technologies due to its room-
temperature operation with long spin coherence times [19]
and well established optical methods for spin initialization and
readout [20]. Diamond resonators benefit from the material’s
high Young’s modulus, which provides excellent mechanical
strength and gives rise to exceptional stress amplitudes per
resonator displacement. Recent advances in diamond fab-
rication have further demonstrated high-quality resonators
with quality factors Q ∼ 106 [21–23]. Additionally, coupling
between resonator and NV spin is intrinsic. Diamond-based
hybrid systems thus come with minimized fabrication com-
plexity and immediately offer a robust qubit-resonator link,
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which is crucial for operating such systems in the quantum
regime [24–26].

Consequently, the coupling between NV spin and crys-
tal deformation has been explored in various experiments,
starting with seminal work by Davies and Hamer, who in-
vestigated its influence on the NV’s optical transitions in
the 1970s [27]. Subsequent studies first aimed at probing
the electronic level structure of NV ground and excited
states [18,28–33], and recently started to investigate diamond-
based hybrid spin-oscillator systems. Substantial evidence
was found that quantum ground-state operation is in principle
possible [17,18,28,34–38]. It was also discovered that crystal
deformation allows for coherent control of the NV’s spin de-
gree of freedom [39,40] and that such hybrid systems can have
future sensing applications, for example in protecting NV
centers from environmental noise through dynamical decou-
pling [39,41,42] or as the main ingredient of spin-mechanical
sensors for mass spectrometry and force microscopy [43].

Yet even though the coupling between NV spin and crystal
deformation has been studied intensively, several differences
and inconsistencies in its formal description exist in the
published literature. Crystal deformation is treated in terms
of stress [17,33,43,44] or strain [18,28,37], defined in crys-
tal [33,43,44] or defect coordinate systems [17,18,28,37,45].
This already confusing situation is further complicated by in-
consistent sign conventions for stress and strain [18,28,32,43],
and the use of different, occasionally incorrect, interaction
Hamiltonians in the literature. While recent works employ
correct approximations of the complete interaction Hamilto-
nian [33,43], earlier studies rely on oversimplified versions
where the tensorial nature of strain is neglected [17,18,28].

To clarify and resolve existing inconsistencies in the lit-
erature, we provide a complete and consistent theoretical
treatment of the coupling between crystal deformation and the
spin degree of freedom of negatively charged NV centers in
the first part of this paper. To that end, we extend the available
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TABLE I. Definition and graphical representation of crystal (XY Z ) and NV (xyzk ) coordinate systems employed
in this work (for clarity, x axes are represented by dashed arrows, y axes by dotted arrows, and z axes by solid
arrows). The given rotations Kk with k ∈ {NV2, NV3, NV4} describe a coordinate transformation of NV1 into
NV2-4. LNV1 = R[001](−3π/4)R[1̄10](−αNV) represents the coordinate system transformation of XY Z → xyzNV1 with
αNV = arccos(1/

√
3). To obtain the rotations K̃k in Kelvin notation, we replace all Rn(θ ) with R̃n(θ ) (see Appendix B

for definitions of rotation matrices in standard or Kelvin notation).

work on spin-mechanical interaction [43,46] by illustrating
in detail how to convert between strain, stress, crystal, or
NV reference frames for all possible NV orientations. We
demonstrate that the formalism is significantly simplified in
many aspects, for example in the expressions for the induced
level shifts or in terms of the necessary coordinate system
definitions, if strain or stress tensors are defined within a
crystal coordinate system XY Z as opposed to the case where
they depend on the individual NV reference frames. In the
second part, we illustrate how our formalism can be applied
to relevant geometries and experimental settings of NV-based
spin-mechanical coupling experiments. We derive the stress
tensor in a singly clamped diamond cantilever under the
influence of an external shear force. Subsequently, we use this
stress tensor and the developed coupling formalism to quan-
tify spin-mechanical coupling. In particular, we reanalyze ex-
perimental data from Teissier et al. [28] and correctly quantify
the spin-stress coupling constants originally measured there.

II. SPIN-STRESS AND SPIN-STRAIN COUPLING IN
THE NV S = 1 GROUND STATE

A. Employed coordinate systems

In this work, we choose a cubic reference frame with crys-
tal coordinates XY Z , where eX = (1, 0, 0)T , eY = (0, 1, 0)T ,
and eZ = (0, 0, 1)T (see Table I), in which diamond crys-
talline directions are defined. Owing to their axial symmetry,
NV centers can have four different orientations in the diamond
lattice. We therefore employ four NV reference frames xyzk

with k ∈ {NV1, NV2, NV3, NV4}. Each xyzk is determined
by a set of orthonormal basis vectors ek

i with i ∈ {x, y, z},
which are defined in Table I. Our choice of xyzk is such that the
z axes coincide with the symmetry axes (quantization axes) of
the four defect orientations, and the y axes lie in NV symmetry
planes. Defining the xyzk with the x axes in the reflection
planes is also common, but does not change the formalism
we present in this work as the choice of the transverse axes
does not affect the description as long as the quantization axis
remains the same (see Appendix C). In the following, unless

noted otherwise, we refer to the NV frame for orientation
NV1.

B. Spin-stress coupling expressed in crystal coordinates XY Z

The NV center consists of a substitutional nitrogen atom
and a neighboring vacancy. In its orbital ground state, the
negatively charged NV center forms an S = 1 spin system,
with the spin sublevels |0〉, |−1〉, and |+1〉 being eigen-
states of the spin operator Sz along the NV symmetry axis z
(i.e., Sz|ms〉 = ms|ms〉). In the absence of symmetry-breaking
fields, the electronic-spin states |±1〉 are degenerate and
shifted from |0〉 by a zero-field splitting D0 = 2.87 GHz. An
external magnetic field B = (Bx, By, Bz )T induces a Zeeman
splitting between the |±1〉 spin states and in the presence of
this field only, the NV spin is described by the Hamiltonian

H0/h = D0S2
z + γNVBS, (1)

where γNV = 2.8 MHz/G is the NV gyromagnetic ratio, h is
Planck’s constant, and S = (Sx, Sy, Sz )T is the vector of the
S = 1 spin matrices.

The coupling between crystal deformation and the NV
spin can be explained by a stress-induced change to the
spin-spin interaction, which arises from the distortion
of the unpaired spin density [43]. The most general,
symmetry-allowed spin-stress coupling Hamiltonian reads
Hσ = Hσ0 + Hσ1 + Hσ2, with

Hσ0/h = MzS
2
z , (2a)

Hσ1/h = Nx{Sx, Sz} + Ny{Sy, Sz}, (2b)

Hσ2/h = Mx
(
S2

y − S2
x

) + My{Sx, Sy}, (2c)

where {Si, S j} = (SiS j + S jSi ) is the anticommutator and
Mx,y,z and Nx,y are coupling amplitudes (see below) [46].
The term Hσ0 preserves the NV symmetry and shifts |±1〉
with respect to |0〉. In contrast, Hσ2 leads to a coupling
of spin sublevels |±1〉, while Hσ1 only has nonzero
matrix elements between |0〉 and either |−1〉 or |+1〉.
The stress-induced level shifts and splittings depend on
NV orientation and are characterized by the five coupling
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amplitudes [46,47]

MNV1
x = b(2σZZ − σXX − σYY ) + c(2σXY − σY Z − σXZ ),

(3a)

MNV1
y =

√
3b(σXX − σYY ) +

√
3c(σY Z − σXZ ), (3b)

MNV1
z = a1(σXX + σYY + σZZ )

+2a2(σY Z + σXZ + σXY ), (3c)

NNV1
x = d (2σZZ − σXX − σYY )

+ e(2σXY − σY Z − σXZ ), (3d)

NNV1
y =

√
3d (σXX − σYY ) +

√
3e(σY Z − σXZ ) (3e)

(given for NV orientation NV1). These further depend on the
spin-stress coupling constants a1, a2, b, c, d, e and the stress
tensor components σIJ [48,49]. Note that Eq. (3) is true for
any stress tensor and therefore provides a powerful tool to
predict the effect of spin-stress coupling. Moreover, we want
to point out that owing to the axial symmetry of the system
the coupling amplitudes from Eq. (3) are identical, regardless
of whether the symmetry plane coincides with the xz or yz
planes of the chosen NV reference frame [see Appendix C].
This greatly simplifies the formalism as different definitions
of the NV frame yield the same results.

Before we include the remaining NV orientations
NV2-4 in our formalism, we first briefly demonstrate
how Hamiltonian (2) can be used to predict stress-induced
level shifts in the S = 1 ground state. To that end, we
consider a scenario in which no external magnetic field B is
applied. Under such conditions, the terms in Hσ1 are far off
resonance and can be neglected to first order, resulting in the
stress-induced level shifts

�|±1〉 = [E|±1〉(P) − E|±1〉(P = 0)]/h

=
(

Mz ±
√

M2
x + M2

y

)
, (4)

where E|±1〉(P) denote the energies of the new eigenstates in
the |±1〉 manifold with applied stress of amplitude P. For uni-
axial stress acting along eP, the stress tensor components are

σIJ = P cos(�ePeI ) cos(�ePeJ ), (5)

where �ePeI and �ePeJ denote the angles between the applied
stress and the crystal axes eI and eJ , with I, J ∈ {X,Y, Z}
[47]. Consequently, the resulting level shifts for stresses along
the [100], [110], and [111] directions are

�
[100]
|±1〉 /P = a1 ± 2b, (6a)

�
[110]
|±1〉 /P = a1 + a2 ± (b − c), (6b)

�
[111]
|±1〉 /P = a1 + 2a2. (6c)

At this point it is important to realize that the four coupling
constants a1, a2, b, and c are necessary to fully describe spin-
stress coupling for vanishing B. We also want to point out that
an ambiguity persists with regard to the sign of the coupling
constants b and c. This arises from the fact that stress-induced
splittings in the |±1〉 manifold are given by (M2

x + M2
y )1/2.

Therefore, the expressions �
[100]
|±1〉 /P = a1 ∓ 2b or �

[110]
|±1〉 /P =

a1 + a2 ± (c − b) are also fully justified. To keep the formal-

ism in this work as consistent as possible with existing litera-
ture [43,46], we choose to work with the notation from Eq. (6).

So far, we considered the stress response of NV centers
oriented as NV1 described by the tensor σXY Z ≡ σNV1

XY Z . To
include the remaining three NV orientations, we express
σNV1

XY Z in the reference frames of NV2-4 by performing the
coordinate system transformation

σk
XY Z = Kk · σNV1

XY Z · KT
k (7)

with k ∈ {NV2, NV3, NV4}. The rotations Kk are given in
Table I [for a definition of the rotation matrices Rn(θ ) see
Appendix B]. We then replace σIJ in Eq. (3) with the cor-
responding values from σk

XY Z , thereby obtaining expressions
for the coupling amplitudes of NV2-4. The stress-induced
level shifts �|±1〉 for NV2-4 are obtained as described and
are summarized in Table II. Note that a Mathematica file is
provided to reproduce our calculations in detail [50].

C. Spin-strain coupling expressed in NV coordinate systems xyzk

Expressing the coupling between lattice deformation and
NV spin in terms of stress (or strain, not shown) defined in
XY Z leads to compact expressions for �|±1〉 [see Eq. (6)].
Despite the simplicity of this approach, several past works
employed a formalism based on strain defined in one of the
NV coordinate systems xyzk [18,28,42,45]. To unify the two
notations and allow for comparison of published results, we
now show in detail how the spin-stress description, with stress
in XY Z , is translated into the strain framework, where strain
is defined with respect to coordinate system xyzk .

To find expressions for the spin-strain coupling amplitudes
with the strain tensor defined in the reference frame of NV1,
we follow the approach by Barson et al. [43] and link the stress
tensor σNV1

XY Z to the strain tensor εNV1
xyz via the elastic stiffness

tensor C̃XY Z by

σ̃NV1
XY Z = C̃XY Z L̃

T
NV1ε̃

NV1
xyz . (8)

Here, L̃NV1 = R̃[001](−3π/4)R̃[1̄10](−αNV) describes the co-
ordinate system transformation from XY Z to xyzNV1 (see
Table I and Appendix B for definition of rotation matrices). As
indicated by L̃ and R̃, we express the transformation matrices
L and R in Kelvin notation to write Hooke’s law in vectorial
form, where σ̃ and ε̃ are 6 × 1 vectors and the stiffness tensor
C̃ is a 6 × 6 matrix (see Appendix A) [51,52]. We then replace
σIJ in Eq. (3) with the result from Eq. (8) and obtain the NV1
spin-strain coupling amplitudes

MNV1
x = B(εxx − εyy) + 2Cεyz, (9a)

MNV1
y = −2Bεxy − 2Cεxz, (9b)

MNV1
z = A1εzz + A2(εxx + εyy), (9c)

NNV1
x = D(εxx − εyy) + 2Eεyz, (9d)

NNV1
y = −2Dεxy − 2Eεxz, (9e)

which depend on the spin-strain coupling constants

A1 = a1(C11 + 2C12) + 4a2C44, (10a)

A2 = a1(C11 + 2C12) − 2a2C44, (10b)

B = −b(C11 − C12) − 2cC44, (10c)
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TABLE II. Overview over NV orientations NV1-4 and the corresponding level shifts �|±1〉 for B = 0 and stresses along
the [100], [110], and [111] directions, expressed in terms of stress (third column) and strain (fourth column). a1, a2, b, and c denote the
spin-stress coupling constants while A1, A2, B, and C represent the spin-strain coupling constants. We use γ = (C11 + 2C12)/C44, the
Poisson ratio ν = C12/(C11 + C12), and strain amplitude ε = P/E , with E = (C11 − C12)(C11 + 2C12)/(C11 + C12) being the Young’s
modulus, to shorten the expressions for strain-induced level shifts. Also note that the strain-induced level shifts are expressed
in the engineering strain framework. To convert to pure strain, use γ = 2(C11 + 2C12)/C44 (see Appendix D). (C11,C12,C44) =
(1076, 125, 576) GPa are the stiffness tensor components of diamond [48,49].

C =
√

2b(C11 − C12) −
√

2cC44, (10d)

D = −d (C11 − C12) − 2eC44, (10e)

E =
√

2d (C11 − C12) −
√

2eC44. (10f)

As our formalism relies on the engineering strain convention,
the relations in Eq. (10) differ by a factor of 2 in the C44

terms compared to other work [43,53], where the pure strain
convention is used (see Appendix D).

As is evident from Eq. (8), the form of the spin-strain
coupling amplitudes in Eq. (9) for a given NV orientation
depends on the rotation of the employed NV reference frame
in the plane orthogonal to the NV quantization axis in strong
contrast to the spin-stress coupling amplitudes from Eq. (3).
For example, if one defines xyz such that the x axis lies in a
symmetry plane, Eq. (9) becomes (see Appendix C)

M ′
x = −B(ε′

xx − ε′
yy) + 2Cε′

xz, (11a)

M ′
y = 2Bε′

xy + 2Cε′
yz, (11b)

M ′
z = A1ε

′
zz + A2(ε′

xx + ε′
yy), (11c)

N ′
x = −D(ε′

xx − ε′
yy) + 2Eε′

xz, (11d)

N ′
y = 2Dε′

xy + 2Eε′
yz. (11e)

Both definitions of xyz are valid, but care has to be taken since
usually εxyz 
= ε′

xyz. To avoid possible confusion it is therefore
generally advisable to describe strain or stress in an external
reference frame, where the coupling amplitudes only depend
on the direction of the NV quantization axis—a typical choice
is the crystal coordinate system XY Z (see Appendix C).

For uniaxial stresses along the [100], [110], and [111]
directions, the strain tensors in the NV1 reference frame
obtained from Eq. (8) are

ε[100]
xyz = ε

⎛
⎜⎜⎝

1−ν
2

1+ν√
12

− 1+ν√
6

1+ν√
12

1−5ν
6 − 1+ν√

18

− 1+ν√
6

− 1+ν√
18

1−2ν
3

⎞
⎟⎟⎠, (12a)

ε[110]
xyz = ε

⎛
⎜⎝

2−2ν−γ (1−2ν)
4 0 0

0 2−10ν+γ (1−2ν)
12

−2−2ν−γ (1−2ν)
72

0 −2−2ν−γ (1−2ν)
72

2(1−2ν)+γ (1−2ν)
6

⎞
⎟⎠,

(12b)

ε[111]
xyz = ε

⎛
⎜⎝

2(1−2ν)−γ (1−2ν)
6 0 0

0 2(1−2ν)−γ (1−2ν)
6 0

0 0 1−2ν+γ (1−2ν)
3

⎞
⎟⎠,

(12c)

where we introduced γ = (C11 + 2C12)/C44, the Poisson ratio
ν = C12/(C11 + C12), and the strain amplitude ε = P/E to
shorten the notation. P is the applied stress and E = (C11 −
C12)(C11 + 2C12)/(C11 + C12) is the Young’s modulus [49].
The associated level shifts for B = 0, which we obtain by
combining Eqs. (4), (9), and (12), are

�
[100]
|±1〉 /ε = (1 − 2ν)

3
(A1 + 2A2)

± (2 + 2ν)

3
(B −

√
2C), (13a)
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�
[110]
|±1〉 /ε = 1 − 2ν

6
[A1(2 + γ ) − A2(γ − 4)]

± 1

3
{ B[γ (1 − 2ν) − (1 + ν)]

+ C√
2

[γ (1 − 2ν) + 2(1 + ν)]}, (13b)

�
[111]
|±1〉 /ε = 1 − 2ν

3
[(A1 − A2)γ + A1 + 2A2]. (13c)

To find the strain-induced level shifts for all four NV orienta-
tions, we follow a similar approach as before. We first use the
relation

ε̃k
xyz = L̃kC̃

−1
XY Z σ̃NV1

XY Z (14)

with the rotations L̃k from Table I to express stress, defined
in XY Z , in terms of strain defined in the reference frames
of NV2-4. By replacing the strain tensor components εNV1

i j

in Eq. (9) with the εk
i j from Eq. (14), we then obtain the

spin-strain coupling amplitudes for NV2-4. The resulting level
shifts are summarized in Table II.

Obviously, the expressions for the stress-induced level
shifts, with stress defined in the crystal coordinate system
XY Z , are much more compact. This observation, together
with the fact that coupling amplitudes in XY Z only depend on
the z direction of the employed NV reference frame, supports
the notion that the formal description of spin-mechanical in-
teraction is simplest when crystal deformation is defined in an
external reference frame, for example the crystal coordinate
system XY Z . Before we continue, we also want to point out
that the presented formalism not only applies to the S = 1
ground-state manifold of the NV center, but can also be used
to describe the influence of crystal deformation on the NV’s
S = 1 excited state [45] and the NV’s S = 0 ground-state
levels [33], where the orbital symmetries of the involved states
are identical.

III. STRESS AND STRAIN IN CANTILEVERS

To illustrate how the coupling formalism developed here
can be applied, we will now derive an expression for the stress
tensor in singly clamped cantilever beams that are bent by a
static external force V . Such beams are currently the most
common choice if spin-stress coupling in diamond-based
hybrid spin-oscillator systems is to be quantified [18,28,43],
since the occurring stress can be described analytically using
a relatively simple approach.

A. Cantilever coordinate system x̃ỹz̃ and sign conventions

We begin our discussion by defining sign conventions for
shear force, bending moment, coordinate directions, beam
deflection, lateral forces, and strain or stress [54]. In general
we consider a cantilever of length l , which has a rectangular
cross section of width w and thickness t with l � w, t . The
cantilever coordinate system x̃ỹz̃ is chosen such that length l
is defined along ex̃, width w along eỹ, and thickness t along
ez̃ [see Fig. 1(a)]. The x̃ axis has its origin at the clamped
end of the beam and ỹ and z̃ are defined with respect to
the cross section’s centroid. Points that lie within the beam

(a) (b)

FIG. 1. Beam bending with a transverse force. (a) A singly
clamped cantilever with dimensions width w, length l , and thickness
t is subject to an external shear force V = (Vx̃,Vỹ,Vz̃ )T , which is
applied at the tip of the cantilever, i.e., at x̃ = l . (b) A positive shear
force of amplitude Vz̃ pushes the cantilever downwards and induces a
negative bending moment Mỹ. As the induced shear force remains
constant along the beam, the bending moment decreases linearly
from tip to root.

are therefore described by x̃ ∈ [0, l], ỹ ∈ [−w/2,w/2] and
z̃ ∈ [−t/2, t/2]. Lateral deflection u is chosen to be posi-
tive along −ez̃. Shear forces V are defined positive if they
cause the beam to rotate clockwise. For example, an external
force pointing along −ez̃ and applied at positive x̃ would rotate
the beam clockwise about the ỹ axis when looking along eỹ

and is therefore considered positive. Induced bending mo-
ments are defined to be positive if they correspond to a sagging
behavior of the beam, while negative bending moments refer
to hogging [scenario in Fig. 1(b)]. Finally, tension (compres-
sion) relates to positive (negative) strain and stress amplitudes.

B. Stress tensor of a singly clamped cantilever

To derive the stress tensor in a singly clamped cantilever,
we consider a transverse force of magnitude Vz̃ that is applied
at the tip of the beam and pushes it in the −ez direction. This
force induces the negative bending moment

Mỹ(x̃) = −(l − x̃)Vz̃ (15)

for x̃ ∈ [0, l] and causes normal stress that points along ex̃.
For a true beam, which satisfies l � w, t , we can apply the
flexural formula [54–56] to find the induced normal stress

σn(x̃, z̃) = − z̃

Iz̃
Mỹ(x̃) = z̃(l − x̃)

Iz̃
Vz̃ (16)

with the moment of inertia Iz̃ = wt3/12. Bending the can-
tilever downwards induces tensile stress in the top half of the
beam (z̃ > 0) and compressive stress in the lower half (z̃ < 0).
Moreover, σn(x̃, z̃) decreases linearly from root to tip and from
the neutral plane, i.e., the plane with z̃ = 0, towards top and
bottom surfaces at z̃ = ±t/2. In addition to normal stress, the
applied transverse force also gives rise to shear stress

σs(z̃) = Vz̃

2Iz̃

[(
t

2

)2

− z̃2

]
(17)

in the cantilever [54], which vanishes at the top and bottom
surfaces and is maximized in the beam’s neutral plane.

To link this discussion to the spin-stress coupling ampli-
tudes in the previous section [see, e.g., Eq. (3)], we now
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formulate a stress tensor that corresponds to the influence of
an external shear force V = (Vx̃,Vỹ,Vz̃ )T applied to a can-
tilever as shown in Fig. 1(a). In our example, the cantilever is
oriented such that its coordinate system x̃ỹz̃ coincides with the
crystal coordinate system XY Z . The axial force component
Vx̃ causes a constant normal stress σXX = Vx̃/A along the
beam where A = wt is the beam’s cross-sectional area. As

we know from Eqs. (16) and (17), the transverse compo-
nent Vz̃ ‖ −eZ induces normal stress σXX = Vz̃z̃(l − x̃)/Iz̃ as
well as shear stresses σXZ = σZX = Vz̃[(t/2)2 − z̃2]/2Iz̃. In
analogy, the transverse component Vỹ ‖ +eY causes normal
stress σXX = Vỹỹ(l − x̃)/Iỹ and shear stresses σXY = σY X =
Vỹ[(w/2)2 − ỹ2]/2Iỹ with Iỹ = tw3/12. All in all, the final
stress tensor for small cantilever deflections is

σc
XY Z =

⎛
⎜⎜⎜⎜⎝

Vx̃
wt + (l − x̃)

(
z̃Vz̃

Iz̃
+ ỹVỹ

Iỹ

)
Vỹ

2Iỹ

[(
w
2

)2 − ỹ2
]

Vz̃

2Iz̃

[(
t
2

)2 − z̃2
]

Vỹ

2Iỹ

[(
w
2

)2 − ỹ2
]

0 0

Vz̃

2Iz̃

[(
t
2

)2 − z̃2
]

0 0

⎞
⎟⎟⎟⎟⎠. (18)

Under the assumption of a purely transverse force along −ez̃,
the stress tensor close to the beam’s top surface simplifies to

σc
XY Z = P(x̃, z̃)

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ (19)

with P(x̃, z̃) = z̃Vz̃

Iz̃
(l − x̃) being the applied stress amplitude.

We point out that pushing along −ez̃ on a cantilever oriented
along the [100] direction introduces uniaxial stress along the
[100] direction. Consequently, stress in cantilevers of different
orientations can be obtained by making an appropriate coor-
dinate system transformation.

From an experimental point of view, it is often desirable to
express P(x̃, z̃) in terms of the induced cantilever deflection
u. From Euler-Bernoulli beam theory we know that a force Vz̃

applied at the beam’s end causes a beam deflection u(x̃) of the
form [56]

u(x̃) = Vz̃

EIz̃

(
l x̃2

2
− x̃3

6

)
. (20)

We can thus link the applied force Vz̃ to the maximum beam
displacement u(l ) via the expression

Vz̃ = 3EIz̃

l3
u(l ), (21)

and the stress amplitude P(x̃, z̃) becomes

P(x̃, z̃) = 3z̃E

l3
(l − x̃)u(l ), (22)

where u(l ) now represents the cantilever deflection measured
at x̃ = l and E is the Young’s modulus.

IV. DETERMINING SPIN-STRESS COUPLING
CONSTANTS IN DIAMOND-BASED HYBRID SYSTEMS

After establishing a full and consistent treatment of spin-
stress coupling in the NV ground state and deriving an ex-
pression for the stress tensor in a singly clamped cantilever,
we now present bending experiments which we performed to
characterize the spin-stress and spin-strain coupling constants.
In our original analysis of these measurements by Teissier
et al. [28], we used an oversimplified theoretical description

of the coupling mechanism, which neglected shear strain and
the Poisson effect. With the formalism developed here, we
can now extract the correct spin-stress coupling constants and
compare them to existing literature.

The diamond cantilevers investigated by Teissier et al. were
aligned such that ex̃ ‖ [110] and ez̃ ‖ [001], had dimensions of
(w × l × t ) = (3.5 × 10 − 50 × 0.2 − 1) μm3 and contained
shallow implanted NV centers, which were located ∼17 nm
below the top surface. We used a metal tip, placed at x̃ = l ,
to displace the cantilever along ez̃. The resulting stress tensor
reads

σ[110]
XY Z = P

2

⎛
⎝1 1 0

1 1 0
0 0 0

⎞
⎠, (23)

where the stress amplitude for shallow NV centers (z̃ ≈ t/2)
located at the cantilever’s base (x̃ ≈ 0) is given by [see
Eq. (22)]

P ≡ P(0, t/2) = 3

2

t

l2
Eu. (24)

Since the metallic tip (tungsten) was about three orders of
magnitude stiffer than the cantilever, the beam deflection u
was directly given by the piezo displacement amplitude of
the tip.

For stress along the [110] direction, the four possible NV
orientations can be grouped into two subgroups with respect
to their stress-induced level shifts and splittings: NV1+2 and
NV3+4, which we will refer to as NVA and NVB in the
following. The associated level shifts are (see Table II)

�NVA
|±1〉/P = (a1 + a2) ± (b − c), (25a)

�NVB
|±1〉 /P = (a1 − a2) ± (b + c). (25b)

To unambiguously identify all four spin-stress coupling
constants, we investigated the stress-induced level shifts
for both NV orientations by performing optically de-
tected electron-spin-resonance (ESR) measurements (see
Appendix E for the analyzed ESR data sets) [28]. We then
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FIG. 2. Comparing experimental data with expected stress-
induced level shifts (yellow dashed-dotted lines denote predictions
for NV family NVA and green solid lines represent NV orientation
NVB) yields a very good agreement between predicted spin-stress
coupling parameters and our experiment.

extracted spin sublevel shifts �NVA,NVB
‖ and splittings

�NVA,NVB
⊥ as

�NVA
‖ P ≡ (

�NVA
|+1〉 + �NVA

|−1〉
)
/2 = (a1 + a2)P, (26a)

�NVA
⊥ P ≡ (

�NVA
|+1〉 − �NVA

|−1〉
)
/2 = (b − c)P, (26b)

�NVB
‖ P ≡ (

�NVB
|+1〉 + �NVB

|−1〉
)
/2 = (a1 − a2)P, (26c)

�NVB
⊥ P ≡ (

�NVB
|+1〉 − �NVB

|−1〉
)
/2 = (b + c)P. (26d)

Finally, the spin-stress coupling constants are given by

a1 = (�NVA
‖ + �NVB

‖ )/2, (27a)

a2 = (�NVA
‖ − �NVB

‖ )/2, (27b)

b = (�NVA
⊥ + �NVB

⊥ )/2, (27c)

c = (�NVB
⊥ − �NVA

⊥ )/2. (27d)

We measured �NVA,NVB
‖ and �NVA,NVB

⊥ for a total of five NV
centers (three from orientation NVA and two from NVB; see
Appendix E) and determined the values

a1 = (−11.7 ± 3.2)MHz/GPa, (28a)

a2 = (6.5 ± 3.2)MHz/GPa, (28b)

b = (7.1 ± 0.8)MHz/GPa, (28c)

c = (−5.4 ± 0.8)MHz/GPa (28d)

for the spin-stress coupling constants. The given errors denote
68% confidence intervals. They are rather large as the small
number of NV centers we analyzed in our experiments was
not sufficient to deal with systematic errors induced by, e.g.,
different environmental stress fields resulting from crystal de-
fects, surface roughness, or the proximity of cantilever edges.
Despite the large uncertainties, we find a very good agreement
between the theoretically expected level shifts based on the
spin-stress coupling constants in Eq. (28) and typical experi-
mental data shown in Fig. 2. Finally, the spin-strain coupling

TABLE III. Comparing spin-stress coupling constants from [28]
and [43]. The two sets of values differ by a factor of ∼2–3 as well
as in their signs, which can be explained by a potentially imprecise
determination of cantilever dimensions in [28] and different sign
conventions for tensile/compressive stress.

This work Barson et al. [43]
MHz/GPa MHz/GPa

a1 −11.7 ± 3.2 4.86 ± 0.02
a2 6.5 ± 3.2 −3.7 ± 0.2
b 7.1 ± 0.8 −2.3 ± 0.3
c −5.4 ± 0.8 3.5 ± 0.3

constants A1, A2, B,C

A1 = (−0.5 ± 8.6)GHz/strain, (29a)

A2 = (−9.2 ± 5.7)GHz/strain, (29b)

B = (−0.5 ± 1.2)GHz/strain, (29c)

C = (14.0 ± 1.3)GHz/strain (29d)

are obtained via Eq. (10).
Similar values for the stress coupling constants, obtained

through applying uniaxial stress to a diamond cube in a
diamond-anvil cell, were reported recently [43]. Comparing
the two sets of values (see Table III) shows that both ex-
periments find spin-stress coupling constants on the order of
a few MHz/GPa, yet they differ by a factor ∼2–3 and in
their signs. The origin of the sign discrepancy lies in different
sign conventions for the applied stress. In Barson et al. [43],
compressive stress is defined to have positive amplitudes
and causes the NV zero-field splitting D0 to increase. In
our analysis, however, compressive stress is negative and
increases D0 (see Fig. 2). Consequently, the spin-stress cou-
pling constants have different signs. We tentatively assign
the mismatch in amplitude to uncertainties in the cantilever
dimensions, caused by imperfections in diamond fabrication.
Note that uncertainties in l pose a serious problem as the
applied stress amplitude P is proportional to l−2. A potential
measurement error in l of 25% would result in values for
stress coupling parameters almost identical in amplitude to the
values reported by Barson et al. [43]. We thus suggest similar
experiments to be conducted on better-defined geometries to
reduce the uncertainty in cantilever dimensions.

V. SUMMARY AND OUTLOOK

To summarize, we give a complete description of how the
coupling between lattice deformation and the spin degree of
freedom of all four possible NV orientations can be described
in terms of stress or strain, defined in crystal coordinates
XY Z or individual NV reference frames. We show that the
formal treatment of spin-mechanical interaction is simplest
and most compact when strain or stress are described within
XY Z . We therefore advocate the adoption of this approach
for future advances in the field. We further illustrate how the
presented formalism can be used to determine the spin-stress
and spin-strain coupling constants. To that end, we derive
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the stress tensor in a singly clamped cantilever and use it to
reanalyze measurements from Teissier et al. [28]. We find that
the extracted values for the spin-stress coupling constants are
in good agreement with other values reported in the literature,
but also point out differences in employed sign conventions.

With a correct and consistent framework at hand, we can
now complete the characterization of spin-stress coupling in
the NV S = 1 ground state by quantifying the remaining spin-
stress coupling constants d and e [46]. In our presented ex-
periments, this was not possible as the relevant coupling Hσ1

between |0〉 and the | ± 1〉 manifold was far off resonance.
Experiments appropriate for this task could be based on static
or low-frequency stress fields and would require external
magnetic fields of Bz ≈ 1025 G to study spin-stress coupling
at the ground-state level anticrossing (GSLAC), where the
relevant spin sublevels are close in energy. Coupling constants
d and e could then for example be determined via dressed state
spectroscopy [39] or the observation of stress-induced Rabi
oscillations [46].
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APPENDIX A: KELVIN NOTATION

For small strains or stresses, Hooke’s law describes the
linear stress-strain relationship,

σIJ =
∑
KL

CIJKLεKL, (A1)

where CIJKL are the components of the elastic stiffness tensor,
which is a fourth rank tensor and in principle contains 3 ×
3 × 3 × 3 = 81 independent elements. However, as stress and
strain tensors are symmetric, this number is reduced to 36. For
cubic crystals, such as diamond, symmetry arguments further
reduce the number of independent elements to 3 [49].

To write Hooke’s law in vectorial form, we employ the
Kelvin notation in which (A1) becomes

σ̃XY Z = C̃XY Z ε̃XY Z . (A2)

Here, the elastic stiffness tensor reduces to a 6 × 6 tensor,

C̃XY Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

which contains only three independent elements
{C11,C12,C44} = {1076, 125, 576} GPa for the diamond
lattice symmetry [48,49,56,57]. Strain and stress tensors are
written as the vectors

ε̃XY Z = (εXX , εYY , εZZ ,
√

2εY Z ,
√

2εXZ ,
√

2εXY )T (A4)

and

σ̃XY Z = (σXX , σYY , σZZ ,
√

2σY Z ,
√

2σXZ ,
√

2σXY )T . (A5)

APPENDIX B: DEFINITION OF ROTATION MATRICES

The rotation matrices Rn(θ ) from Table I describe three-
dimensional rotations by angles θ about axes indicated by the
unit vectors n = (n1, n2, n3)T . Rn(θ ) is calculated using the
relation [51]

Rn(θ ) = 1 + sin θN + (1 − cos θ )N2 (B1)

with

N =
⎛
⎝ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞
⎠. (B2)

In this work, the axis of rotation n is generally defined with
respect to the original, unrotated coordinate system, and θ is
positive for a clockwise rotation observed along n.

When working with the Kelvin notation, we employ the
rotation matrices

R̃n(θ ) = 1̃ + sin θÑ + (1 − cos θ )Ñ
2

+ 1
3 sin θ (1 − cos θ )(Ñ + Ñ

3
)

+ 1
6 (1 − cos θ )2(Ñ

2 + Ñ
4
) (B3)

with n = (n1, n2, n3)T and [51]

Ñ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
√

2n2 −√
2n3

0 0 0 −√
2n1 0

√
2n3

0 0 0
√

2n1 −√
2n2 0

0
√

2n1 −√
2n1 0 n3 −p2

−√
2n2 0

√
2n2 −n3 0 n1√

2n3 −√
2n3 0 n2 −n1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

APPENDIX C: HOW THE DEFINITION OF xyz
INFLUENCES SPIN-STRAIN COUPLING AMPLITUDES

To clarify the influence of NV reference frame definitions
for a given NV quantization axis on the presented formalism,

we compare spin-strain coupling amplitudes obtained for
different xyz by following the derivation in Udvarhelyi
et al. [46]. In the reference frame xyz(a), defined by e(a)

x ‖
[1̄10], e(a)

y ‖ [1̄1̄2], and e(a)
z ‖ [111], the y axis lies in a mirror
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plane of the NV center and we find the spin-strain coupling
amplitudes [see Eq. (9)]

M (a)
x = B

(
ε (a)

xx − ε (a)
yy

) + 2Cε (a)
yz , (C1a)

M (a)
y = −2Bε (a)

xy − 2Cε (a)
xz , (C1b)

M (a)
z = A1ε

(a)
zz + A2

(
ε (a)

xx + ε (a)
yy

)
. (C1c)

Here, ε(a)
xyz is the strain tensor that describes crystal deforma-

tion in the reference frame xyz(a), and we neglect Nx and Ny for
simplicity. However, when defining a second xyz(b) coordinate

system with e(b)
x ‖ [1̄1̄2], e(b)

y ‖ [11̄0], and e(b)
z ‖ [111], the x

axis lies in a mirror plane of the NV and the spin-strain
coupling amplitudes are [see Eq. (11)]

M (b)
x = −B

(
ε (b)

xx − ε (b)
yy

) + 2Cε (b)
xz , (C2a)

M (b)
y = 2Bε (b)

xy + 2Cε (b)
yz , (C2b)

M (b)
z = A1ε

(b)
zz + A2

(
ε (b)

xx + ε (b)
yy

)
. (C2c)

Since both NV reference frames in this example share the
same quantization axis, we expect identical strain-induced
level shifts, which are given by

�
(a)
|±1〉/ε = [

A1ε
(a)
zz + A2

(
ε (a)

xx + ε (a)
yy

)]
± [

B2
(
ε (a)

xx − ε (a)
yy

)2 + 4BCε (a)
yz

(
ε (a)

xx − ε (a)
yy

) + 4C2ε (a)
yz

2 + 4B2ε (a)
xy

2 + 8BCε (a)
xy ε (a)

xz + 4C2ε (a)
xz

2]1/2
, (C3)

�
(b)
|±1〉/ε = [

A1ε
(b)
zz + a2

(
ε (b)

xx + ε (b)
yy

)]
± [

B2
(
ε (b)

xx − ε (b)
yy

)2 − 4BCε (b)
xz

(
ε (b)

xx − ε (b)
yy

) + 4C2ε (b)
xz

2 + 4B2ε (b)
xy

2 + 8BCε (b)
xy ε (b)

yz + 4C2ε (b)
yz

2]1/2
, (C4)

where ε is the applied strain amplitude. However,
�

(a)
|±1〉 = �

(b)
|±1〉 is only true when acknowledging that

ε(a)
xyz 
= ε(b)

xyz [for the chosen NV reference frames ε̃(b)
xyz =

(ε (a)
yy , ε (a)

xx , ε (a)
zz ,−√

2ε (a)
xz ,

√
2ε (a)

yz ,−√
2ε (a)

xy )T ]. A simple and
effective way to avoid possible confusion is to express crystal
deformation in a reference frame external to the NV center.
A typical choice is the crystal coordinate system XY Z used
in this work. By replacing the strain tensor components in
Eqs. (C1) and (C2) with

ε̃(a,b)
xyz = L̃

(a,b)
C̃

−1
XY Z σ̃XY Z , (C5)

where

L̃
(a) = R̃[001](−3π/4)R̃[1̄10](−αNV),

L̃
(b) = R̃[001](−5π/4)R̃[1̄10](−αNV),

we find the identical spin-stress coupling constants given in
Eq. (3) of the main text. Note that these are identical for any
xyz as long as the employed NV reference frame shares the
same z axis. Describing crystal deformation in XY Z therefore
simplifies the presented formalism significantly.

APPENDIX D: ENGINEERING VS PURE STRAIN

When using Hooke’s law, confusion often arises due to the
difference between pure and engineering strain notations. We
briefly demonstrate here that using different strain conven-
tions does not affect the general structure of the framework
presented in this paper. However, small corrections to the
relations used to convert spin-stress coupling constants into
their spin-strain counterparts [see Eq. (10)], as well as to the
strain-induced level shifts and splittings �|±1〉 from Table II
are required.

In matrix form, the strain tensor is written as

εXY Z =
⎛
⎝εXX εXY εXZ

εY X εYY εY Z

εZX εZY εZZ

⎞
⎠, (D1)

where εIJ refers to the pure strain tensor components. How-
ever, to ensure the conservation of elastic energy when em-
ploying Hooke’s law, the engineering strain notation is em-
ployed. A good example is the Voigt notation, in which

ε̃V
XY Z = (εXX , εYY , εZZ , γY Z , γXZ , γXY )T (D2)

also depends on the engineering shear strain components
γIJ = 2εIJ , which are twice the pure shear strain components.
However, in this work we employ the Kelvin notation, as
the Voigt notation does not allow the application of standard
vector operations, such as coordinate system transformations
through vector rotations. In the Kelvin notation, engineering
strain shows up as factors of 2 in front of the C44 stiffness
tensor components [see Eq. (A3)]. The formalism we present
in this paper is therefore based on engineering strain.

This is important to note, as other works [43,53] rely on
a spin-strain coupling formalism based on pure strain, and
consequently employ slightly different expressions for the
conversion relations of spin-stress into spin-strain coupling
constants [see Eq. (10)] and the strain-induced level shifts
�|±1〉 (see Table II). Based on the brief explanation above,
we can convert our engineering strain expressions into the
pure strain framework [43,53] by replacing C44 → C44/2 in
Eq. (10). The conversion relations for spin-stress into spin-
strain coupling constants become

A1 = a1(C11 + 2C12) + 2a2C44, (D3a)

A2 = a1(C11 + 2C12) − a2C44, (D3b)

B = −b(C11 − C12) − cC44, (D3c)

C =
√

2b(C11 − C12) − 1/
√

2cC44, (D3d)
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FIG. 3. Reactions of different NV centers to stress induced by cantilever bending. While the three NVs from family NVA show comparable
shifts and splittings, the two NVs from family NVB react quite differently to stress, causing rather large uncertainties in the stress-coupling
constants. Increasing statistics, i.e., by studying more NV centers and their response to stress, is required. White dotted lines in the left column
represent ESR peak positions, determined by fits to our original data. In the right column, blue symbols denote experimentally obtained values
for level shifts and splittings and red lines are fits to these to extract spin-stress coupling constants. �A,B

‖,⊥ are given in units of MHz. Note that
our fits account for the presence of stress that was intrinsic to the sample.

D = −d (C11 − C12) − eC44, (D3e)

E =
√

2d (C11 − C12) − 1/
√

2eC44, (D3f)

and yield the values

A1 = (−8.0 ± 5.7)GHz/strain, (D4a)

A2 = (−12.4 ± 4.7)GHz/strain, (D4b)

B = (−3.7 ± 0.9)GHz/strain, (D4c)

C = (11.8 ± 1.1)GHz/strain (D4d)

for the spin-strain coupling constants. Clearly, these values
differ significantly from those given in the main text [see
Eq. (29a)]. Yet both strain conventions yield identical results
for the strain-induced level shifts, if in the pure strain frame-
work the �|±1〉 contain the corrected γ = 2(C11 + 2C12)/C44.
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It is thus of utmost importance that the employed strain
framework is well defined if spin-strain coupling constants are
to be compared or even determined.

APPENDIX E: DETERMINATION OF SPIN-STRESS
COUPLING CONSTANTS

As mentioned in the main text, we analyzed the stress-
induced level shifts and splittings of five different NV centers.

Three of these were of orientation NVA and two belonged to
NVB. Figure 3 shows the taken ESR data and the extracted
values of level shifts �‖ and splittings �⊥. White dots in the
left column denote Lorentzian fits to determine the ESR dip
positions. Blue dots in the right column represent calculated
values for level shifts and splittings, while red lines are
fits to extract level shifts and splittings per GPa of applied
stress.
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