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Abstract

We present high-resolution optically detected magnetic resonance spectroscopy on single nitrogen-
vacancy (NV) center spins in diamond at and around zero magnetic field. The experimentally
observed transitions depend sensitively on the interplay between the microwave (MW) probing field
and the local intrinsic effective field comprising strain and electric fields, which act on the NV spin.
Based on a theoretical model of the magnetic dipole transitions and the MW driving field, we extract
both the strength and the direction of the transverse component of the effective field. Our results
reveal that for the diamond crystal under study, strain is the dominant contribution to the effective
field. Our experiments further yield a method for MW polarization analysis in a tunable, linear basis,
which we demonstrate on a single NV spin. Our results are of importance to low-field quantum
sensing applications using NV spins and form a relevant addition to the ever-growing toolset of spin-
based quantum sensing.

1. Introduction

The nitrogen-vacancy (NV) center in diamond [ 1] has long shown promise as an excellent sensor, due to its
exceptional sensitivity to external fields. It has demonstrated far-reaching potential in applications ranging from
electrometry [2, 3] and thermometry [4—6] to precession gyroscopy [7-9] and, most notably, magnetometry
[10-12]. The NV’s success results from a range of useful properties, including its long spin dephasing times

[13, 14], its atomic size, and its ability to be optically initialized and read out [ 1, 15]. All of these characteristics
contribute to make the NV a highly sensitive system with nanoscale spatial resolution, even at ambient
conditions.

The NV spin’s impressive sensitivity is, however, also its weakness. Local intrinsic fields arising from lattice
strain, paramagnetic impurities, and electric fields induced by surface charges all limit the NV’s ability to detect
and characterize external signals of interest. Techniques operating at low magnetic fields, such as zero-field
nuclear magnetic resonance (NMR) [16, 17] and low-field magnetometry [18] are especially vulnerable to these
parasitic fields [19]. Their relevance and future prospects motivate extended studies to precisely characterize the
environment surrounding NV spins.

High-resolution spectroscopy offers a set of tools to study the interaction of various local intrinsic and
externally applied fields. For example, NV ensembles in type-Ib diamond were probed with microwave (MW)
manipulation fields at zero magnetic field to investigate intrinsic effective fields, which represent the combined
effects of strain and electric fields [19]. This ensemble study revealed that for the particular diamonds under
study, the electric field was the dominant contribution to the effective field. A similar technique was introduced
to determine the orientation of single NVs [20] by simultaneously applying external electric and magnetic fields.
However, a systematic study of the effective fields for individual NV centers in high purity diamond has not been
reported so far.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Here, we use high-resolution, low-power optically detected magnetic resonance (ODMR) spectroscopy to
characterize in detail the intrinsic effective fields affecting single NVs in high purity, type-Ila diamond. In
contrast to the results mentioned above [19], we find that in our samples the strain contribution to the effective
field dominates over the electric field in low-field ODMR measurements of single NVs. We tentatively assigned
this discrepancy to the higher dopant density in the samples of [19]. Moreover, by applying external magnetic
fields and exploiting the magnetic dipole selection rules we directly probe the MW polarization at the NV
position. Thus, our method offers a characterization tool for both the intrinsic effective field and the MW
manipulation field, paving the way for future sensing applications.

In our experiments, we perform ODMR measurements on a selection of individual NV spins, and thereby
extract information about the local environment of each NV defect. Quantitative analysis of our results requires
adetailed understanding of the NV spin transition strengths under ODMR driving at low fields. To that end, we
firstintroduce the Hamiltonian describing the hyperfine structure of the NV’s ground state in the presence of
magnetic, electric, and strain fields. We then present a model to describe how these fields influence the selection
rules of the magnetic dipole spin transitions. Based on this model, we calculate the transition magnetic dipole
moments and thereby the fluorescence signal we expect to observe in our experiments. By comparing our theory
to our experimental data, we are then able to directly characterize the local strain and electric field environment
and, in a separate experiment, determine the MW polarization used to drive the spin transitions.

2. Theoretical background

2.1. Hamiltonian of the NV center
The NV center is a paramagnetic lattice defect in diamond comprising a substitutional nitrogen atom adjacent to
a lattice vacancy (refer to figure 1(a)). The axis joining the nitrogen atom and the vacancy points along diamonds
(111) crystal direction and defines the defect’s symmetry axis. In the negative charge state we consider here, the
NV defect traps an additional electron, resultinginan § = 1 electronic spin ground state. The corresponding
spin eigenstates of the S, operator with respect to the NV axis are the |71,) spin projection states with eigenvalues
mg = 0, +1[1]. Spin—spin interactions lead to a zero-field splitting D, between the |0) and the degenerate | +1)
states. External and intrinsic fields further alter the states’ energies. Besides being sensitive to magnetic fields
through the Zeeman effect, the |m;) states are also susceptible to electric and strain fields [2], caused by spin—
orbit and spin—spin mixing of the ground and excited states. Moreover, interactions with the nuclear spin of the
"N nucleus lead to a hyperfine coupling and additional structure.

Considering all of these interactions leads to the Hamiltonian describing the NV’s ground state [1]:

H/h = Do+ I1)S? + ynvB - S + AurS. L + IL(S; — S7) + IL,(S:S, + S,S), 1)

where § = [S,, S,, S,] I = [, I, L])is the vector of the dimensionless electronic (nuclear) S = 1 (I = 1) spin
operators of the NV (**N) spin and & is the Planck constant. The zero-field splitting is Dy ~ 2.87 GHz, and the
coupling parameters are the axial hyperfine parameter Ayr = —2.14 MHz and the NV gyromagnetic ratio
Yy = 2.8 MHz G ! [1]. The magnetic field B = [By, B,, B,]and the effective field IT = [II,, II,, II ] are
given in the coordinate frame (xyz) of the NV, where z denotes the NV axis and we choose y to lie in one of the
NV symmetry planes (see figure 1(a)). The effective field defined as the combined strain and electric field [21] is
represented by [, = d|E, + M andIl,, = d, E,, + M, ,, where E = [E,, E,, E.]is the electric field and
d” = 0.35Hz cm V- !'and d| = 17 Hz cm V~!are the axial and transverse electric field susceptibilities,
respectively [22]. The parameters of the spin-strain interaction M, ,, , weight the components of the strain
tensor € with the corresponding spin-strain coupling-strength susceptibilities (refer to [23, 24] for more details).
Note that Hamiltonian (1) neglects the non-axial hyperfine interaction, which is suppressed by the zero-field
splitting, the nuclear electric quadrupole interaction, which does not cause a state mixing and therefore does not
affect the transition frequencies, and the nuclear Zeeman coupling, as these contributions do not affect the spin
states in the parameter regime we consider here.

In absence of magnetic, electric and strain fields, the level structure is dominated by the zero-field splitting,
which shifts the |1-1) states with respect to |0) by Dy as illustrated in figure 1(b). An additional splitting of the
| 1) levels is induced by the hyperfine interaction |Ayg|, leaving three two-fold degenerate hyperfine eigenstates
labeled with | +1, my;), where m; = 0, +1are the eigenvalues of the I, nuclear spin operator (see in figure 1(b)).
Note, that |0) is not affected by the hyperfine interaction, i.e. |0, #1) is three-fold degenerate.

2.2. Influence of the effective field

To quantify the influence of the effective field IT on the NV level structure, it is convenient to partition the field
vectors into components parallel and perpendicular to the NV axis (z-axis), i.e. to write

IT = [II, cos pp, 11, sin gy, II)] (see figure 1(a)). Here, ITj = 11, is the paralleland II, = (112 + Hf,)l/2 isthe
perpendicular effective field amplitude. The direction of I, in the transverse xy-plane is characterized by the
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Figure 1. Description of the experimental setup. (a) Coordinate system of the NV defect center with the relevant fields interacting with
the NV spin: The MW magnetic field (red) for spin manipulation, the effective field comprising strain and electric field (light blue)
intrinsic to the diamond sample and the static magnetic field (green) externally applied to determine unknown MW polarizations. All
fields are partitioned into components parallel and perpendicular to the NV symmetry axis, where the perpendicular components are
further parametrized by the azimuthal angle ¢, (o« € {MW, II, B}). (b) Level diagram of the NV ground state according to
Hamiltonian (1) without and with the effective field in absence of a magnetic field. The effective field induces a common-mode shift of
the |£1) hyperfine levels by ITjand additionally splits near-degenerate levels which have the same nuclear spin projection (here

my = 0). AMW magnetic field is used to address transitions between the states. (c) Schematic of the experimental setup with a
diamond sample and a nearby bonding wire for MW delivery. The NV spin under study experiences an approximately linear polarized
field which is used to manipulate the NV spin (the situation shown corresponds to the one of NV1).

azimuthal angle oy with respect to the x-axis, defined by tan ¢, = I, /TI. We will treat B the same, with B, B,
and ¢ defined similarly.

According to Hamiltonian (1), the effective field IT affects the level structure in two ways: (1) an axial
effective field shifts the |£1) states with respect to |0) by an amount IIj; (2) a transverse effective field couples the
|+1) states with the same nuclear spin projection. When B = 0, the transverse effective field mixes and splits the
degenerate |4 1) states with m; = 0, leading to new spin eigenstates given by

|—) = (e'¥n] + 1) + |-1))/V2,
|+) = (elon|+1) — | — 1)) /Y2, 2

where we have omitted the label for the nuclear spin projection m; = 0 for clarity. The corresponding
eigenenergies are E+ = Dy + II & II, asshown infigure 1(b). Thus, besides the level shift of I experienced by
all nuclear spin projections, the coupled states | +) are split by 211, due to the presence of the effective field.
Interestingly, the spin is far more susceptible to transverse effective fields when the electric field dominates
since d; =~ 50d| [22]. In contrast, all spin-strain susceptibilities are comparable [24, 25]. As a result, the average
effect of a randomly oriented electric field leads to a large splitting with negligible common-mode shift (i.e.
IT, > I}, on average), while in the case of strain the splitting is accompanied with a common-mode shift in the
same order of magnitude (i.e. I, ~ II, onaverage). This key difference allows high-resolution spectroscopy of
NV spins to differentiate between the electric field and strain contributions of the effective field, as we will show
in the following.
Note that although we focus here on the case B = 0 and m; = 0, similar statements hold for the case
v B) = £|Aurland m; = 1 as well.

2.3.Magnetic dipole transition strengths
In addition to shifting and splitting the hyperfine states, the effective field IT also influences the dipole moment
of the spin transitions. Experimentally, these spin transitions are probed by a MW field
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BMW (1) = BMW cos(wyw t) with frequency wynw and (complex) amplitude BMY, which interacts with the

corresponding magnetic dipole moment. As the dipole moment determines the polarization response of the
transition, it is ultimately linked to the observed transition strengths.

Taking the common steps to transform into a rotating frame and applying the rotating wave approximation,
the Rabi frequencies associated with the resonant spin transitions between |0) and |+) induced by the magnetic
dipole interaction read

27 27
Qo+ = 7|<i| — BV . u|0)| = 7|BMW Mol (3)
where the magnetic dipole moment operatoris pt = —hy, S = —215S with p15 being the Bohr magneton. In
equation (3) we introduced the magnetic dipole matrix elements
Koy = (£]pl0) = — 245 (£18]0). (4)

Evaluating this, we find

H’O,Jr = _zluB [Sin((pﬂ/z)’ COS((pH/z)) 0],
Mo = —2pglcos(py /2), —sin(ey/2), 0], (5)

showing that the azimuthal angle of the effective field is directly linked to both dipole moments. Note that the
dipole moments are completely real, implying a linearly polarized response of the transitions. In contrast, when
B > 11, the eigenstates of Hamiltonian (1) are |0), | — 1) and |+1), and the transitions show the familiar
circularly polarized response.

According to equation (3), the relative orientation of the dipole moment to the MW field determines the
Rabi frequency of the transition and therefore the observed ODMR response [26]. The observed transition
strengths are then given by A . ~ €2 ... Writing the linearly polarized MW field amplitude as
BMY = [BMW cos s BMY sin oy BHMW], where @y is the azimuthal angle in the xy-plane (see
figure 1(a)), the transition strengths between |0) and |+-) read

MW
(2m)* 2ppB™)?
h? 2

Interestingly, the transition strengths contain information about the relative azimuthal angles of the effective

field and the linearly polarized MW driving field. Adapting the formalism of [19] this information can be derived
from the transition imbalance

-Ao,j: ~ (1 F cosQpyw + ©11)- (6)

7 Aur = Ao

= Tos & Ag = —cosLoyw + o) (7)

Given that the azimuthal angle 7 of the effective field IT can be determined up to a reflection symmetry with
respect to 2w from the transition imbalance and the magnitude of I, from the ODMR transition frequencies,
we have established that both direction and magnitude of the transverse effective field can be extracted from
high-resolution ODMR.

As mentioned earlier, the m; = £1 hyperfine projections are coupled by the effective field IT as well. At
B = 0, however, the states with the same #1;are split by 2| Ayg|, so that the transition imbalance due to the
effective field is mostly suppressed. As we typically find I, < |Ayg|in our samples, we show in appendix A that
an approximate expression for the imbalance is given by

11
T~ — = cos(2p\py + - (8
|Ang|

3. High-resolution spectroscopy

3.1. Experimental details
In order to apply our findings above to investigate the effective field IT and to determine the respective weights
of the electric field and strain, we perform high-resolution spectroscopy on single NVs centers. For our
experiments we use an electronic grade diamond (Element Six) implanted with **N (dose 10” ions cm ™2, energy
12 keV corresponding to an NV depth of ~ 25 nm) and subsequently annealed using a high-temperature
annealing process [27]. Note that several fabrication steps, e.g. etching, were performed on the sample [28],
possibly causing a larger intrinsic strain in the diamond compared to an untreated sample.

To perform low-power ODMR measurements we utilize established techniques for optical initialization and
readout of the NV spin state using a home-built confocal microscope setup [28, 29]. Three pairs of magnetic
coils allow us to apply an external magnetic field with full vector control (see appendix B and [30]). Manipulation
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Figure 2. Influence of the external fields on the electron spin transitions. (a) A magnetic field By parallel to the NV axis results ina
linear Zeeman splitting of the six possible spin transitions from |0) to |4-1). However, when two transitions with the same nuclear spin
projection m1; cross, we observe a reduced ODMR contrast, indicating a coupling of the corresponding states. (b) Line cut for
Bj = 0 G with reduced MW power including a Gaussian fit to the data (black). The central line is split by 360(18) kHz into two
transitions with an imbalance of Z = —58(5) %. (c) Zoom into the m; = 0 transitions around B ~ 0 G visualizing a clear level anti-
crossing, indicative of a coupling between both hyperfine levels. (d) Applying a transverse magnetic field B, while maintaining
Bj ~ 0 G mixes the spin levels and results in a second order energy shift (see section 4).

ofthe NV spin in the ground state is realized by MW magnetic fields. More precisely the circularly polarized
component of the MW field projection transverse to the NV axis (BM", see figure 1(a)) allows us to drive
transitions between different spin levels with the same 1y, as illustrated with the red arrow in figure 1(b). We
realize this MW driving by applying an AC current to a gold wire with a diameter of ~30 pim close to the NVs
under study (see figure 1(c)), thereby coupling the NVs to the near-field of the MW source. This configuration
leads to an approximately linearly polarized MW field at the NV’ locations.

Note that geometric considerations for our setup allow us to determine the MW polarization angle required
to interpret the experimental data (compare to equation (7)). We find ¢,y = 90° for the specific orientation of
aparticular single NV (‘NV1’). However, we will later present a technique to determine this MW polarization
angle without the requirement of such a geometric consideration. This technique, which is based on the
controlled rotation of a large transverse magnetic field, yields very good agreement with our a priori
determination of @y

3.2. Spectroscopy around zero magnetic field
To characterize our sample we first investigate the response of NV1 (inhomogeneous dephasing time of
T5" ~ 2 us)to external magnetic fields. Starting with a magnetic field parallel to the NV axis, we record pulsed
ODMR measurements [26] for various values of Bj (see figure 2(a)). The resulting spectrum shows six hyperfine
resolved spin transitions. Due to the Zeeman effect, the three nuclear spin projections with m; = +1 (m; = —1)
show a positive (negative) dispersion with magnetic field, i.e. shift to larger (smaller) frequencies. The order of
the nuclear spin projections can be established from Hamiltonian (1) (see figure 2(a)). Atand above the
maximum values of B we apply, all six ODMR transitions show the same contrast, as the nuclear spin states are
equally (thermally) populated, and the m; = —1 (m; = 1) transitions have right (left) circularly polarized
response, whereas we apply a linearly polarized MW field (an equal superposition of right and left circular
polarization). At the transition crossings where states have different values of 1y, the states do not mix and the
transition strengths, which are related to the contrast of both transitions, sum together, resulting in twice the
fluorescence drop compared to a single transition. When two crossing states have the same nuclear spin
projection 1, however, the states do mix and we observe stark differences to the case of states of unequal m;
crossing.

To investigate this observation in more detail and to verify the coupling of the corresponding states, we
record a high-resolution ODMR line cutat B = 0 (see figure 2(b)). The spectrum shows a clear splitting of the
central transition into two peaks, both having different contrast. This effect is attributed to the influence of the
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Figure 3. Comparison of the transition strengths for Bj = 0 G. Driving Rabi oscillations on each of the four transitions shown on the
right under the same experimental conditions allows us to directly compare the transition strengths. To a good approximation we find
V=03 = %(Q% + 3), as expected (see text). Note that panel ® contains two oscillation frequencies, the slowly oscillating

component of transition ® (black) and a higher frequency caused by transition @ (see text). The level diagram additionally shows the
polarization of the MW drive and the polarization response of each transition.

effective field IT, which mixes the |4 1) spin states, as explained previously. Fitting the experimental data with a
superposition of four Gaussian functions allows us to extract a splitting of 2I, = 360(18) kHz and a transition
imbalance of 7 = —58(5) %. Note that for consistency, we also obtained the same results by using continuous-
wave, instead of a pulsed ODMR (data not shown).

To ensure that our findings are not masked by any residual parallel magnetic field, we perform high-
resolution ODMR measurements with the parallel magnetic field component in the vicinity of the m; = 0
transition crossing (see figure 2(c)). We clearly resolve an anti-crossing of the two transitions (illustrated by the
dashed white line), consistent with the discussed coupling of the corresponding hyperfine states. Note that all the
measurements presented in figure 2 and the following are recorded separately and hence under slightly different
experimental conditions (e.g. temperature), leading to small variations in the zero-field splitting [31].

3.3. Comparison of transition strengths

To quantify the strengths of the involved ODMR transitions, we conduct Rabi oscillation experiments on each
transition using the same MW and laser power (see figure 3). Equation (6) directly yields a relation between the
Rabi frequencies ; (i = 1,2, 3, 4) of the four different transitions as

1
VP =0 = E(Qﬁ + ). 9)

Here, we used the labels for the transitions according to figure 3 and defined

O = QF = m)? - 2(uaBMY)?/h2. Our experimental findings agree well with this prediction, as
Q1 = 27 - 220(1) kHz ~ Q, = 2 - 210(1) kHzand (5@} + )" = 27 - 220(3) kHz, where
Q, = 27-288Q2)kHzandQ; = 2 - 118(6) kHz.

The measured transition strengths are directly linked to the polarization response of each transition (see
figure 3, right). Transitions ® and ® each involve two transitions of Am, = +1, such that they comprise both
circular polarization responses. In contrast, the transitions @ and ® correspond to transition from |0) to the
eigenstates (2), which are superpositions of |- 1) and yield a linearly polarized response of the transitions. Since
the polarization of the MW drive is approximately linear, the overlap of the drive polarization and transition
dipole determine the transition strengths (refer to equation (3)).

We note that in the experimental data for transition ®, there are two oscillation frequencies present (see gray
fit). The slowly oscillating component highlighted by the black line corresponds to driving of transition @, while
the quickly oscillation component originates from off-resonant driving of transition @ which is neglected in the
black line.

Additionally, the slight mismatch between €2; and €2, is a direct consequence of the coupling between the
m,; = =£1 spin states with the same nuclear spin projection (rm; = £1) presentat B = 0. This discrepancyis

6



10P Publishing

NewJ. Phys. 21 (2019) 113039 JKolbl et al

(2) = : : : —~ (b) : : : : : :
NV6 600 0.6
NV5 N 400 04
g
~ 200 0.2
NV4 = g
50 g
= 03
NV3 £ E
S, —
é 200 02
NV2 =
8 -400 0.4
NV1
10% contrast 600 0.6
2869 2870 2871

MW frequency (MHz)

Figure 4. Characterization of the effective fields of selected single NV centers. (a) High resolution ODMR spectra for Bj = 0 G for
several single NV centers showing a splitting of the m; = 0levels and transition imbalances of the corresponding transitions. (b)
Summary of the extracted splittings and transition imbalances from (a) and schematic illustration of the transverse effective field
component for each NV (numbers refer to NV labels). Each dataset is consistent with two possible values for ¢y and both possible
effective field orientations are shown for each NV.

caused by the transition imbalance described in equation (8). This slight mixing means that the transitions show
an elliptically polarized response, rather than a purely circularly polarized response.

3.4. Characterization of individual NV centers

Having established our technique to probe and characterize the effective field IT of a single NV, we now apply
this method to investigate the field environment of a selection of individual N'Vs. For that we perform high-
resolution ODMR measurements at B = 0 as outlined earlier and studied the splitting and transition imbalance
of the m; = 0 transitions (see figure 4(a)). We find that the splitting and transition imbalance is different for each
NV under study, indicating a different effective field environment for each defect. Comparing the mean
transition frequency for each NV with the averaged transition frequency over all NVs, we find that the observed
shifts and splittings are of the same order of magnitude, which indicates that strain is the dominant contribution
to the effective field. This observation differs from the findings of [ 19], where the electric field originating from
charge impurities was identified as the main effective field contribution in their samples. However, our method
does not allow a complete determination of the effective field, since we are not able to determine the parallel
component I1|. The zero-field splitting depends sensitively on temperature [31], i.e. both temperature and the
parallel effective field component have the same effect on the observed transition frequencies. Nevertheless, we
can identify strain as the major contribution to the effective field, as we typically observe peak-to-peak
temperature fluctuations of 0.3 K in our setup corresponding to temperature-induced shifts of ~23 kHz, much
smaller than the ones observed in figure 4(a).

Using Gaussian fits we extract the splittings 211, and transition imbalances for each ODMR spectrum in
figure 4(a) and summarize the results in figure 4(b). Using equation (7) allows us to visualize the transverse
effective field components in the NV frames up to a reflection symmetry with respect to 2 as presented in
the inset of figure 4(b). Here, the transverse effective field amplitudes are normalized with respect to NV1 and we
used the MW polarization angle of NV1 as determined in the following section 4. Note that figure 4 shows NVs
with all four possible orientations in the diamond lattice, which experience different relative MW polarization
angles accordingly and therefore show a different symmetry behavior. Once we know the polarization angle for a
single NV, geometric considerations allow us to infer the corresponding angles for the other NV orientations. To
determine oy without ambiguity, one can e.g. conduct a second set of measurements with a different MW
polarization angle @y pw.

4. Determining the MW polarization angle

We finalize our spectroscopy study of the effective field by establishing a method to experimentally determine
the MW polarization angle. To do so, we exploit the response of the hyperfine spin transitions to a purely
transverse magnetic field. Because a transverse magnetic field couples | +1) states in second order, the transition
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Figure 5. Determination of the MW polarization angle ), by rotating the transverse magnetic field component around the
quantization axis of NV1. (a) Experimental data for B, = 32 Gand B = 0 G. The transition strengths of all states oscillate. Periodic
‘wiggles’ in the transition frequencies are caused by intrinsic strain in the diamond lattice and imperfect rotation of the magnetic field
(see text). (b) Comparing the experimental data with the calculation based on Hamiltonian (1) allows for determining the MW
polarization angle in the transverse plane in the reference frame of NV1to be ¢,y = 89.2(8)° with respect to the x-axis. To quantify
the relative contributions of intrinsic strain and the elliptic magnetic field rotation we additionally show the simulated transition
frequencies for considering both aspects (gray dotted) and for only considering strain while the magnetic field rotation is assumed to
be perfectly circular (light blued dotted).

frequencies show a quadratic dependence on the field (see figure 2(d) for data on NV1). Similarly to figure 2(a),
the spectrum shows in total six transitions. However, the corresponding states of the two outer transitions are
degenerate, resulting in four resolvable transitions with the outer two having twice the contrast relative to the
inner ones. The inner transitions approach the dominant outer transitions for large fields, indicating a tilting of
the spin quantization axis towards the transverse field axis.

At B, = 32 G (thelargest transverse magnetic field amplitude achievable in our setup) we study the
influence of the azimuthal angle of the transverse field (o5 while setting B| = 0 G (within our experimental
resolution). In this situation, we change ¢y and perform pulsed ODMR measurements on the hyperfine
transitions (see figure 5(a)). We observe clear oscillations of the contrasts of the four transitions as a function of
wp. Specifically, the contrasts of the two lower frequency transitions (at ~ 2871 MHz and ~ 2 872.5 MHz)
oscillate in phase, as do the contrasts of the two higher frequency transitions (at ~ 2 875.5 MHz and
~ 2877 MHz). However, the contrast-oscillations of these two pairs of transitions oscillate out of phase as a
function of g, with a phase shift ~ 7/2, i.e. the lower frequency transitions have highest contrast when the
higher frequency transitions have low contrast, and vice versa.

Using a similar theoretical model as previously introduced, we calculate the transition strengths based on
Hamiltonian (1). As we consider the regime vy, B. > II,, |Ayg|, the effective field and hyperfine coupling can
be neglected in first order. The eigenstates of the Hamiltonian thus read |0) =~ |0) and |£), where | +) are mixed
states of | 1) due to the presence of the transverse magnetic field. In analogy to our earlier results, we find the
transition strengths

2T
Aoz~ 1 = 0 |BMW - g 2 |~ 2 > (1 & cos(2p — 2¢pw))> (10)
where we have used the magnetic dipole matrix elements g, ; = —241; (£[8]0). According to equation (10)

rotating the transverse magnetic field component by changing g leads to oscillations in the transition strengths
of the involved transitions. The 7m-periodicity of these oscillations is induced by the periodic change of the
overlap of the MW polarization and the dipole moments, and is mirrored by the alternating ODMR contrast in
the experiment. The phase offset of these oscillations is related to the MW polarization angle oy pw. Thus, by
analyzing the experimental data we find ¢,y = 89.2(8)° in the reference frame of NV1.

Equation (10) reproduces the experimentally observed oscillations in the transition intensity. According to
the presented model, however, the frequencies of the observed transitions should not be affected by varying ¢p.
Instead, the observed ‘wiggles’ in the transition frequencies are attributed to the influence of the neglected
effective field and the effect of an imperfect, elliptical rotation of the transverse magnetic field amplitude. We
numerically modeled both aspects by simulating our experiment based on Hamiltonian (1) (see figure 5(b)). For
the simulation, we used the effective field parameters extracted from figure 2(b) and a realistic ellipticity of the
transverse magnetic field rotation characterized by a flattening of f = 0.039. With that we are able to reproduce
the wiggling of the transition frequencies and the asymmetric shift of the transition contrast. To characterize the
relative contribution of both effects, figure 5(b) further shows the simulated transition frequencies. These can be
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compared to the calculated transition frequencies for the case where only the known effective field is considered
while the magnetic field rotation is assumed to be perfectly circular. From this comparison it becomes apparent
that only the pair of higher frequency transitions is significantly affected by the ellipticity of the magnetic field, as
the states involved in these transitions are more susceptible to magnetic fields than the ones pertaining to the
low-frequency pair of transitions. Moreover, the amplitude of the wiggles induced by the ellipticity is very
similar to the amplitude of the wiggles induced by the effective field, thus both effects are of comparable order.
Nevertheless, we conclude from our simulations, that this experimental imperfection does not affect any of the
other findings we report on here.

5. Conclusion

In this paper, we presented high-resolution, low-power ODMR spectroscopy studies on single NV defect centers
in diamond to characterize their local effective field environment. Our approach is based on a detailed
examination of the NV spin’s allowed magnetic dipole transitions, which are affected by the interaction of the
MW probing field and the intrinsic effective field. Comparing with previous studies on NV ensembles in more
strongly doped diamonds, we found that in our case of single NVs in high purity diamonds, strain is the major
contribution to the effective field. In addition, we demonstrated a new method for performing single spin-based,
linear polarization analysis of MW fields based on low-field, high-resolution ODMR in well-controlled bias
fields.

The fact that our conclusions on the nature of the local effective field of the single NV spins we investigated
differ from recent studies on NV ensembles [ 19], highlights the importance of characterizing such fieldsin a
quantitative and effective way for future quantum technology development. Such characterization is then
particularly relevant for NV-based quantum sensing applications where low-field operation is key. Examples for
these include nanoscale magnetic imaging of magnetically sensitive samples [32], or NV-based low-field
techniques like zero and ultra-low field NMR [33]. The novel MW polarization analysis we demonstrated could
find applications in NV-based MW imaging [34, 35], which until now was only demonstrated for sensing of
circularly polarized MWs [36]. Our results extend these capabilities and the existing toolset of NV-based
quantum sensing modalities and would in principle allow for determining the full polarization state of MW
fields with nanoscale resolutions, which has relevance in MW electronics [37] or spintronics devices [38].
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Appendix A. Derivation of transition imbalances for m; = +1

In order to derive the transition imbalance for the m; = £ 1 hyperfine projections at B = 0 as stated in
equation (8), we consider the Hamiltonian

H/h = (Do + I1)S} F |AnelS: + IL(S; — SP) + IL,(S:S, + S,S). (A1)

Note that the sign of the hyperfine interaction is flipped compared to equation (8) as Agg < 0. Following [19],
we use the same procedure as in the main text and first calculate the corresponding eigenstates
1 .
|=) = ——=(¥1] +1) + A|-1)),
V14X

1

[+) = ——=(\el¥n|+1) — | — 1)), (A2)
V1 + N
where we have defined
2
A = Pl 1+(HL)—1. (A3)
I, |Ang|
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Using equations (3) and (4) we find for the transition strengths
@m)? QugBY™ )2 1+ N F 2X cosQpyw + )

A A4
RE® 2 21 + ) a4
Thus, the transition imbalance for the m; = +1 nuclear spin projections J = % is given by
0,+ 0,—
2\
J=———"—cos(2 + . A5
T+ X Qovw + ¢n) (A5)
Considering the case I} < |Apg|, we can approximate \ = 5 Il} I and then find to first order that the
HF
imbalance is
1L
T~ — cosoyw + ©m)» (A06)
| A

as stated in equation (8) in the main text.

Appendix B. Alignment and control of the magnetic field

Our experimental setup comprises three pairs of coils arranged in a Helmholtz-like setup, i.e. the spatial
separation between corresponding coils matches their diameter (X, Y-pairs) or their radius (Z-pair) [30]. Each
pair is driven by a constant-current source (Agilent E3644A) enabling software-based three-dimensional
magnetic field control. We performed the calibration of the magnetic field calibration with a Teslameter (Projekt
Elektronic, FM 302 with transverse probe AS-NTM).

To align the magnetic field to a desired NV orientation we used the procedure described in detail in the
supplementary material of [39]. This method relies on the controlled rotation of the magnetic field in space and
the resulting effect on the NV’s ODMR frequency. Comparing the experimental data with our simulations
allows us to estimate two important parameters: First, the simulations show that the achieved alignment
uncertainty is within < 0.2° to a desired direction (otherwise the outer two degenerate states would be split in
figure 4(a)). Second, we estimated that the ellipticity of the magnetic field rotation is characterized by a flattening
f < 0.04, otherwise the observed wiggles in figure 4(a) would be larger. The fact that we observed such an
ellipticity may be attributed to uncertainty in the calibration of the coils.

Both facts, however, only appear in the data of figure 4, as we applied and rotated a large perpendicular
magnetic field of B = 32 G in this case. For the other measurements that we used to extract the effective field
parameters, the magnetic fields are static and only used to cancel external magnetic fields (i.e. earth magnetic
field). Thus, the extracted effective field parameters are not affected.
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