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Abstract
Wepresent high-resolution optically detectedmagnetic resonance spectroscopy on single nitrogen-
vacancy (NV) center spins in diamond at and around zeromagnetic field. The experimentally
observed transitions depend sensitively on the interplay between themicrowave (MW) probing field
and the local intrinsic effective field comprising strain and electricfields, which act on theNV spin.
Based on a theoreticalmodel of themagnetic dipole transitions and theMWdrivingfield, we extract
both the strength and the direction of the transverse component of the effective field. Our results
reveal that for the diamond crystal under study, strain is the dominant contribution to the effective
field. Our experiments further yield amethod forMWpolarization analysis in a tunable, linear basis,
whichwe demonstrate on a singleNV spin.Our results are of importance to low-field quantum
sensing applications usingNV spins and form a relevant addition to the ever-growing toolset of spin-
based quantum sensing.

1. Introduction

The nitrogen-vacancy (NV) center in diamond [1] has long shownpromise as an excellent sensor, due to its
exceptional sensitivity to externalfields. It has demonstrated far-reaching potential in applications ranging from
electrometry [2, 3] and thermometry [4–6] to precession gyroscopy [7–9] and,most notably,magnetometry
[10–12]. TheNV’s success results from a range of useful properties, including its long spin dephasing times
[13, 14], its atomic size, and its ability to be optically initialized and read out [1, 15]. All of these characteristics
contribute tomake theNV a highly sensitive systemwith nanoscale spatial resolution, even at ambient
conditions.

TheNV spin’s impressive sensitivity is, however, also its weakness. Local intrinsicfields arising from lattice
strain, paramagnetic impurities, and electric fields induced by surface charges all limit theNV’s ability to detect
and characterize external signals of interest. Techniques operating at lowmagnetic fields, such as zero-field
nuclearmagnetic resonance (NMR) [16, 17] and low-fieldmagnetometry [18] are especially vulnerable to these
parasitic fields [19]. Their relevance and future prospectsmotivate extended studies to precisely characterize the
environment surroundingNV spins.

High-resolution spectroscopy offers a set of tools to study the interaction of various local intrinsic and
externally appliedfields. For example, NV ensembles in type-Ib diamondwere probedwithmicrowave (MW)
manipulation fields at zeromagnetic field to investigate intrinsic effective fields, which represent the combined
effects of strain and electric fields [19]. This ensemble study revealed that for the particular diamonds under
study, the electric fieldwas the dominant contribution to the effective field. A similar techniquewas introduced
to determine the orientation of singleNVs [20] by simultaneously applying external electric andmagnetic fields.
However, a systematic study of the effective fields for individualNV centers in high purity diamond has not been
reported so far.
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Here, we use high-resolution, low-power optically detectedmagnetic resonance (ODMR) spectroscopy to
characterize in detail the intrinsic effective fields affecting singleNVs in high purity, type-IIa diamond. In
contrast to the resultsmentioned above [19], wefind that in our samples the strain contribution to the effective
field dominates over the electric field in low-fieldODMRmeasurements of singleNVs.We tentatively assigned
this discrepancy to the higher dopant density in the samples of [19].Moreover, by applying externalmagnetic
fields and exploiting themagnetic dipole selection rules we directly probe theMWpolarization at theNV
position. Thus, ourmethod offers a characterization tool for both the intrinsic effective field and theMW
manipulation field, paving theway for future sensing applications.

In our experiments, we performODMRmeasurements on a selection of individual NV spins, and thereby
extract information about the local environment of eachNVdefect. Quantitative analysis of our results requires
a detailed understanding of theNV spin transition strengths underODMRdriving at lowfields. To that end, we
first introduce theHamiltonian describing the hyperfine structure of theNV’s ground state in the presence of
magnetic, electric, and strainfields.We then present amodel to describe how thesefields influence the selection
rules of themagnetic dipole spin transitions. Based on thismodel, we calculate the transitionmagnetic dipole
moments and thereby the fluorescence signal we expect to observe in our experiments. By comparing our theory
to our experimental data, we are then able to directly characterize the local strain and electricfield environment
and, in a separate experiment, determine theMWpolarization used to drive the spin transitions.

2. Theoretical background

2.1.Hamiltonian of theNV center
TheNV center is a paramagnetic lattice defect in diamond comprising a substitutional nitrogen atom adjacent to
a lattice vacancy (refer tofigure 1(a)). The axis joining the nitrogen atom and the vacancy points along diamonds
á ñ111 crystal direction and defines the defect’s symmetry axis. In the negative charge state we consider here, the
NVdefect traps an additional electron, resulting in an S=1 electronic spin ground state. The corresponding
spin eigenstates of the Ŝz operator with respect to theNV axis are the ñ∣ms spin projection states with eigenvalues
ms=0,±1 [1]. Spin–spin interactions lead to a zero-field splittingD0 between the ñ∣0 and the degenerate  ñ∣ 1
states. External and intrinsicfields further alter the states’ energies. Besides being sensitive tomagnetic fields
through the Zeeman effect, the ñ∣ms states are also susceptible to electric and strainfields [2], caused by spin–
orbit and spin–spinmixing of the ground and excited states.Moreover, interactions with the nuclear spin of the
14Nnucleus lead to a hyperfine coupling and additional structure.

Considering all of these interactions leads to theHamiltonian describing theNV’s ground state [1]:

 g= + P + + + P - + P +( ) · ( ) ( ) ( )B Sh D S A S I S S S S S S , 1z z z z x y x y x y y x0
2

NV HF
2 2

where = [ ]S S S S, ,x y z ( = [ ]I I I I, ,x y z ) is the vector of the dimensionless electronic (nuclear) S=1 (I=1) spin
operators of theNV (14N) spin and h is the Planck constant. The zero-field splitting is »D 2.87 GHz0 , and the
coupling parameters are the axial hyperfine parameter = -A 2.14 MHzHF and theNVgyromagnetic ratio
g = -2.8 MHz GNV

1 [1]. Themagnetic field = [ ]B B B B, ,x y z and the effective fieldP = P P P[ ], ,x y z are
given in the coordinate frame (xyz) of theNV,where z denotes theNV axis andwe choose y to lie in one of the
NV symmetry planes (seefigure 1(a)). The effective field defined as the combined strain and electric field [21] is
represented by P = +d Ez z z and P = +d̂ Ex y x y x y, , , , where = [ ]E E E E, ,x y z is the electric field and

= -
d 0.35 Hz cm V 1 and =^

-d 17 Hz cm V 1 are the axial and transverse electric field susceptibilities,
respectively [22]. The parameters of the spin-strain interactionx y z, , weight the components of the strain
tensor ewith the corresponding spin-strain coupling-strength susceptibilities (refer to [23, 24] formore details).
Note thatHamiltonian (1)neglects the non-axial hyperfine interaction, which is suppressed by the zero-field
splitting, the nuclear electric quadrupole interaction, which does not cause a statemixing and therefore does not
affect the transition frequencies, and the nuclear Zeeman coupling, as these contributions do not affect the spin
states in the parameter regimewe consider here.

In absence ofmagnetic, electric and strain fields, the level structure is dominated by the zero-field splitting,
which shifts the  ñ∣ 1 states with respect to ñ∣0 byD0 as illustrated infigure 1(b). An additional splitting of the
 ñ∣ 1 levels is induced by the hyperfine interaction ∣ ∣AHF , leaving three two-fold degenerate hyperfine eigenstates
labeledwith  ñ∣ m1, I , where = m 0, 1I are the eigenvalues of the Iznuclear spin operator (see infigure 1(b)).
Note, that ñ∣0 is not affected by the hyperfine interaction, i.e. ñ∣ m0, I is three-fold degenerate.

2.2. Influence of the effectivefield
To quantify the influence of the effective fieldP on theNV level structure, it is convenient to partition the field
vectors into components parallel and perpendicular to theNV axis (z-axis), i.e. towrite

j jP = P P P^ P ^ P [ ]cos , sin , (see figure 1(a)). Here, P = P z is the parallel andP = P + P^ ( )x y
2 2 1 2 is the

perpendicular effective field amplitude. The direction of P̂ in the transverse xy-plane is characterized by the
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azimuthal anglejΠwith respect to the x-axis, defined by j = P PPtan y x.Wewill treat B the same, with B , B̂
andjB defined similarly.

According toHamiltonian (1), the effective fieldP affects the level structure in twoways: (1) an axial
effective field shifts the  ñ∣ 1 states with respect to ñ∣0 by an amount P; (2) a transverse effective field couples the
 ñ∣ 1 states with the same nuclear spin projection.WhenB=0, the transverse effective fieldmixes and splits the
degenerate  ñ∣ 1 states withmI=0, leading to new spin eigenstates given by

-ñ= + ñ + - ñ

+ñ= + ñ - - ñ

j

j

P

P

∣ ( ∣ ∣ )
∣ ( ∣ ∣ ) ( )

e 1 1 2 ,

e 1 1 2 , 2

i

i

wherewe have omitted the label for the nuclear spin projectionmI=0 for clarity. The corresponding
eigenenergies are = + P  P ^E D0 as shown infigure 1(b). Thus, besides the level shift ofP experienced by
all nuclear spin projections, the coupled states ñ∣ are split by P̂2 due to the presence of the effective field.

Interestingly, the spin is farmore susceptible to transverse effective fields when the electric field dominates
since »^ d d50 [22]. In contrast, all spin-strain susceptibilities are comparable [24, 25]. As a result, the average
effect of a randomly oriented electric field leads to a large splitting with negligible common-mode shift (i.e.
P P^  , on average), while in the case of strain the splitting is accompaniedwith a common-mode shift in the
same order ofmagnitude (i.e. P » P^ , on average). This key difference allows high-resolution spectroscopy of
NV spins to differentiate between the electric field and strain contributions of the effective field, as wewill show
in the following.

Note that althoughwe focus here on the caseB=0 andmI=0, similar statements hold for the case
g =  ∣ ∣B ANV HF andmI=±1 as well.

2.3.Magnetic dipole transition strengths
In addition to shifting and splitting the hyperfine states, the effective fieldP also influences the dipolemoment
of the spin transitions. Experimentally, these spin transitions are probed by aMWfield

Figure 1.Description of the experimental setup. (a)Coordinate systemof theNVdefect center with the relevantfields interactingwith
theNV spin: TheMWmagnetic field (red) for spinmanipulation, the effective field comprising strain and electricfield (light blue)
intrinsic to the diamond sample and the staticmagneticfield (green) externally applied to determine unknownMWpolarizations. All
fields are partitioned into components parallel and perpendicular to theNV symmetry axis, where the perpendicular components are
further parametrized by the azimuthal anglejα (a Î P{ }MW, , B ). (b) Level diagramof theNVground state according to
Hamiltonian (1)without andwith the effective field in absence of amagnetic field. The effective field induces a common-mode shift of
the  ñ∣ 1 hyperfine levels by P and additionally splits near-degenerate levels which have the same nuclear spin projection (here
mI=0). AMWmagneticfield is used to address transitions between the states. (c) Schematic of the experimental setupwith a
diamond sample and a nearby bondingwire forMWdelivery. TheNV spin under study experiences an approximately linear polarized
fieldwhich is used tomanipulate theNV spin (the situation shown corresponds to the one ofNV1).
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w=( ) ( )B Bt tcosMW MW
MW with frequencyωMWand (complex) amplitude BMW, which interacts with the

correspondingmagnetic dipolemoment. As the dipolemoment determines the polarization response of the
transition, it is ultimately linked to the observed transition strengths.

Taking the common steps to transform into a rotating frame and applying the rotatingwave approximation,
the Rabi frequencies associatedwith the resonant spin transitions between ñ∣0 and ñ∣ induced by themagnetic
dipole interaction read

m mp p
W = á - ñ = ∣ ∣ · ∣ ∣ ∣ · ∣ ( )B B

h h

2
0

2
, 30,

MW MW
0,

where themagnetic dipolemoment operator ism g m= - = -S Sh 2 BNV withμB being the Bohrmagneton. In
equation (3)we introduced themagnetic dipolematrix elements

m m m= á ñ = - á ñ ∣ ∣ ∣ ∣ ( )S0 2 0 . 4B0,

Evaluating this, we find

m
m

m j j
m j j

=-

=- -
+ P P

- P P

[ ( ) ( ) ]
[ ( ) ( ) ] ( )

2 sin 2 , cos 2 , 0 ,

2 cos 2 , sin 2 , 0 , 5
B

B

0,

0,

showing that the azimuthal angle of the effective field is directly linked to both dipolemoments. Note that the
dipolemoments are completely real, implying a linearly polarized response of the transitions. In contrast, when

P̂B , the eigenstates ofHamiltonian (1) are ñ - ñ∣ ∣0 , 1 and + ñ∣ 1 , and the transitions show the familiar
circularly polarized response.

According to equation (3), the relative orientation of the dipolemoment to theMW field determines the
Rabi frequency of the transition and therefore the observedODMR response [26]. The observed transition
strengths are then given by ~ W 0, 0,

2 .Writing the linearly polarizedMWfield amplitude as

j j= ^ ^ [ ]B B B Bcos , sin ,MW MW
MW

MW
MW

MW , wherejMW is the azimuthal angle in the xy-plane (see
figure 1(a)), the transition strengths between ñ∣0 and ñ∣ read


p m

j j~ +
^

P( ) ( )
( ( )) ( )

h

B2 2

2
1 cos 2 . 6B

0,

2

2

MW 2

MW

Interestingly, the transition strengths contain information about the relative azimuthal angles of the effective
field and the linearly polarizedMWdriving field. Adapting the formalismof [19] this information can be derived
from the transition imbalance


 
 

j j=
-
+

= - ++ -

+ -
P( ) ( )cos 2 . 70, 0,

0, 0,
MW

Given that the azimuthal anglejΠ of the effective fieldP can be determined up to a reflection symmetrywith
respect to 2jMW from the transition imbalance and themagnitude of P̂ from theODMR transition frequencies,
we have established that both direction andmagnitude of the transverse effective field can be extracted from
high-resolutionODMR.

Asmentioned earlier, themI=±1 hyperfine projections are coupled by the effective fieldP aswell. At
B=0, however, the states with the samemI are split by ∣ ∣A2 HF , so that the transition imbalance due to the
effective field ismostly suppressed. Aswe typically find P̂  ∣ ∣AHF in our samples, we show in appendix A that
an approximate expression for the imbalance is given by

 j j» -
P

+^
P∣ ∣

( ) ( )
A

cos 2 . 8
HF

MW

3.High-resolution spectroscopy

3.1. Experimental details
In order to apply ourfindings above to investigate the effective fieldP and to determine the respective weights
of the electricfield and strain, we performhigh-resolution spectroscopy on singleNVs centers. For our
experiments we use an electronic grade diamond (Element Six) implantedwith 14N (dose 109 ions cm−2, energy
12 keV corresponding to anNVdepth of∼ 25 nm) and subsequently annealed using a high-temperature
annealing process [27]. Note that several fabrication steps, e.g. etching, were performed on the sample [28],
possibly causing a larger intrinsic strain in the diamond compared to an untreated sample.

To perform low-powerODMRmeasurements we utilize established techniques for optical initialization and
readout of theNV spin state using a home-built confocalmicroscope setup [28, 29]. Three pairs ofmagnetic
coils allowus to apply an externalmagnetic fieldwith full vector control (see appendix B and [30]).Manipulation
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of theNV spin in the ground state is realized byMWmagnetic fields.More precisely the circularly polarized
component of theMW field projection transverse to theNV axis (B̂MW, seefigure 1(a)) allows us to drive
transitions between different spin levels with the samemI, as illustratedwith the red arrow infigure 1(b).We
realize thisMWdriving by applying anAC current to a goldwirewith a diameter of∼ m30 m close to theNVs
under study (see figure 1(c)), thereby coupling theNVs to the near-field of theMWsource. This configuration
leads to an approximately linearly polarizedMW field at theNVs’ locations.

Note that geometric considerations for our setup allowus to determine theMWpolarization angle required
to interpret the experimental data (compare to equation (7)).Wefindj » 90MW for the specific orientation of
a particular singleNV (‘NV1’). However, wewill later present a technique to determine thisMWpolarization
angle without the requirement of such a geometric consideration. This technique, which is based on the
controlled rotation of a large transversemagnetic field, yields very good agreement with our a priori
determination ofjMW.

3.2. Spectroscopy around zeromagneticfield
To characterize our samplewe first investigate the response ofNV1 (inhomogeneous dephasing time of
* m~T 2 s2 ) to externalmagnetic fields. Startingwith amagnetic field parallel to theNV axis, we record pulsed

ODMRmeasurements [26] for various values of B (seefigure 2(a)). The resulting spectrum shows six hyperfine
resolved spin transitions. Due to the Zeeman effect, the three nuclear spin projectionswith = +m 1s ( = -m 1s )
show a positive (negative) dispersionwithmagnetic field, i.e. shift to larger (smaller) frequencies. The order of
the nuclear spin projections can be established fromHamiltonian (1) (seefigure 2(a)). At and above the
maximumvalues of B we apply, all sixODMR transitions show the same contrast, as the nuclear spin states are
equally (thermally) populated, and the = -m 1s ( = +m 1s ) transitions have right (left) circularly polarized
response, whereas we apply a linearly polarizedMWfield (an equal superposition of right and left circular
polarization). At the transition crossings where states have different values ofmI, the states do notmix and the
transition strengths, which are related to the contrast of both transitions, sum together, resulting in twice the
fluorescence drop compared to a single transition.When two crossing states have the same nuclear spin
projectionmI, however, the states domix andwe observe stark differences to the case of states of unequalmI

crossing.
To investigate this observation inmore detail and to verify the coupling of the corresponding states, we

record a high-resolutionODMR line cut atB=0 (see figure 2(b)). The spectrum shows a clear splitting of the
central transition into two peaks, both having different contrast. This effect is attributed to the influence of the

Figure 2. Influence of the external fields on the electron spin transitions. (a)Amagnetic field B parallel to theNV axis results in a
linear Zeeman splitting of the six possible spin transitions from ñ∣0 to  ñ∣ 1 . However, when two transitionswith the samenuclear spin
projectionmI cross, we observe a reducedODMRcontrast, indicating a coupling of the corresponding states. (b) Line cut for

=B 0 G with reducedMWpower including aGaussian fit to the data (black). The central line is split by ( )360 18 kHz into two
transitions with an imbalance of  = - ( )58 5 %. (c)Zoom into themI=0 transitions around »B 0 G visualizing a clear level anti-
crossing, indicative of a coupling between both hyperfine levels. (d)Applying a transversemagnetic fieldB⊥whilemaintaining

»B 0 G mixes the spin levels and results in a second order energy shift (see section 4).
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effective fieldP, whichmixes the  ñ∣ 1 spin states, as explained previously. Fitting the experimental datawith a
superposition of fourGaussian functions allows us to extract a splitting of P =^ ( )2 360 18 kHz and a transition
imbalance of  = - ( )58 5 %. Note that for consistency, we also obtained the same results by using continuous-
wave, instead of a pulsedODMR (data not shown).

To ensure that our findings are notmasked by any residual parallelmagnetic field, we performhigh-
resolutionODMRmeasurements with the parallelmagnetic field component in the vicinity of themI=0
transition crossing (see figure 2(c)).We clearly resolve an anti-crossing of the two transitions (illustrated by the
dashedwhite line), consistent with the discussed coupling of the corresponding hyperfine states. Note that all the
measurements presented infigure 2 and the following are recorded separately and hence under slightly different
experimental conditions (e.g. temperature), leading to small variations in the zero-field splitting [31].

3.3. Comparison of transition strengths
To quantify the strengths of the involvedODMR transitions, we conduct Rabi oscillation experiments on each
transition using the sameMWand laser power (seefigure 3). Equation (6) directly yields a relation between the
Rabi frequencies Wi (i=1, 2, 3, 4) of the four different transitions as

W = W = W + W( ) ( )1

2
. 91

2
4
2

2
2

3
2

Here, we used the labels for the transitions according tofigure 3 and defined
p mW = W = ^( ) · ( )B h2 2 B1

2
4
2 2 MW 2 2. Our experimental findings agree well with this prediction, as

p pW = » W =· ( ) · ( )2 220 1 kHz 2 210 1 kHz1 4 and pW + W =( )( ) · ( )2 220 3 kHz1

2 2
2

3
2 1 2

, where

pW = · ( )2 288 2 kHz2 and pW = · ( )2 118 6 kHz3 .
Themeasured transition strengths are directly linked to the polarization response of each transition (see

figure 3, right). Transitions① and④ each involve two transitions ofD = m 1s , such that they comprise both
circular polarization responses. In contrast, the transitions② and③ correspond to transition from ñ∣0 to the
eigenstates (2), which are superpositions of  ñ∣ 1 and yield a linearly polarized response of the transitions. Since
the polarization of theMWdrive is approximately linear, the overlap of the drive polarization and transition
dipole determine the transition strengths (refer to equation (3)).

We note that in the experimental data for transition③, there are two oscillation frequencies present (see gray
fit). The slowly oscillating component highlighted by the black line corresponds to driving of transition③, while
the quickly oscillation component originates fromoff-resonant driving of transition②which is neglected in the
black line.

Additionally, the slightmismatch betweenΩ1 andΩ4 is a direct consequence of the coupling between the
ms=±1 spin states with the same nuclear spin projection (mI=±1) present atB=0. This discrepancy is

Figure 3.Comparison of the transition strengths for =B 0 G. Driving Rabi oscillations on each of the four transitions shown on the
right under the same experimental conditions allows us to directly compare the transition strengths. To a good approximationwefind
W = W = W + W( )1

2
4
2 1

2 2
2

3
2 , as expected (see text). Note that panel③ contains two oscillation frequencies, the slowly oscillating

component of transition③ (black) and a higher frequency caused by transition② (see text). The level diagram additionally shows the
polarization of theMWdrive and the polarization response of each transition.
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caused by the transition imbalance described in equation (8). This slightmixingmeans that the transitions show
an elliptically polarized response, rather than a purely circularly polarized response.

3.4. Characterization of individualNV centers
Having established our technique to probe and characterize the effective fieldP of a singleNV,we now apply
thismethod to investigate the field environment of a selection of individualNVs. For thatwe performhigh-
resolutionODMRmeasurements atB=0 as outlined earlier and studied the splitting and transition imbalance
of themI=0 transitions (see figure 4(a)).Wefind that the splitting and transition imbalance is different for each
NVunder study, indicating a different effective field environment for each defect. Comparing themean
transition frequency for eachNVwith the averaged transition frequency over all NVs, wefind that the observed
shifts and splittings are of the same order ofmagnitude, which indicates that strain is the dominant contribution
to the effective field. This observation differs from the findings of [19], where the electricfield originating from
charge impurities was identified as themain effective field contribution in their samples. However, ourmethod
does not allow a complete determination of the effective field, sincewe are not able to determine the parallel
component P. The zero-field splitting depends sensitively on temperature [31], i.e. both temperature and the
parallel effective field component have the same effect on the observed transition frequencies. Nevertheless, we
can identify strain as themajor contribution to the effective field, as we typically observe peak-to-peak
temperaturefluctuations of 0.3 K in our setup corresponding to temperature-induced shifts of∼23 kHz, much
smaller than the ones observed infigure 4(a).

UsingGaussianfits we extract the splittings P̂2 and transition imbalances for eachODMR spectrum in
figure 4(a) and summarize the results infigure 4(b). Using equation (7) allows us to visualize the transverse
effective field components in theNV frames up to a reflection symmetry with respect to 2jMWas presented in
the inset offigure 4(b). Here, the transverse effective field amplitudes are normalizedwith respect toNV1 andwe
used theMWpolarization angle ofNV1 as determined in the following section 4.Note thatfigure 4 showsNVs
with all four possible orientations in the diamond lattice, which experience different relativeMWpolarization
angles accordingly and therefore show a different symmetry behavior. Oncewe know the polarization angle for a
singleNV, geometric considerations allow us to infer the corresponding angles for the otherNVorientations. To
determinejΠwithout ambiguity, one can e.g. conduct a second set ofmeasurements with a differentMW
polarization anglejMW.

4.Determining theMWpolarization angle

Wefinalize our spectroscopy study of the effective field by establishing amethod to experimentally determine
theMWpolarization angle. To do so, we exploit the response of the hyperfine spin transitions to a purely
transversemagnetic field. Because a transversemagnetic field couples  ñ∣ 1 states in second order, the transition

Figure 4.Characterization of the effective fields of selected singleNV centers. (a)High resolutionODMR spectra for =B 0 G for
several singleNV centers showing a splitting of themI=0 levels and transition imbalances of the corresponding transitions. (b)
Summary of the extracted splittings and transition imbalances from (a) and schematic illustration of the transverse effective field
component for eachNV (numbers refer toNV labels). Each dataset is consistentwith two possible values forjΠ and both possible
effective field orientations are shown for eachNV.
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frequencies show a quadratic dependence on the field (see figure 2(d) for data onNV1). Similarly tofigure 2(a),
the spectrum shows in total six transitions. However, the corresponding states of the two outer transitions are
degenerate, resulting in four resolvable transitionswith the outer two having twice the contrast relative to the
inner ones. The inner transitions approach the dominant outer transitions for large fields, indicating a tilting of
the spin quantization axis towards the transverse field axis.

At =B̂ 32 G (the largest transversemagnetic field amplitude achievable in our setup)we study the
influence of the azimuthal angle of the transverse fieldjBwhile setting =B 0 G (within our experimental
resolution). In this situation, we changejB and performpulsedODMRmeasurements on the hyperfine
transitions (see figure 5(a)).We observe clear oscillations of the contrasts of the four transitions as a function of
jB. Specifically, the contrasts of the two lower frequency transitions (at∼ 2871 MHz and∼ 2 872.5 MHz)
oscillate in phase, as do the contrasts of the two higher frequency transitions (at∼ 2 875.5 MHz and
∼ 2877 MHz). However, the contrast-oscillations of these two pairs of transitions oscillate out of phase as a
function ofjB, with a phase shift∼ π/2, i.e. the lower frequency transitions have highest contrast when the
higher frequency transitions have low contrast, and vice versa.

Using a similar theoreticalmodel as previously introduced, we calculate the transition strengths based on
Hamiltonian (1). Aswe consider the regime g P^ ^ ∣ ∣B A,NV HF , the effective field and hyperfine coupling can

be neglected infirst order. The eigenstates of theHamiltonian thus read ñ » ñ∣˜ ∣0 0 and ñ∣ ˜ , where ñ∣ ˜ aremixed
states of  ñ∣ 1 due to the presence of the transversemagneticfield. In analogy to our earlier results, wefind the
transition strengths

 mp p m
j j~ W =  -  

^∣ · ∣ ( ) ( )
( ( )) ( )˜ ˜ ˜B

h h

B2 2 2

2
1 cos 2 2 , 10B

B0, 0,
2 MW

0,
2

2

2

MW 2

MW

wherewe have used themagnetic dipolematrix elementsm m= - á ñ
˜ ∣ ∣˜ S2 0B0, . According to equation (10)

rotating the transversemagnetic field component by changingjB leads to oscillations in the transition strengths
of the involved transitions. Theπ-periodicity of these oscillations is induced by the periodic change of the
overlap of theMWpolarization and the dipolemoments, and ismirrored by the alternatingODMRcontrast in
the experiment. The phase offset of these oscillations is related to theMWpolarization anglejMW.Thus, by
analyzing the experimental data wefindj = ( )89.2 8MW in the reference frame ofNV1.

Equation (10) reproduces the experimentally observed oscillations in the transition intensity. According to
the presentedmodel, however, the frequencies of the observed transitions should not be affected by varyingjB.
Instead, the observed ‘wiggles’ in the transition frequencies are attributed to the influence of the neglected
effective field and the effect of an imperfect, elliptical rotation of the transversemagnetic field amplitude.We
numericallymodeled both aspects by simulating our experiment based onHamiltonian (1) (see figure 5(b)). For
the simulation, we used the effective field parameters extracted from figure 2(b) and a realistic ellipticity of the
transversemagnetic field rotation characterized by aflattening of f=0.039.With that we are able to reproduce
thewiggling of the transition frequencies and the asymmetric shift of the transition contrast. To characterize the
relative contribution of both effects, figure 5(b) further shows the simulated transition frequencies. These can be

Figure 5.Determination of theMWpolarization angle jMW by rotating the transversemagneticfield component around the
quantization axis ofNV1. (a)Experimental data for =B̂ 32 G and =B 0 G. The transition strengths of all states oscillate. Periodic
‘wiggles’ in the transition frequencies are caused by intrinsic strain in the diamond lattice and imperfect rotation of themagneticfield
(see text). (b)Comparing the experimental datawith the calculation based onHamiltonian (1) allows for determining theMW
polarization angle in the transverse plane in the reference frame ofNV1 to be j = ( )89.2 8MW with respect to the x-axis. To quantify
the relative contributions of intrinsic strain and the ellipticmagnetic field rotationwe additionally show the simulated transition
frequencies for considering both aspects (gray dotted) and for only considering strainwhile themagneticfield rotation is assumed to
be perfectly circular (light blued dotted).
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compared to the calculated transition frequencies for the case where only the known effective field is considered
while themagnetic field rotation is assumed to be perfectly circular. From this comparison it becomes apparent
that only the pair of higher frequency transitions is significantly affected by the ellipticity of themagnetic field, as
the states involved in these transitions aremore susceptible tomagnetic fields than the ones pertaining to the
low-frequency pair of transitions.Moreover, the amplitude of thewiggles induced by the ellipticity is very
similar to the amplitude of thewiggles induced by the effective field, thus both effects are of comparable order.
Nevertheless, we conclude fromour simulations, that this experimental imperfection does not affect any of the
otherfindings we report on here.

5. Conclusion

In this paper, we presented high-resolution, low-powerODMRspectroscopy studies on singleNVdefect centers
in diamond to characterize their local effective field environment. Our approach is based on a detailed
examination of theNV spin’s allowedmagnetic dipole transitions, which are affected by the interaction of the
MWprobing field and the intrinsic effective field. Comparingwith previous studies onNV ensembles inmore
strongly doped diamonds, we found that in our case of singleNVs in high purity diamonds, strain is themajor
contribution to the effective field. In addition, we demonstrated a newmethod for performing single spin-based,
linear polarization analysis ofMWfields based on low-field, high-resolutionODMR inwell-controlled bias
fields.

The fact that our conclusions on the nature of the local effective field of the singleNV spinswe investigated
differ from recent studies onNV ensembles [19], highlights the importance of characterizing such fields in a
quantitative and effective way for future quantum technology development. Such characterization is then
particularly relevant forNV-based quantum sensing applications where low-field operation is key. Examples for
these include nanoscalemagnetic imaging ofmagnetically sensitive samples [32], orNV-based low-field
techniques like zero and ultra-lowfieldNMR [33]. The novelMWpolarization analysis we demonstrated could
find applications inNV-basedMWimaging [34, 35], which until nowwas only demonstrated for sensing of
circularly polarizedMWs [36]. Our results extend these capabilities and the existing toolset ofNV-based
quantum sensingmodalities andwould in principle allow for determining the full polarization state ofMW
fields with nanoscale resolutions, which has relevance inMWelectronics [37] or spintronics devices [38].
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AppendixA.Derivation of transition imbalances for = m 1I

In order to derive the transition imbalance for the = m 1I hyperfine projections atB=0 as stated in
equation (8), we consider theHamiltonian

 = + P + P - + P +( ) ∣ ∣ ( ) ( ) ( )h D S A S S S S S S S . A1z z z x y x y x y y x0
2

HF
2 2

Note that the sign of the hyperfine interaction isflipped compared to equation (8) asAHF<0. Following [19],
we use the same procedure as in themain text and first calculate the corresponding eigenstates

l
l

l
l

-ñ=
+

+ ñ + - ñ

+ñ=
+

+ ñ - - ñ

j

j

P
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Using equations (3) and (4)wefind for the transition strengths


p m l l j j

l
~

+ +
+


^ P( ) ( ) ( )

( )
( )

h

B2 2

2

1 2 cos 2

2 1
. A4B

0,

2

2

MW 2 2
MW

2

Thus, the transition imbalance for themI=±1 nuclear spin projections  
 

= -
+

+ -

+ -

0, 0,

0, 0,
is given by


l
l

j j= -
+

+ P( ) ( )2

1
cos 2 . A5

2 MW

Considering the case P̂  ∣ ∣AHF , we can approximate l » P̂
∣ ∣A2 HF

and thenfind tofirst order that the

imbalance is

 j j» -
P

+^
P∣ ∣

( ) ( )
A

cos 2 , A6
HF

MW

as stated in equation (8) in themain text.

Appendix B. Alignment and control of themagneticfield

Our experimental setup comprises three pairs of coils arranged in aHelmholtz-like setup, i.e. the spatial
separation between corresponding coilsmatches their diameter (X,Y-pairs) or their radius (Z-pair) [30]. Each
pair is driven by a constant-current source (Agilent E3644A) enabling software-based three-dimensional
magnetic field control.We performed the calibration of themagnetic field calibrationwith a Teslameter (Projekt
Elektronic, FM302with transverse probeAS-NTM).

To align themagnetic field to a desiredNVorientationwe used the procedure described in detail in the
supplementarymaterial of [39]. Thismethod relies on the controlled rotation of themagnetic field in space and
the resulting effect on theNV’sODMR frequency. Comparing the experimental data with our simulations
allows us to estimate two important parameters: First, the simulations show that the achieved alignment
uncertainty is within< 0.2° to a desired direction (otherwise the outer two degenerate states would be split in
figure 4(a)). Second, we estimated that the ellipticity of themagnetic field rotation is characterized by aflattening
f<0.04, otherwise the observedwiggles infigure 4(a)would be larger. The fact that we observed such an
ellipticitymay be attributed to uncertainty in the calibration of the coils.

Both facts, however, only appear in the data offigure 4, as we applied and rotated a large perpendicular
magnetic field of =B̂ 32 G in this case. For the othermeasurements thatwe used to extract the effective field
parameters, themagnetic fields are static and only used to cancel externalmagnetic fields (i.e. earthmagnetic
field). Thus, the extracted effective field parameters are not affected.

ORCID iDs

J Kölbl https://orcid.org/0000-0003-1983-952X
MKasperczyk https://orcid.org/0000-0003-1258-6523
PMaletinsky https://orcid.org/0000-0003-1699-388X

References

[1] DohertyMW,MansonNB,Delaney P, Jelezko F,Wrachtrup J andHollenberg LCL 2013Phys. Rep. 528 1
[2] Dolde F et al 2011Nat. Phys. 7 459
[3] Dolde F et al 2014Phys. Rev. Lett. 112 097603
[4] Toyli DM, de las Casas C F, ChristleD J, Dobrovitski VV andAwschalomDD2013Proc. Natl Acad. Sci. 110 8417
[5] NeumannP et al 2013Nano Lett. 13 2738
[6] KucskoG,Maurer PC, YaoNY, KuboM,NohH J, Lo PK, ParkH and LukinMD2013Nature 500 54
[7] MaclaurinD,DohertyMW,Hollenberg LCL andMartinAM2012Phys. Rev. Lett. 108 240403
[8] LedbetterMP, JensenK, Fischer R, Jarmola A andBudkerD 2012Phys. Rev.A 86 052116
[9] AjoyA andCappellaro P 2012Phys. Rev.A 86 062104
[10] Maze J R et al 2008Nature 455 644
[11] GrinoldsMS,Hong S,Maletinsky P, Luan L, LukinMD,WalsworthR L andYacobyA 2013Nat. Phys. 9 215
[12] Rondin L, Tetienne J-P,Hingant T, Roch J-F,Maletinsky P and Jacques V 2014Rep. Prog. Phys. 77 056503
[13] BalasubramanianG et al 2009Nat.Mater. 8 383
[14] PhamLM, Bar-Gill N, BelthangadyC, Le SageD, Cappellaro P, LukinMD, Yacoby A andWalsworth R L 2012 Phys. Rev.B 86 045214
[15] Gruber A,Dräbenstedt A, Tietz C, Fleury L,Wrachtrup J and von Borczyskowski C 1997 Science 276 2012
[16] WeitekampDP, Bielecki A, ZaxD, ZilmK andPines A 1983Phys. Rev. Lett. 50 1807
[17] Thayer AMandPines A 1987Acc. Chem. Res. 20 47
[18] ZhengH et al 2019Phys. Rev. Appl. 11 064068
[19] Mittiga T et al 2018Phys. Rev. Lett. 121 246402

10

New J. Phys. 21 (2019) 113039 J Kölbl et al

https://orcid.org/0000-0003-1983-952X
https://orcid.org/0000-0003-1983-952X
https://orcid.org/0000-0003-1983-952X
https://orcid.org/0000-0003-1983-952X
https://orcid.org/0000-0003-1258-6523
https://orcid.org/0000-0003-1258-6523
https://orcid.org/0000-0003-1258-6523
https://orcid.org/0000-0003-1258-6523
https://orcid.org/0000-0003-1699-388X
https://orcid.org/0000-0003-1699-388X
https://orcid.org/0000-0003-1699-388X
https://orcid.org/0000-0003-1699-388X
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1038/nphys1969
https://doi.org/10.1103/PhysRevLett.112.097603
https://doi.org/10.1073/pnas.1306825110
https://doi.org/10.1021/nl401216y
https://doi.org/10.1038/nature12373
https://doi.org/10.1103/PhysRevLett.108.240403
https://doi.org/10.1103/PhysRevA.86.052116
https://doi.org/10.1103/PhysRevA.86.062104
https://doi.org/10.1038/nature07279
https://doi.org/10.1038/nphys2543
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1038/nmat2420
https://doi.org/10.1103/PhysRevB.86.045214
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1103/PhysRevLett.50.1807
https://doi.org/10.1021/ar00134a001
https://doi.org/10.1103/PhysRevApplied.11.064068
https://doi.org/10.1103/PhysRevLett.121.246402


[20] DohertyMW,Michl J, Dolde F, Jakobi I, Neumann P,MansonNB andWrachtrup J 2014New J. Phys. 16 063067
[21] DohertyMW,Dolde F, FedderH, Jelezko F,Wrachtrup J,MansonNB andHollenberg LCL 2012Phys. Rev.B 85 205203
[22] VanOort E andGlasbeekM1990Chem. Phys. Lett. 168 529
[23] Udvarhelyi P, ShkolnikovVO,Gali A, BurkardG and Pályi A 2018Phys. Rev.B 98 075201
[24] Barfuss A, KasperczykM,Kölbl J andMaletinsky P 2019Phys. Rev.B 99 174102
[25] BarsonMS J et al 2017Nano Lett. 17 1496
[26] DréauA, LesikM, Rondin L, Spinicelli P, Arcizet O, Roch J-F and Jacques V 2011Phys. Rev.B 84 195204
[27] ChuY et al 2014Nano Lett. 14 1982
[28] Teissier J, Barfuss A, Appel P,Neu E andMaletinsky P 2014Phys. Rev. Lett. 113 020503
[29] Barfuss A, Teissier J, NeuE,NunnenkampA andMaletinsky P 2015Nat. Phys. 11 820
[30] Barfuss A 2017Hybrid spin-nanomechancis with single spins in diamondmechanical oscillators PhDThesisUniversity of Basel, Basel
[31] AcostaVM, Bauch E, LedbetterMP,WaxmanA, Bouchard L-S andBudkerD 2010Phys. Rev. Lett. 104 070801
[32] Tetienne J-P et al 2014 Science 344 1366
[33] JiangM, Frutos R P,WuT, Blanchard JW, PengX andBudkerD 2019Phys. Rev. Appl. 11 024005
[34] Appel P, GanzhornM,Neu E andMaletinsky P 2015New J. Phys. 17 112001
[35] Horsley A, Appel P,Wolters J, Achard J, Tallaire A,Maletinsky P andTreutlein P 2018Phys. Rev. Appl. 10 044039
[36] WangP, YuanZ,Huang P, RongX,WangM,XuX,DuanC, JuC, Shi F andDu J 2015Nat. Commun. 6 6631
[37] Rosner BT andVanDerWeideDW2002Rev. Sci. Instrum. 73 2505
[38] Andrich P, de las Casas C F, LiuX, BretscherHL, Berman J R,Heremans F J,Nealey P F andAwschalomDD2017NpjQuantum Inf.

3 28
[39] Thiel L, RohnerD,GanzhornM,Appel P,Neu E,Müller B, Kleiner R, Koelle D andMaletinsky P 2016Nat. Nanotechnol. 11 677

11

New J. Phys. 21 (2019) 113039 J Kölbl et al

https://doi.org/10.1088/1367-2630/16/6/063067
https://doi.org/10.1103/PhysRevB.85.205203
https://doi.org/10.1016/0009-2614(90)85665-Y
https://doi.org/10.1103/PhysRevB.98.075201
https://doi.org/10.1103/PhysRevB.99.174102
https://doi.org/10.1021/acs.nanolett.6b04544
https://doi.org/10.1103/PhysRevB.84.195204
https://doi.org/10.1021/nl404836p
https://doi.org/10.1103/PhysRevLett.113.020503
https://doi.org/10.1038/nphys3411
https://doi.org/10.1103/PhysRevLett.104.070801
https://doi.org/10.1126/science.1250113
https://doi.org/10.1103/PhysRevApplied.11.024005
https://doi.org/10.1088/1367-2630/17/11/112001
https://doi.org/10.1103/PhysRevApplied.10.044039
https://doi.org/10.1038/ncomms7631
https://doi.org/10.1063/1.1482150
https://doi.org/10.1038/s41534-017-0029-z
https://doi.org/10.1038/nnano.2016.63

	1. Introduction
	2. Theoretical background
	2.1. Hamiltonian of the NV center
	2.2. Influence of the effective field
	2.3. Magnetic dipole transition strengths

	3. High-resolution spectroscopy
	3.1. Experimental details
	3.2. Spectroscopy around zero magnetic field
	3.3. Comparison of transition strengths
	3.4. Characterization of individual NV centers

	4. Determining the MW polarization angle
	5. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



