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Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures
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We investigate the relationship between ion implantation and the optical linewidth of the nitrogen vacancy
(NV) zero-phonon line (ZPL) in bulk and structured samples. We also propose a novel approach to ion
implantation that we name postimplantation, in which nitrogen is implanted after all fabrication processes
have been completed. We examine three post-implanted samples, one implanted with 14N and two with
15N isotopes. We perform photoluminescence excitation (PLE) spectroscopy to assess optical linewidths and
optically detected magnetic resonance (ODMR) measurements to isotopically classify the NV centers. From
this, we find that NV centers formed from nitrogen naturally occurring in the diamond lattice are characterized
by a linewidth distribution peaked at an optical linewidth nearly two orders of magnitude smaller than the
distribution characterizing most of the NV centers formed from implanted nitrogen. Surprisingly, we also observe
a number of 15NV centers with narrow (<500 MHz) linewidths, implying that implanted nitrogen can yield NV
centers with narrow optical linewidths. We further use a Bayesian approach to statistically model the linewidth
distributions, to accurately quantify the uncertainty of fit parameters in our model, and to predict future linewidths
within a particular sample. Our model is designed to aid comparisons between samples and research groups, in
order to determine the best methods of achieving narrow NV linewidths in structured samples.
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I. INTRODUCTION

Excellent spectral properties and low spectral noise are
a necessity for most quantum communications and entan-
glement protocols. Whether the goal is to entangle atoms
in different cities [1], to relay quantum information across
vast distances through a communications channel [2], to
couple a qubit to a photonic cavity [3,4], or to study the
interference between two qubits [5], some of the biggest
successes of quantum technology rely on quantum sources
that are spectrally stable [6]. The nitrogen vacancy (NV)
center in diamond has been particularly successful in a variety
of quantum information experiments, as the NV spin can
be coupled to its optical degree of freedom [3,5–8]. Yet a
key challenge remains in creating NV centers with good
spectral properties in nano-structured samples, even though
many groups have studied diverse methods of creating NVs.
These methods include implantation and annealing [9–11],
laser writing of NV centers [12,13], and high-energy electron
irradiation [14], with many studies focusing explicitly on the
linewidth properties of the NV centers [15–19]. The transform
limited optical linewidth of the NV center is ≈13 MHz, which
sets the ultimate limit to how narrow the lines can be [11].
Depending on the application, broader optical linewidths can
be tolerated: A 100 MHz linewidth is acceptable for a decent
microcavity [4], and two-photon interference has been shown
using an NV center with an inhomogeneous linewidth as
broad as 480 MHz [5].

*patrick.maletinsky@unibas.ch

Here we study the distribution of optical linewidths of NV
centers formed with implanted and native nitrogen in diamond
nanostructures. We implant one of our samples with 15N,
which has a natural abundance of only 0.37% [20], so that
we can distinguish between implanted and native nitrogen
by measuring the nitrogen isotope of the NV center. In line
with the results of S. B. van Dam et al. [21], we find that
implanted nitrogen yields NV centers with generally broader
linewidths than native nitrogen does. These results improve
our understanding of well-established and reliable fabrication
recipes such as Chu et al. [11] by illuminating which types of
NV centers are actually responsible for the narrow linewidths
achieved—a consideration that was not evaluated in detail in
those recipes. We also find evidence that implanted nitrogen
can yield NV centers with narrow linewidths. Additionally,
we propose the novel approach of postimplantation, in which
all nanostructuring and fabrication procedures are completed
before implanting the sample with nitrogen. We do this to
reduce the effects of fabrication on the NV center properties,
as it is unclear to what degree the fabrication procedures
themselves influence the optical linewidth [4,14]. In studying
post-implanted samples, we find a significant proportion of
narrow linewidth NV centers, even in structured areas as thin
as 1.57 μm. Finally, as determining what influences the NV
center coherence properties remains an open question that is
actively being explored, we develop a rigourous statistical
model to help unify approaches within the community and
to more easily compare results across research groups. We
discuss our model in depth and show how we can use it
to compare different data sets. To aid other researchers in
implementing our model, we include a demo MATLAB script,
available in Ref. [22].
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FIG. 1. (a) Optical microscope image of sample B, showing the
bulk area (bottom), membrane (center), and cantilevers (top). (b) Flu-
orescence map in the bulk area of sample B (50 μm thickness). Each
NV center we measured is indicated by a circle around it, with the
color of the circle indicating the isotope. Some NV centers indicated
did not exhibit measurable PLE. (c) Representative PLE measure-
ment on an 14NV, with the measurement pulse sequence shown
above. The two lines have linewidths of 107 MHz and 186 MHz and
are split by 4.4 GHz. (d) Representative pulsed ODMR measurement
on an 14NV center, with the pulse sequence shown above. Pulsed
ODMR reveals the three peaks split by 2.2 MHz characteristic of 14N.
(e) Representative PLE measurement on an 15NV center. The two
lines have linewidths of 3.4 and 5.1 GHz and are split by 6.8 GHz.
(f) Representative pulsed ODMR measurement on an 15NV center.
Pulsed ODMR reveals the two peaks split by 3.1 MHz characteristic
of 15N. In (c)–(f), the gray lines indicate fits to the data.

II. OVERVIEW OF SAMPLES

A. Fabrication processes

In the experimental part of this work, we first study two
samples in detail (the third sample is discussed in Sec. V D).
Both are made from electronic grade (N < 5 ppb, B < 1 ppb)
diamond acquired from Element Six. Our fabrication proce-
dure is summarized by P. Appel et al. [23]. In both sam-
ples, we fabricated a membrane of a nonuniform thickness
spanning 2.5–5 μm, as well as cantilevers with variable di-
mension: Lengths from 35–70 μm, widths of approximately
4.5 μm, and thickness of roughly 2.5–4 μm. An optical
microscope image of sample B is shown in Fig. 1(a), showing
the cantilevers, membrane, and bulk parts of the sample.

B. Implantation parameters

After all fabrication of the membrane and cantilevers
was finished, sample A was sent to the Helmholtz-Zentrum
Dresden-Rossendorf to be implanted with nitrogen, and sam-
ple B was sent to CuttingEdge Ions. Both samples were im-
planted with 12 keV nitrogen ions at an angle of 7◦ relative to
the sample mount and at a fluence of 1011 ions/cm2. Whereas
sample A was implanted with 14N, sample B was implanted
with 15N, so that the NVs could be isotopically classified.
After the samples were implanted, they were annealed with a
procedure outlined in P. Appel et al. [23], consisting of 4 hours
at 400 ◦C, 10 hours at 800 ◦C, and 2 hours at 1200 ◦C. Finally,
the samples were cleaned with a tri-acid clean [23,24].

III. MEASUREMENT METHODOLOGY

We begin by taking a confocal fluorescence map in the
target area of the sample [see Fig. 1(b)]. We then characterize
each potential NV center by taking a photoluminescence spec-
trum under green (532 nm) laser excitation. Once the zero-
phonon line (ZPL) has been identified on the spectrometer, we
perform a photoluminescence excitation (PLE) measurement
on the NV center by sweeping the wavelength of a red
(637 nm) laser across the transition while recording the fluo-
rescence counts on an avalanche photodiode (APD), yielding
a measurement of the excited state transition linewidth. We
note that if the ZPL measured on the spectrometer had a
linewidth above the resolution of our spectrometer (approx-
imately 70 GHz at 637 nm), we did not attempt to measure
PLE, and those measurements are not considered in the data
sets we discuss later. We did not use the same intensity of
red laser power for each NV center, as the broader linewidths
were often too weak to measure at low laser power. Red
laser powers for NV centers with narrow linewidths ranged
from 10–200 nW, whereas broad linewidths were typically
measured with 2 μW of excitation power. Optical linewidths
are extracted from the FWHM of a Gaussian fit to the PLE
data. Because we include a repump pulse in every iteration of
the pulse sequence, our linewidths are broadened by spectral
diffusion, making a Gaussian fit suitable [10,21]. The pulse
sequence we use is shown above Fig. 1(c), and representa-
tive measurements for 14NV and 15NV centers are shown in
Figs. 1(c) and 1(e). In the case in which two lines were visible,
we inferred these to be the Ex and Ey lines, and we used
only the narrower linewidth in the dataset, as the goal of this
analysis is to analyze the narrowest linewidth measurable on
each individual NV center.

After recording the optical linewidth, we use pulsed optical
detection of magnetic resonance (ODMR) to measure the
hyperfine structure of the NV center ground state, thereby
identifying the isotope of the NV nitrogen. The pulse se-
quence is shown above Fig. 1(d), and typical hyperfine-
resolved ODMR measurements are shown in Figs. 1(d) and
1(f) for 14N and 15N, respectively. The locations and widths
of the ODMR dips are extracted from Gaussian fits to
the data. We attempted to measure the ZPL wavelengths,
optical linewidths, and hyperfine-resolved ODMR of a total of
159 NV centers in sample A and 104 NV centers in sample B.
We note, however, that some NV centers did not exhibit any
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PLE, and others failed to show hyperfine-resolved ODMR.
In total, we successfully measured PLE on 78 NV centers
in sample A and 61 NV centers in sample B. Similarly, we
were able to isotopically classify 47 NV centers on sample B
(isotopic classification was not performed on sample A, as it
was implanted with 14N).

IV. RESULTS AND DISCUSSION

A. Influence of NV center location on linewidth

We summarize the data for sample A in Fig. 2(a), which
plots the measured optical linewidths against the measured
ZPL wavelength. The data points are color-coded to indicate
which part of the sample they were taken on. The bulk part
of the sample is approximately 50 μm thick, whereas the
membrane and cantilever dimensions are discussed earlier.
According to Wilcoxon ranked sum tests [25], the linewidths
of NV centers found in the membrane likely follow the same
statistics as those in the cantilevers. We therefore combine
the cantilever and membrane measurements into a single
category: Structured. The ZPL wavelengths for sample A
are tightly clustered (spanning a spectral range of only
0.2 nm), and the sample exhibits no clear relationship between
ZPL wavelength and optical linewidth. Binning the linewidths
and color coding them according to the sample location
[see Fig. 2(b)] reveals that there are two distinct populations
of NV centers: Those with narrow linewidths, and those with
broad linewidths. Both types of linewidths can be found
anywhere on the sample. We note that because the bins are
plotted on a logarithmic scale, the bin widths are not constant,
and bins at higher linewidths also cover a broader range of
optical linewidths. The widths of the bins in the plot therefore
accurately represent their wavelength spans on the log axis.
We plotted the data in this way to be able to directly compare
the narrow and broad linewidth distributions on the same plot
while still achieving an appropriate resolution for all orders of
magnitude within the data set. Figure 2(c) shows the empirical
cumulative distribution functions (ECDFs) for the structured,
bulk, and total datasets for sample A, showing that there
is no apparent difference between the three distributions. A
Wilcoxon ranked sum test (p-value 0.551) reveals that there
is no statistically significant evidence that the structured and
bulk linewidth distributions are different. Figure 2(c) also
shows that the median measured linewidth was approximately
200 MHz.

In Figs. 2(d)–2(f), we show similar plots for sample B.
In Fig. 2(d), we see that although the ZPL wavelengths are
far more scattered in sample B (spanning a range of 2 nm)
than in sample A, there is still no clear relationship between
ZPL wavelength and optical linewidth, indicating that local
strain does not play a strong role in determining the linewidth.
Plotting the data in a histogram labeled by location of the
sample in Fig. 2(e) shows a similar situation as in Fig. 2(b):
There are two distinct populations of NV centers, independent
of the location on the sample. Likewise, Fig. 2(f) leads to
similar conclusions as Fig. 2(c). Again, a Wilcoxon rank sum
test (p-value 0.334) indicates that there is no clear evidence
for a difference between the linewidth distributions in the bulk
and structured areas in sample B. As we see similar results in
two different samples, and across different regions on those

FIG. 2. The data for sample A are shown in the left column
and for sample B in the right column. (a) A scatter plot showing
the ZPL wavelength (in air) for each linewidth measured in sam-
ple A. The marker color indicates which area of the sample the
datapoint was taken on. The ZPL wavelength was measured on a
spectrometer with a resolution of 0.9 nm (corresponding to 70 GHz
resolution at 637 nm), whereas the linewidth was measured using
PLE. (b) Stacked histograms of optical linewidths in sample A
with the data labeled by sample location. There is evidence of two
distinct populations of NV centers, and narrow NV centers can occur
in the structured parts of the sample as well as the unstructured.
(c) ECDFs of the linewidths in sample A. The plot shows that the
median measured linewidth was ≈200 MHz. (d) A similar scatter
plot as in (a) for sample B. The marker color again indicates where
the datapoint was taken, and the marker shape indicates which
isotope the hyperfine structure indicated. The horizontal dashed lines
demarcate the limits of the ZPL axis of (a), showing that sample B
showed a much larger variation in ZPL wavelength, suggesting more
variability in the local strain environment. (e) Stacked histogram of
optical linewidths in sample B, with data labeled by sample location.
Two populations are again evident, and they are not related to
location in the sample. (f) ECDF for sample B. The median linewidth
is ≈3.5 GHz. The plateau indicates a clear separation between the
two populations.

samples, we turn to isotopic classification to better understand
these two populations.

B. Influence of ion implantation on linewidth

In Fig. 3(a), we bin the data and color-code the bins by
isotope classification. We find that although many NV centers
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FIG. 3. (a) Stacked histogram of optical linewidths for sample B,
with data points labeled by color to indicate isotope. The histogram
clearly shows that, with a few exceptions, the 14NV centers and the
15NV centers are completely separated into two distinct populations.
The dashed lines indicate fits of log-normal sampling distributions
P({xi}|μ, σ 2) to the 14NV and (broad) 15NV datasets. (b) Isotopically
classified ECDFs. The teal and purple dashed lines are the log-
normal fits to the 14NV and 15NV datasets, respectively, showing
excellent agreement between the ECDFs and the fits. The dashed or-
ange line is obtained by fitting a sum of two log-normal distributions
to the unclassified NV centers. The narrow 15NV data are included
without a fit in this plot.

could not be clearly classified, a clear pattern emerges: NV
centers formed with native 14N exhibit narrow (<1 GHz)
linewidths, whereas most of the 15NV centers showed broad
(>1 GHz) linewidths, in agreement with the results of S.
B. van Dam [21]. Indeed, the median 14NV linewidth in
sample B was roughly 100 MHz. We fit log-normal sampling
distributions to the 14NV and 15NV data (dashed lines). In
Fig. 3(b), we plot the ECDFs for the isotopically classified
datasets, as well as the cumulative distribution functions
(CDFs) for the log-normal fits. The CDFs show exceptional
agreement with the ECDFs (see Sec. V C for model diag-
nostics). The fit curve for the unclassified data set comprises
a weighted sum of two log-normal distributions in which
the weights are also fit parameters. This fit suggests that
all the unclassified data can be attributed to one of the two
distributions.

Finally, we note that six of the 15NV center linewidths
were well separated from those of the other 15NV centers.
Based on an analysis of quantile-quantile (Q-Q) plots (see the
discussion of Q-Q plots in Sec. V C), we exclude these NV
centers from the fits in Fig. 3(a), as they clearly do not belong
to the same population; in Fig. 3(b) we include the ECDF of
these data points but do not fit them. Due to the low natural
abundance of 15N, it is highly unlikely that the narrow 15NV
centers are due to naturally occurring 15N. To wit: In a sample
size of 61 PLE lines, there is a mere 1.2×10−5% chance of
observing 6 or more naturally occurring 15NV centers, i.e.,
P(m � 6|n = 61, p = 0.0037) ≈ 1.2×10−7, calculated from
the CDF of the binomial distribution with 61 trials and a
success rate of 0.37%. Previous studies have reported that
implanted nitrogen can lead to crystal damage that degrades
the optical properties of NV centers, and that this damage
can be at least partially repaired through annealing [21], but
it is unclear whether the annealing is the reason we were
able to observe narrow linewidths from NV centers formed
by implanted nitrogen.

V. STATISTICAL MODEL

A. Building the model

We now develop a model to describe the two distinct
populations we see, as it could be useful to determine how
different the populations are. A model could help to decide
how we should classify future or unclassified data points, and
to predict how narrow future linewidths in the same sample
will be. Additionally, having a model will allow us to more
quantitatively determine which fabrication procedures yield
NV centers with better optical linewidths and quantify how
certain we are a new procedure is better. Using a Bayesian
approach, we model the likelihood of a particular linewidth xi

with a log-normal likelihood:

P(xi|μ, σ ) = 1√
2πσ 2

1

xi
e−(ln(xi )−μ)2/2σ2

, (1)

which is parameterized by a median μ and a standard devia-
tion σ . This is an appropriate distribution for any purely posi-
tive quantity that has contributions from multiple independent
noise sources [26] (here, e.g., electric field noise, temperature,
and strain fluctuations can all influence the optical linewidth
[15,16]).

Using uninformative priors for the parameters, (uniform
distribution for μ and the Jeffreys prior for σ [26]), we
find their posterior distributions [25,26]. See Appendix A for
details. Broadly speaking, the posterior distributions describe
our best guess for the parameters, as well as our confidence in
those guesses, given the data we have and the model we use.
For ease of notation, we define two constants that depend on
the data:

X = 1

N

N∑
i=1

(ln(xi )),

X 2 = 1

N

N∑
i=1

(ln(xi ))
2,

where xi is the ith linewidth in the dataset (or data subset, if
focusing on a particular isotope, for example) and N is the
total number of linewidths in the dataset (or subset).

For μ, we find that the posterior distribution P(μ|{xi})
(where {xi} is the dataset of linewidths being analyzed) is
given by a location-scale t-distribution:

P(μ|{xi})

= �
( νμ+1

2

)
�

( νμ

2

)√
πνμσμ

2

(
1 + 1

νμ

(
μ − μμ

σμ

)2
)− νμ+1

2

, (2)

where μμ = X , νμ = N − 1, and σμ =
√

1
N−1 (X 2 − X

2
).

For the variance σ 2, the posterior distribution P(σ 2|{xi}) is
an inverse gamma distribution:

P(σ 2|{xi}) = βσ
ασ

�(ασ )

(
1

σ 2

)(ασ +1)

e−βσ/σ2
, (3)

where ασ = N−1
2 and βσ = N

2 (X 2 − X
2
).

We next consider what distribution of future linewidths x̃
we expect to measure, given the data we have observed so
far. Working in terms of the natural logarithm of the linewidth
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X̃ ≡ ln(x̃), we also calculate the posterior predictive distribu-
tion P(X̃ |{xi}), which describes how likely the next linewidth
is to be narrow. We find that P(X̃ |{xi}) is a location-scale
t-distribution:

P(X̃ |{xi}) = �
(

ν̃+1
2

)
�

(
ν̃
2

)√
πν̃σ̃ 2

(
1 + 1

ν̃

(
X̃ − μ̃

σ̃

)2
)− ν̃+1

2

, (4)

where μ̃ = X , ν̃ = N − 1, and σ̃ =
√

N+1
N−1 (X 2 − X

2
). Note

that this is a location-scale t-distribution for the natural log-
arithm of the linewidth X̃ , not for the linewidth x̃ itself. The
posterior predictive distribution for the linewidth x̃ is given by

P(x̃|{xi}) = �
(

ν̃+1
2

)
�

(
ν̃
2

)√
πν̃σ̃ 2

1

x̃

(
1 + 1

ν̃

(
ln(x̃) − μ̃

σ̃

)2
)− ν̃+1

2

,

(5)

which is not quite a t-distribution. For a more detailed dis-
cussion of the derivations of these distributions and their
interrelations, see Appendix A.

B. Inferences from the model

Because these distributions are of a common form, it is
straightforward to find their most likely values and their cred-
ible intervals. For example, the maximum a posterior (MAP)
estimate (i.e., the most likely value) for the t-distribution
P(μ|{xi}) is given by

μMAP = μμ = X ,

and the 95% credible interval is given by[
μμ − σμt(0.975,νμ ), μμ + σμt(0.975,νμ )

]
,

where t( f ,ν) is the t-statistic at the f th percentile and with ν

degrees of freedom [25,26]. Note, however, that the parameter
μ in the log-normal distribution has units of ln(MHz) (if the
dataset is in MHz); the MAP estimate and credible interval
(CI) in terms of MHz are then given by

eμμ and

[eμμ−σμt(0.975,νμ ) , eμμ+σμt(0.975,νμ ) ] ,

respectively. Similarly, the MAP estimate and CI for x̃ are
given by

eμ̃ and

[eμ̃−σ̃ t(0.975,ν̃) , eμ̃+σ̃ t(0.975,ν̃) ] ,

respectively. The MAP estimate of σ 2 is given by βσ/(ασ +1)

[25]. Unfortunately, there is no closed-form solution for the
95% CI of the inverse gamma distribution, but it can be
easily estimated through simulated draws, which we describe
below [25].

We graphically represent our results in Fig. 4. The dashed
lines in Fig. 4(a) are the log-normal fits from Fig. 3(a). As
in Fig. 3, the color of the line indicates the isotope. The
solid lines are the posterior predictive distributions P(x̃|{xi}),
and the dotted lines are the posterior distributions P(μ|{xi}).
The posterior predictive distributions P(x̃|{xi}) resemble the
sampling distributions P({xi}|μ, σ ) but are slightly broader,

FIG. 4. (a) The dashed lines reproduce the log-normal sampling
distributions from Fig. 3(a). The solid lines indicate the posterior
predictive distributions P(x̃|{xi}). They are slightly broader than
the sampling distributions P(x|μ, σ ) because they account for the
uncertainty in our estimates of μ and σ . The dotted lines are
the posterior distributions for the median P(μ|{xi}), showing that the
median 14NV and 15NV linewidths are well separated. (b) CDFs of
the corresponding distributions in (a).

as they account for the uncertainty in our estimates of μ and
σ . The posterior for μN14 given by P(μN14|{xi}N14) is fairly
narrow, indicating that only a narrow range of values of μN14

is consistent with the 14NV data. Similar conclusions hold for
the 15NV data.

Finally, we simulate draws from the distributions, which
allows us to compare the 14NV and 15NV results and
give approximate answers to questions such as what is
the probability that the next 14NV linewidth is narrower
than the next 15NV linewidth P(x̃N14 < x̃N15|{xi}) or how
likely is the next 14NV linewidth to be below 100 MHz
P(x̃N14 < 100 MHz|{xi}). For example, using our data and 108

simulated draws from each of the posterior distributions, we
find that P(μN14 < μN15|{xi}) ≈ 1. Similarly, we estimate that
we have a roughly 40% chance of finding sub-100 MHz 14NV
centers: P(x̃N14 < 100 MHz|{xi}) ≈ 0.398. For details of the
simulated draws, see Appendix B.

There are a number of other tests we can perform and
other questions we can answer. For example, are the narrow-
linewidth NVs in sample A characterized by the same me-
dian as the narrow-linewidth NVs in sample B? We ap-
proach this question by splitting the data sets for both
samples into narrow (<1000 GHz) and broad (�1000 GHz)
subsets. Using the same formulas as above, we can then
evaluate P(μA

narrow < μB
narrow) ≈ 0.982. Similarly, if we com-

pare the broad optical linewidths in both samples, we find
P(μA

broad < μB
broad ) ≈ 0.021. It is therefore unlikely (although

not impossible) that the same medians apply in both sam-
ples. This could be explained by the fact that although the
implantation parameters were nominally identical, the im-
plantation was done by different companies and at different
times, leading to slight but measurable difference in the NV
properties between the two samples. On the other hand,
we can compare the unclassified NVs in sample B to the
14NVs and the broad 15NVs. Again, we split the unclassified
NVs into narrow and broad categories, with the boundary
at 1 GHz. We then find that P(μN14 < μUnc,narrow) ≈ 0.712,
and P(μN15 < μUnc,broad ) ≈ 0.478. It is thus reasonable to
characterize the unclassified NVs by the same medians as the
14NVs and 15NVs.
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FIG. 5. (a) Q-Q plot for the 14NV data, showing that a log-normal
model fits the data well. (b) Q-Q plot for the 15NV data, again
showing the model choice was appropriate. (c) The Q-Q plot for
the narrow 15NV data shows that a log-normal model might be
appropriate. (d) The Q-Q plot for the unclassified data shows that
a single log-normal model is a poor fit to the data, as expected.

C. Model checking

To check how appropriate our model is for our data, we
look at the quantile-quantile (or Q-Q) plots for the different
data subsets. By comparing the data quantiles to the ex-
pected quantiles from the model, Q-Q plots show whether
the spread in the data can be explained by the model and
are therefore a useful diagnostic for determining whether a
model is appropriate for the data. They can also be useful
for identifying outliers in the dataset. The quantile for the ith
optical linewidth in the dataset is calculated according to the
formula

Q(i)
Data = ln(xi ) − X√

X 2 − X
2

and therefore summarizes how many standard deviations the
data point is from the mean of the dataset [27]. Using a
log-normal model to calculate the theoretical quantiles, we
plot the Q-Q plots for the 14NV data, the broad 15NV data,
the narrow 15NV data, and the unclassified data in Fig. 5.
Both the 14NV data in Fig. 5(a) and the broad 15NV data in
Fig. 5(b) closely follow the diagonal dashed line, indicating
the quantiles of the measured data match the quantiles we
would expect from a log-normal distribution in both cases.
Due to the dearth of data points, it is difficult to say how
appropriate a log-normal model is for the narrow 15NV data
in Fig. 5(c), but our data do show that a log-normal model is
promising. From Fig. 5(d), it is clear that a single log-normal
model is inappropriate for the unclassified data, as expected.

D. Example with sample C

As an application of our statistical model, we now ex-
amine a third structured sample, sample C, which was post-

FIG. 6. (a) Stacked histograms of data taken in sample C. The
data are color coded to indicate which area of the sample they
were taken on. (b) Fits (dashed lines) and posterior distributions
for μ (dotted lines) for the two sample areas. The plots are color
coded as in (a). Although the fits strongly overlap, the posterior
distributions for μ do not, indicating that the thinner part of the
sample is characterized by a higher median linewidth.

implanted by InnovIon with 52 keV 15N ions at an angle
of 7◦ and a fluence of 5×109 ions/cm2. In sample C, we
compare two structured parts of the sample: One area that
is 1.57 μm thick, and one that is 0.87 μm thick. First, we
note that we were able to observe two narrow (<250 MHz)
linewidths in the 1.57 μm-thick area [see Fig. 6(a)]. To our
knowledge, these are the narrowest NV ZPL lines reported in
such thin structures obtained by standard etching techniques.
A recent report, however, suggests that ultra-slow etching can
significantly improve surface quality and lead to a further
reduction of charge noise, which is at the origin of the
inhomogenous broadening [28]. We note that the distribu-
tions of the data from the two sample areas strongly overlap
[see Fig. 6(a)]. In Fig. 6(b), we show log-normal fits to the
data and the posterior distributions for μ. We find that the
two data subsets have similar MAP estimates for the medi-
ans: μMAP

0.87 μm ≈ ln(2.27 GHz) and μMAP
1.57 μm ≈ ln(1.47 GHz).

Although the data and fits overlap and the estimates for μ are
similar for the two data subsets, the posterior distributions for
the medians μ barely overlap. Using the data from sample C
and simulated draws from the posterior distributions for μ, we
find that P(μ1.57 μm < μ0.87 μm ) ≈ 0.996, strongly suggesting
that the two areas have different median linewidths. For the
purposes of estimating the two medians, we exclude the two
narrowest linewidths in the 1.57 μm area of the sample and
the broadest linewidth in the 0.87 μm area of the sample,
as Q-Q plots (not shown) reveal these data points to be
outliers. Although our data suggest that the thinner part of the
sample has a larger median linewidth, it is unclear whether
this change is due the thickness itself or due to confounding
variables. We hope our statistical model will aid in determin-
ing which variables influence the spectral properties of NV
centers in other nanostructured samples.

VI. CONCLUSION

We have shown that NV centers in post-implanted sam-
ples exhibit narrow linewidths, even in structured samples
as thin as 1.57 μm, and that the narrow lines are primarily
due to NV centers being formed from nitrogen native to
the diamond. Even so, we observe a few narrow linewidths
that can be attributed to implanted nitrogen. Furthermore,
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we develop a statistical model to aid in summarizing our
results and to enable easy comparison of results between
research groups. Indeed, we employ our model to show
that in one of our samples, the sample thickness is linked
to changes in the linewidth distribution. Our results show
that postimplantation is capable of yielding NV centers with
narrow optical linewidths. To further investigate the benefits
of postimplantation, we propose testing different fabrication
steps on a post-implanted structured sample, to study if and
how various common fabrication techniques degrade the NV
properties. If postimplantation can be shown to improve NV
coherence properties, it is worthwhile to study the effects of
carbon implantation, as implanted nitrogen rarely leads to
narrow linewidths. Finally, the model itself can be developed
further, by implementing a hierarchical model (to allow, e.g.,
isotope abundance to vary across the sample, or to allow the
parameters μ and σ to vary with sample location) and by
including a model for data sampling and missing data.
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APPENDIX A: DERIVATION OF POSTERIOR
PROBABILITIES

We find the joint posterior distribution for the parameters
μ and σ by using Bayes law:

P(μ, σ |{xi}) = P({xi}|μ, σ )P(μ, σ )

P({xi})
,

where P(μ, σ |{xi}) is the joint posterior for μ and σ ,
P({xi}|μ, σ ) is the sampling distribution or likelihood,
P(μ, σ ) is the joint prior distribution for μ and σ , and
P({xi}) acts as a normalizing constant. The most important
component is the sampling distribution P({xi}|μ, σ ), as this
acts as our model for the data. As mentioned in the main text,
we use a log-normal model for the dataset, such that

P({xi}|μ, σ ) =
N∏

i=1

P(xi|μ, σ )

=
N∏

i=1

1√
2πσ 2

1

xi
e−(ln(xi )−μ)2/2σ2

.

For the prior distribution P(μ, σ ) we choose uninformative
priors. Typical uninformative priors for μ and σ are the
uniform and Jeffreys priors, respectively [26], but as they are
improper distributions (i.e. not normalizable), it is common
to start with proper (i.e. normalizable) distributions and take
a limit at the end of the calculation to turn the proper priors
into the desired uninformative priors [25]. As we can rewrite
P(μ, σ ) = P(μ)P(σ ) (assuming our prior states of knowl-

edge for μ and σ are independent), we have to choose two
priors. For P(μ), we choose a uniform prior:

P(μ) = 1

2μUB
I−μUB�μ�μUB ,

where I is the indicator function and causes P(μ) to be
nonzero only within the bounds set by μUB. In the limit
μUB → ∞, this goes to a uniform distribution that allows all
real values of μ. We take this limit after finding P(μ, σ |{xi}).
For P(σ ) we choose the Jeffreys prior, which is a uniform
distribution on a logarithmic scale and is commonly used for
scale parameters such as the standard deviation:

P(σ ) = 1

ln(σUB) − ln(σLB)

1

σ
IσLB�σ�σUB ,

where σLB and σUB are the lower and upper bounds on σ .
We next calculate P(μ, σ |{xi}) by combining our expressions
for P({xi}|μσ ), P(μ), and P(σ ), and we also use the fact
that P({xi}) = ∫ σUB

σLB

∫ μUB

−μUB
P({xi}|μ, σ )P(μ)P(σ ) dμ dσ . After

taking the limits μUB → ∞, σLB → 0, and σUB → ∞, we
find

P(μ, σ |{xi}) = 21− N
2 N

N
2 (X 2 − X

2
)

N−1
2

√
π�

(
N−1

2

) (
1

σ

)N+1

× e−N(X2−2Xμ+μ2 )/2σ2
I−∞�μ�∞I0�σ�∞ . (A1)

From here on, we leave out the indicator functions I∞�μ�∞
and I0�σ�∞ for ease of notation, but they are always implicitly
there. Note that this derivation relies on the assumption that
N � 2, i.e. the dataset or data subset has at least two data
points in it.

Now we can calculate the marginal posteriors for μ and
σ , which summarize how much our data determine those
parameters. The marginal posterior for μ is defined as follows:

P(μ|{xi}) =
∫ ∞

0
P(μ, σ |{xi}) dσ .

Using our expression for P(μ, σ |{xi}) in Eq. (A1), we find

P(μ|{xi}) = �
( νμ+1

2

)
�

( νμ

2

)√
πνμσμ

2

(
1 + 1

νμ

(
μ − μμ

σμ

)2
)− νμ+1

2

,

which is Eq. (2) of the main text.
Similarly, P(σ |{xi}) is defined by

P(σ |{xi}) =
∫ ∞

−∞
P(μ, σ |{xi}) dμ,

which in our case yields

P(σ |{xi}) = 2βασ
σ

�(ασ )

(
1

σ

)2ασ +1

e−βσ/σ2
,

where ασ and βσ are defined in the main text. Note that this
is a distribution for the standard deviation σ , not the variance
σ 2. To find the distribution for σ 2, we perform a change of
variables and find

P(σ 2|{xi}) = βσ
ασ

�(ασ )

(
1

σ 2

)(ασ +1)

e−βσ/σ2
,

which is the Inverse Gamma distribution of Eq. (3) in the main
text.
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Finally, we derive the posterior predictive distribution,
which summarizes what the next data point could be, based
on the data taken so far. The posterior predictive distribution
is defined as follows:

P(x̃|{xi}) =
∫ ∞

−∞

∫ ∞

0
P(x̃|μ, σ )P(μ, σ |{xi}) dσdμ ,

which leads to Eq. (5) of the main text:

P(x̃|{xi}) = �
(

ν̃+1
2

)
�

(
ν̃
2

)√
πν̃σ̃ 2

1

x̃

(
1 + 1

ν̃

(
ln(x̃) − μ̃

σ̃

)2
)− ν̃+1

2

,

where ν̃, μ̃, and σ̃ are defined above. Making a change of
variables using X̃ = ln(x̃) leads to Eq. (4) of the main text:

P(X̃ |{xi}) = �
(

ν̃+1
2

)
�

(
ν̃
2

)√
πν̃σ̃ 2

(
1 + 1

ν̃

(
X̃ − μ̃

σ̃

)2
)− ν̃+1

2

,

which is a location-scale t-distribution.

APPENDIX B: SIMULATED DRAWS

Simulating draws is a common technique in Bayesian
statistics to estimate credible intervals and answer proba-
bilistic questions [25]. To simulate draws from the poste-
rior and posterior predictive distributions, we use MATLAB’s
makedist function in the Statistics and Machine Learning
Toolbox to define location-scale t-distributions and inverse
gamma distributions with parameters determined by the data,
as described in Sec. V A. MATLAB’s random function then
allows us to sample from the distributions we defined based
on our data. Once samples have been drawn, it is simple to
estimate the probabilities we describe above. For example,
if we label our samples from P(μN14|{xi}) and P(μN15|{xi})
as {μ̂N14} and {μ̂N15}, respectively, then we can estimate
P(μN14 < μN15|{xi}):

P(μN14 < μN15|{xi}) ≈ mean(μ̂N14 < μ̂N15),

where mean(x̂) is the Matlab command for taking the mean of
a vector [25].
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