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Summary

The present thesis is devoted an all-optical study of the physical properties of the me-
soscopic ensemble of nuclear spins contained in an individual, self-assembled quan-
tum dot (QD). QDs are artificial entities that allow for the trapping of individual
charge carriers in all three spatial dimensions. The trapping length scales are the-
reby small enough to require a quantum mechanical treatment of the QD charge
carrier confinement. The QDs studied here are self-assembled InAs nano-crystals
which contain roughly 105 nuclei, all of nonzero nuclear spin. The nuclear spins can
be manipulated and measured by using the spin of a trapped QD electron as an
agent which couples to the nuclei via the hyperfine interaction. Electron spins can
be optically oriented due to selection rules of optical interband transitions in the
QD semiconductor material. This electron spin orientation is then transferred to
the nuclear spins via the hyperfine interaction, leading to a dynamical nuclear spin
polarization (DNSP). At the same time, the hyperfine interaction causes a shift of
the energy of the electron in contact with spin polarized nuclei. This fact is exploited
here to measure the degree of DNSP through the corresponding spectral features
in the light which is emitted upon recombination of the optically generated QD
electrons.

This thesis starts with a description of the steady state behavior of optically gene-
rated DNSP. It is shown that the transfer of spin information between the electron
and the nuclei depends strongly on the degree of the nuclear spin polarization itself.
The corresponding feedback of DNSP on the electrons takes the form of an effective
magnetic field which can be on the order of a few Tesla and renders the coupled
electron-nuclear spin system highly nonlinear. In particular, experimental evidence
for a hysteretic behavior of the coupled electron-nuclear spin system in an external
magnetic field is presented and explained with a classical rate equation model.

The focus of the second part of the thesis lies on the dynamics of DNSP which is
studied using a time-resolved photoluminescence technique. In addition to measuring
the timescales for buildup and decay, this experiment revealed an unexpected aspect
of the dynamics of DNSP: while an optically pumped electron spin can be used to
polarize the nuclear spins, the electron can also be very efficient in destroying an
established DNSP in the absence of optical excitation. In this case, the electron
spin is randomly fluctuating, thereby causing relaxation of the nuclear spins. This
electron mediated decay of DNSP is discussed in detail as a function of the electron
spin correlation time and of external magnetic fields. If the electron spin fluctuations
become too fast, the lifetime of DNSP can increase again due to an effect called
motional narrowing which is observed experimentally. Furthermore, the nonlinear
behavior of DNSP in the presence of external magnetic fields leads to the observation
of DNSP decay curves which are highly non-exponential.
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The presented results give new insights into the dynamics of nuclear spins in
semiconductor QDs and show possibilities of manipulating the QD nuclear spin
ensemble. The results of this thesis could enable a tailoring of the properties of the
nuclear spin system with the aim to prolong the coherence time of the QD electron
spin. In self-assembled QDs, this time is limited by the slow fluctuations of the
nuclear magnetic field which happen on the same timescale as the decay of DNSP
which was determined in this work.
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Zusammenfassung

Diese Arbeit behandelt eine rein optische Studie der physikalischen Eigenschaften
des mesoskopischen Kernspinsystems in einem einzelnen Quantenpunkt (QP). QPe
sind künstliche Objekte, welche es erlauben, Ladungsträger in drei Raumdimen-
sionen zu lokalisieren. Die entsprecheneden Längenskalen sind dabei so klein, dass
eine quantenmechanische Behandlung des resultierenden Fallenpotentials notwendig
wird. Die hier untersuchten QPe sind selbstorganisierte InAs Nanokristalle, welche
ca. 105 Kerne mit nichtverschwindendem Spin enthalten. Aufgrund der Hyperfein-
wechselwirkung, welche Elektron- und Kernspins koppelt, können Kernspins mit Hil-
fe des lokalisierten QP-Elektrons manipuliert und gemessen werden. Die optischen
Auswahlregeln im Halbleitermaterial des QPes erlauben es, den Spin des Elektrons
mit optischen Mitteln zu orientieren. Diese Spinorientierung wird anschliessend mit-
tels der Hyperfeinwechselwirkung auf die Kernspins übertragen, was zu einer dy-
namischen Kernspinpolarisation (DKSP) führt. Gleichzeitig beinhaltet die Hyper-
feinwechselwirkung Terme, welche zu einer Verschiebung der Energie des Elektrons
führen, wenn es im Kontakt mit spinpolarisierten Kernen steht. Diese Tatsache wird
ausgenützt um den Grad der DKSP mittels entsprechender optischer Signaturen im
vom QP ausgesandten Licht zu ermitteln.

Im ersten Teil dieser Dissertation wird eine Beschreibung des Gleichgewichtszu-
stands der optisch generierten DKSP gegeben. Es wird gezeigt, dass der Übertrag
von Spininformation vom Elektron auf die Kerne stark vom Grad der DKSP
abhängt. Die entsprechende Rückkopplung der Kernspins auf das Elektron nimmt
die Form eines effektiven Magnetfeldes von der Grössenordnung einiger Tesla an und
führt zu starken Nichtlinearitäten im gekoppelten Spinsystem des Elektrons und der
Kerne. Insbesondere wird der experimentelle Beweis erbracht, dass DKSP in einem
externen Magnetfeld ein hysteretisches Verhalten zeigen kann, welches mittels einer
klassischen Ratengleichung beschrieben werden kann.

Der Schwerpunkt des zweiten Teils dieser Arbeit liegt in der Dynamik der DKSP,
welche mit Hilfe einer zeitaufgeösten Photolumineszenztechnik studiert wird. Nebst
der Messung der relevanten Zeitskalen für den Aufbau und den Zerfall der DKSP
wird ein überraschender Aspekt der Kernspindynamik aufgedeckt: während ein op-
tisch gepumptes Elektron genutzt werden kann um eine DKSP zu erzeugen, führt
dasselbe Elektron zu einer sehr effizienten Depolarisation der Kerne, wenn die opti-
sche Anregung fehlt. In diesem Fall dominieren zufällige Fluktuationen des Elektron-
spins seine Evolution und führen zu einer Relaxation der Kernspins. Dieser Elektron-
mediierte Zerfall der DKSP und die Rolle der Elektron-Spinkorrelationszeit sowie
externer Magnetfelder werden im Detail diskutiert. Wenn die Flukturationen des
Elektronspins zu schnell werden, kann sich der Kernspinzerfall wieder verlangsa-
men, was experimentell nachgewiesen wird. Ausserdem wird gezeigt, dass die oben
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genannten Nichtlinearitäten in starken externen Magnetfeldern zu einem nichtexpo-
nentiellen Zerfall der DKSP führen.

Die hier präsentierten Resultate werfen ein neues Licht auf die physikalischen Ei-
genschaften des mesoskopischen Kernspinsystems eines einzelnen QPes und eröffnen
neue Möglichkeiten zur Manipulation dieses Systems. Diese Resultate dieser Dok-
torarbeit könnten eine gezielte Manipulation des Kernspinsystems zur Verlängerung
der Kohr̈enzzeit des QP Elektrons erlauben. Diese Kohr̈enzzeit ist durch die langsa-
men Fluktuationen des Kernspinmagnetfeldes limitiert, welche dieselben typischen
Zeitskalen wie der hier gemessene Kernspinzerfall aufweist.
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1 Introduction

This thesis treats an optical investigation of nuclear spin effects in individual, self-
assembled semiconductor quantum dots (QDs). We study the behavior of the cou-
pled electron-nuclear spin system with experiments which consist of two basic steps.
First, optical excitation of a QD with circularly polarized light is used to dynami-
cally polarize the nuclear spins in the QD. Second, the nuclear spin polarization is
detected by measuring the energy-shift of a QD emission line due to the effective
magnetic field of the spin polarized nuclei.

When an electron spin system is driven out of thermal equilibrium through an
external agent, electron spin relaxation drives the electrons back to a thermal state.
Since this relaxation is partly happening via the nuclear spin reservoir, angular
momentum is transferred to the nuclei and a net nuclear polarization can be es-
tablished [1]. An efficient way of achieving this situation is optical excitation of
spin polarized electrons in bulk semiconductors. Optically induced dynamical nu-
clear spin polarization (DNSP) was first demonstrated in silicon [2] and was later on
studied extensively for nuclei close to paramagnetic impurities in GaAs [3].

Individual, optically active, self-assembled QDs present an excellent system for
studying optically induced DNSP in more depth, thereby revealing subtleties of the
electron-nuclear spin system that were experimentally not accessible before. Several
aspects distinguish the QD system from its bulk counterpart mentioned above: The
narrow QD emission lines enable a direct measurement of electron nuclear interac-
tion energy. This is not possible in bulk systems where typical widths of emission
lines are an order of magnitude larger than the electronic energy shifts induced
by polarized nuclei. In addition, the possibility of addressing a single QD has the
advantage of removing effects of sample inhomogeneities and crosstalk between in-
dividual islands of spin polarized nuclei. Due to the different atomic composition
and strain distribution of the QD as compared to its surrounding host material, the
ensemble of ∼ 104 − 105 QD nuclear spins can be considered as truly isolated from
the environment. Therefore, the coupled electron-nuclear spin system of a QD is
an implementation of a well isolated system of a single electron spin, coupled to a
slowly varying, small nuclear spin reservoir, i.e., the central spin problem [4].

More recent interest in the dynamics of QD nuclear spins has arisen from the
experimental and theoretical findings that the slow fluctuations of the nuclear spins
constitute the dominant source of decoherence of QD electron spins. Since these
fluctuations have long coherence times, the resulting electron-spin decoherence is
non-Markovian and hence the evolution of the electron spin is highly complex [5, 6,
7]. It has been argued that by controlling the nuclear spin fluctuations, for instance
by producing a substantial nuclear spin polarization or by performing a series of
projective measurements on the nuclear spins [8], one could potentially suppress
this decoherence mechanism [9].
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Optical orientation of QD nuclear spins has been demonstrated experimentally
by a few groups [10, 11, 12, 13, 14, 15, 16, 17]. However, the degree of DNSP
achieved in these experiments has been limited to ∼ 10 − 20% in low external
magnetic fields and did not exceed 60% in high fields. In order to reach even
higher degrees of DNSP, a detailed analysis of both the formation dynamics and
the limiting factors of DNSP is required. Since DNSP is a balance between nuclear
spin polarization by the QD electron and nuclear spin depolarization by the “lattice”,
a measurement of the corresponding timescales as well as an identification of the
factors that influence the nuclear spin dynamics is of great interest and relevance.
Inherent properties of the QD nuclear spin system, like the respective role of nuclear
spin diffusion, quadrupolar interactions and trapped excess QD charges on the degree
of DNSP can be investigated using time-resolved measurements of the nuclear spins.
Furthermore, experimental determination of the nuclear spin decay time directly
yields the correlation time of the fluctuations of the Overhauser field along the axis
in which the nuclei are polarized - a crucial quantity for understanding the limits of
electron spin coherence in QDs [18].

Scope of this thesis

In this work, we give an overview of our experimental assessment of the above
mentioned points. In Chap. 2 we start by giving an introduction to the physics
of self-assembled QDs in general with a particular focus on the methods used to
deterministically define the exact charging state of a single QD. Furthermore, we
introduce the basic technique of photoluminescence, our method of choice for the
investigation of individual QDs. For the study of QD nuclear spins, the knowledge
of the relevant interactions for both the nuclear spin system and the electron spin
system is essential. We will discuss the Hamiltonians describing these two spin
system as well as the coupling between the electron and the nuclear spins in Chap. 3.
In the same chapter, we discuss the influence of the electron-nuclear spin coupling
on the coherence property of the electron spin.

We then turn to our experimental results and present our experimental findings on
the physics of the QD nuclear spin system. We start by presenting the experimental
signatures of nuclear spin polarization at zero magnetic field in Chap. 4 and explain
the existence of this polarization with the stabilizing effect that the electron exerts
on the nuclear spins via an effective magnetic field - the Knight field. By applying an
external magnetic field which compensates the Knight field, we were able to perform
the first measurement of the Knight field of a single electron confined to a QD. We
proceed by discussing the behavior of nuclear spin polarization in external magnetic
fields, applied both parallel (Chap. 5) and perpendicular (Chap. 6) to the axis of
optical orientation. In the first case, the nonlinear nature of the coupled electron-
nuclear spin system becomes apparent as soon as the external magnetic field is on the
order of the nuclear magnetic field. There, DNSP may have a hysteretic response to
the applied field. The second case, the second situation reveals information about
the atomic structure of the QDs by enabling an indirect observation of nuclear
quadrupolar interactions.
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The static measurements of nuclear spin polarization are completed by measuring
the relevant timescales of buildup and decay of a nuclear spin polarization. This
is done by implementing a pump-probe experiment for the nuclear spins, which we
discuss in Chap. 7. These measurements allowed us to identify the dominant nuclear
spin relaxation mechanisms in self-assembled QDs. We find that the nuclear spin
lifetime depends drastically on the number of electrons that occupy the QD. If this
number is even, the nuclear spin lifetime is on the order of minutes, if its odd,
the nuclear spins decay within a few milliseconds. We discuss the reason for this
electron-mediated nuclear spin decay as well as a study of the nuclear spin lifetime
in various magnetic fields in the end of this thesis.

Appendix A.1 gives some details of our experimental setup and a list of the most
important optical elements used there. In Appendix A.2, a detailed description of
the fast switching of the QD gate is given. This switching was needed to perform
the time dependent measurements of DNSP presented in Sect. 7.1.3 and allows for
a convenient determination of the RC time constant in a gated QD structure based
on a simple, single QD photoluminescence experiment.

Part of the results presented in Chap. 4,Chap. 5 and Chap. 7 have been published
in References [15], [19] and [20], respectively. These references have separately been
listed at the end of this thesis.
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2 Self-Assembled Quantum dots

The present chapter discusses the basic physics of self-assembled quantum
dots and the experimental methods used to investigate them. Starting from
the band structure of bulk III-V semiconductors, the theory of charge carrier
confinement in quantum dots is developed. Furthermore, the gated structures
used for controlling the exact number of excess quantum dot charges are
described.

The QDs studied in this work are self-assembled islands of a semiconductor mate-
rial embedded in the solid state matrix of another semiconductor of higher bandgap.
This chapter gives a basic overview of the physics of these optically active systems
and the experimental methods used to fabricate and investigate them. The band
structure of direct bandgap semiconductors describes the behavior of charge carriers
in these solid state environments. Electrons and holes can essentially be described
as free particles having a reduced effective mass which accounts for the periodicity
of the crystalline potential. Small semiconductor crystals with dimensions on the
order of 10 nm can be grown by taking advantage of the natural “clustering” or
“self-assembly” of materials grown under the right conditions. These nanocrystals
can be used to trap electrons and holes which can then be investigated by optical
means. By incorporating the QDs in a field effect structure, their charging state can
be set deterministically and monitored using a photoluminescence technique.

2.1 Basic electronic properties of bulk III-V
semiconductors

In order to understand the electronic and optical properties of the QDs studied in
this work, the knowledge of the basic properties of the band-structure of the involved
materials in the center of the Brillouin zone (i.e. at the Γ-point) is essential. We
therefore give a short introduction to the band diagram of these materials, which
has a similar structure in nearly all III-V semiconductor compounds.

The electronic band structure of crystals arises from hybridization of the valence
electrons of the constituent atoms. Since for all group III and V elements, these
electrons come from s or p like orbitals, the resulting electron bands will obey the
same symmetries, which determine the total angular momentum j of the charge
carriers occupying the specific bands. For the semiconductor materials relevant in
this work, the valence band (VB) arises from hybridization of p-shell electrons, while
the conduction band (CB) originates from electronic states having s-type symmetry.
The resulting structure of VB and CB, valid for nearly all III-V semiconductors is
sketched in Fig. 2.1 [21].
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Figure 2.1: Schematic illustration of the band structure of most III-V semiconduc-
tors (left panel). Around the Γ-point (k = 0), conduction band (CB) and valence
band (VB) are well approximated by a free particle dispersion with effective masses
m∗

e and m∗
h, respectively. The VB is divided into heavy hole (HH), light hole (LH)

and a split-off (SO) bands. Right panel: Dipole-allowed interband transitions at
photon energies close to Eg. Light fields of linear and circular polarization couple
HHs (gray) and LHs (black) to VB electrons. The numbers near the arrows which
represent the respective transitions indicate their relative oscillator strengths. Driv-
ing the interband transition with circularly polarized light, a maximum of 50 % spin
polarization of CB electrons can be achieved

Having zero orbital angular momentum, the CB has a two-fold spin degeneracy
and a parabolic dispersion, corresponding to the dispersion of a free particle with an
effective mass m∗

e. Using basic k · p perturbation theory, the effective mass can be
found to be roughly inversely proportional to the bandgap Eg [22]. Typical numbers
for the effective CB electron mass are m∗

e,GaAs ≈ 0.06me and m∗
e,InAs ≈ 0.023me for

GaAs and InAs, respectively, where me is the free electron mass [21].

The situation is slightly more complex for the VB, which carries an orbital mo-
mentum of l = 1 that couples to the electron spin though spin orbit interaction. As
a result, the sub-band having total angular momentum j = 1

2
is split off by several

hundred meV and can be neglected for most practical purposes in this work. The
remaining j = 3

2
states are degenerate at the Γ-point but show a dispersion which

depends on |jz|, the absolute value of the z-component of the total electron angular
momentum along the k-vector. The mobile charge carriers in the two resulting sub-
bands are referred to as heavy and light holes (HH and LH, with |jz| = 3

2
and |jz| = 1

2
,

respectively) with effective masses m∗
HH,InAs ≈ 0.41me and m∗

LH,InAs ≈ 0.026me in
InAs [21].

The fact that the spin-orbit interaction splits off the j = 1
2

band in bulk III-V
semiconductors is at the heart of optical spin orientation in these materials [23].
Fig. 2.1(right panel) shows the dipolar-allowed optical transitions between valence
and conduction band at the Γ-point together with the relative weights of the cor-
responding Clebsch-Gordan coefficients. Driving these transitions with resonant,
circularly polarized light, a net spin polarization of 50 % arises in the CB. If the
j = 1

2
band were not split-off, the same photons would also excite electrons from

this band and the photogenerated CB electrons would have no net spin polarization.

The degeneracy of the j = 3
2

valence band at the Γ-point can be further lifted by
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Figure 2.2: Schematic illustration of the QD growth process: InAs is deposited on
an atomically flat (100) semi-insulating GaAs substrate. At a critical InAs thickness
of ∼ 1.7 ML, instabilities due to the lattice mismatch of InAs and GaAs lead to the
spontaneous formation of InAs droplets above the wetting layer. Capping of the
QDs with GaAs completes the growth procedure

confining the VB electrons in space as we will show in the following paragraph. As
a result, spin polarizations close to 100% can be achieved through optical pumping
in these structures.

2.2 Growth of self-assembled quantum dots

The InAs QDs investigated in this work were grown using molecular beam epitaxy.
The self-assembled growth is based on strain driven formation of low-bandgap InAs
droplets on top of a mono-crystalline GaAs substrate with a high bandgap [24].
When depositing InAs on a GaAs substrate, the growth characteristics of InAs
changes abruptly at a certain critical InAs layer thickness. The growth changes
from a two-dimensional, planar ML deposition to the formation of three-dimensional
islands in the Stranski-Krastanow growth mode, as illustrated by Fig. 2.2 [25]. The
reason for this transition from two- to three-dimensional growth is the ∼ 7% lattice
mismatch between InAs and GaAs. This mismatch causes mechanical strain when
depositing InAs on top of GaAs. At a critical thickness of ∼ 1.7 ML, the gain
in minimizing strain energy is bigger than the cost of an increased surface energy,
resulting in the spontaneous formation of InAs QDs with a typical thickness of
3− 5 nm and a diameter of ∼ 20 nm. After the QD formation, a thin layer of InAs
underlying the QDs still covers the GaAs substrate, this layer is referred to as the
wetting layer (WL).

The formation of QDs on top of the wetting layer is followed by an overgrowth with
GaAs which results in regions of low bandgap InAs, surrounded by a high-bandgap
GaAs matrix. This difference in bandgap leads to the confinement of CB electrons
and VB holes in the InAs-rich regions. The emission energy of recombining excitons
in as-grown QDs lies at approximately 1.1 eV - a wavelength rather inconvenient
for conventional, Si-based photodetectors used in most optical spectrometers. The
QDs are therefore treated with an additional annealing step during the overgrowth
procedure: when the QDs are partially covered by the GaAs overgrowth layer, the
sample temperature is temporarily increased to allow for material exchange between
the QD and its surrounding. This annealing process increases the intermixing of Ga
to the InAs QDs and reduces the height of the QDs. As a result, the QD emission
energy is shifted to ∼ 1.3 eV. QDs treated in this way are referred to as “partially
covered islands” due to their particular shape.
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Figure 2.3: Energies of the edges of conduction and valence band (CB and VB,
respectively) in the field effect structure used in this work; dimensions are given in
nm. The electric field at the QD position determines the QD charging state and is
controlled by a gate voltage Vg which is applied across the structure. The Schottky
voltage VSchottky is a constant which depends on the details of the top-gate contact
an which is on the order of 1 V

The GaAs overgrowth layer has a total thickness of 30 nm. It is followed by 29
periods of a AlAs/GaAs (2/2 nm) superlattice barrier layer, acting as a blocking
barrier for conduction band electrons, and capped by 4-nm GaAs. A semitransparent
Ti film forms a Schottky-contact on top of the sample which is used to adjust the
energy of the QD ground state with respect to the Fermi-energy. 25 nm below
the QD layer, a highly doped n++-GaAs layer forms the back (Ohmic) contact of
the sample, pinning the Fermi-energy in the device. Fig. 2.3 shows a sketch of the
energies of CB and VB in the field effect structure containing QDs. It is seen that
by applying a bias voltage between top and back contact, the QD ground state
energy can be shifted below the Fermi-energy of the electron reservoir, leading to
charging of the QD. Coulomb-blockade thereby ensures that only individual charges
are injected into the QD, which allows for a deterministic preparation of the QD
charge state [26].

2.3 Charge carrier confinement in quantum dots

The low bandgap of InAs compared to the surrounding GaAs leads to a confinement
of electrons and holes to the two-dimensional system consisting of the WL and the
QDs. This confinement along the sample growth direction z leads to a shift of
the CB and VB states, which can be estimated by the particle spectrum in a one
dimensional, infinitely deep trapping potential of width Lz: En = ~2

2m∗ (
πn
Lz

)2. The
corresponding level spacing is on the order of 20 meV for Lz = 5 nm, so that typically
only the ground state n = 0 of the confining potential in the growth direction is
populated.

Since the extent of the WL in the z-direction is considerably smaller than the
QD thickness, the confinement energy along the z-direction is increased in the WL
compared to the QDs. This leads to an additional lateral trapping of charge carriers
to the QDs, and to charge carrier confinement in all three dimensions. The resulting
QD confinement potential in the plane of the WL is sketched in Fig. 2.4. The
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Figure 2.4: Sketch of the QD confinement potential and of its harmonic approx-
imation (left panel). The QD is surrounded by bulk GaAs, having a bandgap of
∼ 1.519 eV. The approximate depths of the electron and hole confining potentials
are given in the figure. The discrete quantum confined levels are labelled in analogy
with atomic orbitals. The level spacings for electrons and holes are on the order of
~ωe = 50 meV and ~ωh = 10 meV, respectively. The carrier confinement in the low-
est QD shells is well approximated by a 2D harmonic potential (right panel). Three
examples for QD excitons (neutral and singly, negatively and positively charged)
are given in the figure

confinement potential is deeper for electrons than for holes due to the details of the
band-alignment between InAs and GaAs. Furthermore, the quantum mechanical
level spacing ~ωe,h arising from carrier confinement is considerably smaller for holes
than for electrons due to the larger effective mass of VB holes compared to CB
electrons. For the lowest lying electron and hole states (denotes as s,p,... in analogy
to atomic orbitals) localized in the QD, a parabolic confinement potential is a good
approximation.

Due to the different masses of heavy and light holes, a confinement of these charge
carriers results in a splitting of the HH and the LH states. This splitting is on the
order of 20 meV in QDs of height Lz = 5 nm and one order of magnitude larger
in the thin WL. Heavy-light hole splitting therefore eliminates the restrictions of
optical spin orientation present in bulk semiconductors mentioned in Sect. 2.1 and
in principle allows for the creation of photogenerated VB electrons with 100 % spin
polarization. We note however, that quantum confinement leads to population of
states with k 6= 0, which induces an admixture of heavy and light hole states. This
mixing makes nominally forbidden optical transitions partially allowed, reducing the
spin polarization of optically generated electrons again.

Optical excitation leads to the formation of localized excitons in a QD which can
be detected through the light emitted upon recombination of the excitons. Since
the QD ground state in the VB has HH character, the trapped QD holes have an-
gular momentum projections on the k-vector of jz = ±3

2
, while for QD electrons

Sz = ±1
2
. The circular polarization of the emitted recombination light thus carries

direct information about the spin of the recombining charges. Furthermore, the
incorporation of the QDs into the field effect structure described in Sect. 2.2 allows
for deterministic charging of the QDs and therefore to the formation of charged
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excitons. Fig. 2.4 (right panel) shows two examples of the most relevant QD charge
complexes in this work: The neutral exciton (X0) and the singly negatively charged
exciton (X−1). The harmonic approximation of the QD trapping potential allows
for a convenient calculation of the Coulomb interactions between the different con-
fined QD charges [27]. In this way, the many-body spectrum of the QD can be
obtained, which allows for the identification of the different QD emission lines in a
PL experiment with respect to their excitonic origin.

2.4 Experimental methods

The QD sample described in Sect. 2.2 was chosen to show a low QD density of
less than 0.1 µm−2, that allowed for the addressing of a single QD using a micro-
photoluminescence (micro-PL) setup. Our standard micro-PL setup is described in
detail in AppendixA.1. The setup was based on the combination of a ZrO2 solid
immersion lens (SIL) in Weierstrass configuration, directly fixed onto the sample,
and PL collection optics of numerical aperture 0.25. Depending on the discussed
experiment, the sample was placed either in a helium-bath cryostat equipped with
a superconducting magnet, reaching a maximum magnetic field strength of 10 T, or
in a helium flow cryostat. There, variable low magnetic fields of Bext < 20 mT or,
alternatively, fixed magnetic fields of Bext ≈ 200 mT were applied using external
Helmholtz coils or a permanent magnet, respectively. In the case of the flow cryostat,
PL was collected using a microscope objective mounted outside of the cryostat, while
for the bath cryostat, we used a lens directly fixed onto the sample mount inside the
helium-bath.

The spectroscopy system consisted of a spectrometer of 0.75 m focal length and a
liquid-nitrogen cooled charge coupled device (CCD) camera. The spectral resolution
of this system was limited to ∼ 30 µeV by the finite CCD pixel separation. However,
the precision to which the emission energy of a given spectral line can be determined,
could be increased to ∼ 2 µeV by calculating a weighted average of the emission line
over the relevant CCD pixels [19]. Alternatively, by using a scanning Fabry-Perot
interferometer of 62 µeV free spectral range and a finesse &70 as a narrow-band
frequency filter in front of the spectrometer, a spectral resolution on the order of
1 µeV was achieved [15].

The PL polarization and spin splitting were studied by resonantly exciting a
single QD in one of its excited (p-shell) states at T ≈ 5 K ( T = 1.7 K in case of
the bath cryostat). The PL spectral lines associated with different charging states
of a single QD can be identified from the PL intensity contour plot as a function
of the bias voltage and emission energy (Fig. 2.5(a)) [26, 28]. The emission line
coming from neutral exciton (X0) recombination exhibits a fine-structure splitting
of ∼ 20 µeV due to the anisotropic electron-hole exchange interaction (AEI) [29].
The emission from the negatively (positively) charged trion X−1 (X+1) arises from
optical excitation of QD charged with a single electron (hole). The photons emitted
upon X−1 (X+1) recombination are red (blue) shifted by ∼ 4.6 meV (∼ 1.9 meV)
with respect to the X0 line.

Unless stated otherwise, the discussed experiments were performed on the nega-
tively charged exciton X−1 at the center of its PL stability region with respect to
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Figure 2.5: Photoluminescence from a single charge-tunable QD. (a) Contour plot
of the PL intensity as a function of applied bias voltage under σ+-polarized excitation
and co- (cross-) circularly polarized detection ((σ+,σ+(−)), respectively). The inten-
sity is normalized with respect to the X−1 peak-intensity of I0 = 3 · 104 counts/sec.
The excitation laser energy is tuned to a p-shell resonance of the singly charged
QD at 1.356 eV, ∼36.6 meV above the bulk GaAs LO phonon line indicated in (a).
Panels (b) and (c) show the integrated intensities of X−1 and X+1 emission in the
(σ+,σ+) configuration (light gray), as well as the degree of circular PL polarization
ρ±c under σ±-excitation. For (c), the laser is tuned into a p-shell resonance for X+1

gate voltage. In this regime, electron co-tunnelling to the nearby reservoir is mini-
mized [30] and the QD is occupied by a single electron in its ground state. Optical
excitation is performed in a resonant way into the p-shell, which lies approximately
one LO phonon energy above the emission energy of X−1 (E0 = 1.3155 eV)1. The
carriers created in the p-shell then relax to the QD ground state on a timescale
of ∼ 30 ps due to a combination of phonon-mediated relaxation and co-tunnelling
through the electron reservoir. For all our experiments, the excitation power is set
close to saturation of the observed emission line. We found that these excitation
conditions lead to a maximal preservation of PL light polarization (|ρ±c | ≈ 75% at
B = 0 T) after excitation with circularly polarized light.

The polarization of the excitation laser and of the PL are denoted as (σα, σβ),
where σα and σβ are the excitation and detection polarization, respectively. The
index α or β takes one of four values: linear polarization along the crystal axes
(x : [11̄0], y : [110]) or circular polarization (±: light helicity of ±1). The degree of

1Another possible scenario for QD excitation would be the creation of a ground state (s-shell)
exciton with simultaneous emission of an LO phonon. We exclude this mechanism by various
experimental observations: we observe several distinct QD excitation resonances at different
energies. The GaAs LO phonon line for these resonances can thereby lie above or below the
corresponding excitonic emission energy. The observed resonances have widths on the order
of 100 µeV, in accordance with recent experimental observations of p-shell excitation reso-
nances [31]. Only a few of these resonances lead to the high degree of PL circular polarization
and to the nuclear spin polarization effects that will be discussed later. These facts corroborate
or model of resonant excitation into the p-shell.
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circular polarization is defined as ρ±c ≡ (I± − I∓)/(I+ + I−), where Iβ denote the
intensity of PL in the (σ±, σβ) configuration. The polarization characteristics of the
system is calibrated using the strongly polarized emission of the LO phonon of the
GaAs substrate (Fig. 2.5(a)) [22]. The combined fidelity of polarization preparation
and detection was thereby found to be better than 98%.

Circularly polarized, resonant p-shell pumping of a single electron (hole) charged
QD generates optically oriented trions with hole (electron) spin jz = +3/2 (Sz =
−1/2) or jz = −3/2 (Sz = +1/2), under σ+- and σ−-pumping, respectively (See
Chap. 2.1 and [13, 31]). The intra-dot excitation ensures maximal carrier spin preser-
vation during relaxation, which is confirmed by the high degree of circular polar-
ization of the PL emission lines (Fig. 2.5(b) and (c)). The initial state of X+1 is
composed of two holes in a singlet-state and one electron. Therefore, σ+- (σ−-
) polarized PL from X+1 indicates that the optically created electron was in the
Sz = −1/2 (Sz = 1/2) state. Analogously, for X−1, circular polarization of the
emitted light reflects both the spin of the hole in the QD before photon emission
and the initial spin of the residual QD electron after photon emission. A high de-
gree of circular polarization of X−1-emission thus indicates a highly spin polarized
residual electron in the QD.
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3 Electron and Nuclear Spin Systems
in a Single Quantum Dot and
Implications for Electron Spin
Coherence

The theory of the spin systems of quantum dot electrons and nuclei is de-
scribed in this chapter. While electron spins are well described by the Zee-
man interaction and their coupling to an electron reservoir, nuclear spin-
spin interactions need to be taken into account to understand the properties
of the nuclear spin system. The electronic and the nuclear spins are coupled
through the hyperfine interaction whose properties will be discussed together
with its implications for the coherence properties of the electron spin.

Circularly polarized excitation and the analysis of the polarization of PL light are
powerful experimental tools for manipulating and measuring the polarization of the
electron spin in a single QD. The high degree of QD PL polarization described in
Sect. 2.4 indicates that electron spin relaxation mechanisms in the investigated QDs
are relatively weak. Since the electron spin system is in thermal contact with the nu-
clear spin system through the hyperfine interaction, spin polarization is transferred
from one to the other, thereby cooling the nuclear spin system. At the same time,
the coupling of the nuclear spins to their environment will heat up the nuclear spins,
leading to a finite nuclear spin temperature in a dynamical equilibrium. In this sec-
tion, we give an overview of the basic spin interactions and relaxation mechanisms
of the QD electron and nuclear spins and discuss the coupling mechanism between
the two spin systems. Finally, we discuss how this coupling affects the coherence
properties of the electron spin.

The total Hamiltonian Ĥ for a single electron in contact with an ensemble of
nuclear spins can be written as

Ĥ = Ĥel
Z + Ĥnuc

Z + Ĥdip + ĤHF. (3.1)

Ĥel
Z and Ĥnuc

Z denote the electron and nuclear Zeeman Hamiltonian, respectively,
while Ĥdip describes the nuclear dipole-dipole interactions and ĤHF the hyperfine
interaction, which couples the electron and nuclear spins. We will discuss the indi-
vidual terms of this Hamiltonian in more detail in the following paragraphs.
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3.1 Electron spin system

The electron spin system considered in this work consists of a residual QD electron
in the case of X−1 and of the (metastable) photo-generated QD electron in the case
of X+1. Information about the electron spin is obtained by measuring the circular
polarization of PL light.

When placed in a magnetic field, the spin of a QD electron experiences the Zeeman
interaction, described by the Hamiltonian

Ĥel
Z = g∗elµBŜel ·B, (3.2)

where µB is the Bohr magneton, g∗el the effective electron g-factor and Ŝel the electron

spin operator (Ŝel ≡ 1
2
σ̂, with the Pauli-matrices σ̂).

For a consistent notation with respect to the sign of the g-factors, we also note the
Zeeman Hamiltonian for holes, which we write as Ĥh

Z = −g∗hµBŜh ·B[32], with the

effective hole g-factor g∗h and the hole spin operator Ŝh. In this representation, the
heavy-hole wave functions with jz = ±3

2
convert to pseudo-spins with j̃z = ±1

2
. The

experimentally found g-factors g∗el and g∗h are both negative in our system. We note
that in this work, we only consider singly charged excitons. Exchange interactions
therefore play no role for the energies of the recombining excitons [29] and will not
be discussed here.

Due to the tight confinement of electrons in self-assembled QDs, the electron spin
is well protected from spin-relaxation by electron-phonon coupling via spin-orbit
interaction, which is otherwise very effective in a solid state environment. This
typically extends electron T1 times in QD systems up to 1 s in moderate magnetic
fields [33]. However, the coupling of the QD electron to the nearby electron reservoir
introduces an additional - albeit controllable - decay channel for the electron spin.
The QD electron can make a virtual transition to the Fermi sea of the reservoir
and be replaced by a spin-flipped electron from the same reservoir. The rate of
these co-tunneling events depends critically on the tunnel barrier between the QD
and the electron reservoir and therefore on the details of the QD heterostructure.
For the structures used in this work, the resulting T1 time of the electron has an
upper bound of ∼ 3 ns at gate voltages in the center of the 1e− stability region
and decreases rapidly towards the edges of this region [30]. This tunability of the
electron spin lifetime will be an essential feature in the measurements of the nuclear
spin lifetime that will be discussed in Chap. 7.

3.2 Nuclear spin system

The QDs considered in this work consist of InAs with an admixture of Ga due to
material diffusion during the growth process. The nuclear spins present in our QDs
therefore consist of three nuclear species with their naturally occurring isotopes:
115In (95.3%), 113In (4.7%),75As,69Ga (60.1%), 71Ga (39.9%) - their natural abun-
dances are given in brackets. Indium has a total spin of 9/2 while all other nuclei
have spin 3/2. In the following, we will only consider the most abundant nuclear
species for simplicity and neglect the at least ∼ 10% admixture of Ga in our dots.
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Each nucleus i is characterized by its spin I i and the gyromagnetic ratio γi,
describing the response to a static external magnetic field B:

Ĥnuc,i
Z = −γi~Î

i
·B, (3.3)

where Î
i
is the (dimensionless) spin-operator of the ith nucleus. The total nuclear

Zeeman Hamiltonian is then a sum over all the nuclear spins: Ĥnuc
Z =

∑
i Ĥ

nuc,i
Z .

The gyromagnetic ratios for In and As are γ115In = 9.365 MHz/T and γ75As =
7.315 MHz/T.

Interactions of nuclear spins dominate the energy spectrum of the nuclei at low
magnetic fields and lead to spin-transport in high fields. The simplest, and in semi-
conductors usually dominant nuclear spin-spin interaction is the dipolar coupling
between two nuclear spins i and j. It can be written as [34]:

Ĥ i,j
dip =

µ0~2γiγj

4πr3
ij

Î
i
· Î

j
− 3

(
Î
i
· rij

) (
Î
j
· rij

)
r2
ij

 , (3.4)

where rij is the vector of length rij joining the two nuclei, and µ0 is the permeability
of free space. The dipolar Hamiltonian of the total nuclear spin system is then a
sum over all nuclear spin pairs: Ĥdip =

∑
i<j Ĥ

i,j
dip.

A common decomposition of this Hamiltonian divides Ĥdip into “secular” parts

which commute with Ĥnuc
Z and “non-secular” parts which don’t commute with

Ĥnuc
Z [34]. For a given nuclear spin species, the secular part is composed of terms

which are proportional to Î i
z Î

j
z − 1

4
(Î i

+Î
j
− + Î i

−Î
j
+), where Î i

+ and Î i
− are the rais-

ing and lowering operators of the ith nuclear spin. The secular part is therefore
spin-conserving and responsible for nuclear spin diffusion within the lattice. The
non-secular part on the other hand contains terms which don’t conserve the total
angular momentum of the nuclear spin system and can lead to depolarization of
nuclear spins in low magnetic fields. The strength of the interaction Ĥdip is usually
characterized by a “local field” Bloc, which is the effective magnetic field generated on
the site of a nucleus by its neighboring nuclear spins [34]. For bulk GaAs, Bloc is on
the order of 0.1 mT [3]. It can be shown that the non-secular terms of Ĥdip only con-
tribute to the evolution of the nuclear spin systems for magnetic fields Bext ≤ Bloc.
Below these fields, the non-secular nuclear dipole-dipole interactions depolarize the
nuclear spins very effectively within the decoherence-time T2 ≈ 10 − 100 µs. We
note that this decoherence time does not refer to a decoherence process in the sense
of a loss of information from the nuclear spins to a reservoir, resulting in a decay of
the off diagonal elements of the nuclear spin density matrix. Rather it corresponds
to an “collapse” of the off-diagonal elements of the nuclear spin density matrix and
to the time of the establishment of a nuclear spin temperature, as will be discussed
in Sect. 3.2.1.

Nuclear spin relaxation in III-V semiconductors has been experimentally investi-
gated in detail using standard NMR techniques [35]. The resulting T1 times in InAs
and GaAs were on the order of 1000 s for Ga and As and roughly 200 s for In at
a temperature of 4 K. These values however were shown to be limited by nuclear
spin relaxation by paramagnetic impurities, a mechanism absent in individual QDs.
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The remaining relevant nuclear spin relaxation mechanism is quadrupolar relax-
ation. This process results from nuclear transitions induced by the coupling of the
nuclear quadrupole moment to phonon-generated electric field gradients at the nu-
clear site. The corresponding phonon-induced relaxation rate scales with the square
of the temperature T and dominates over the temperature-independent relaxation
by paramagnetic impurities for T > 20 K. We therefore estimate the nuclear T1-
time in our QDs to be further reduced by 2 orders of magnitude compared to the
reported values [35]. Even though the nuclear T1-time could be reduced again by
the strong lattice deformations in self-assembled QDs (cf. Chap. 6), we assume the
nuclear spin-lattice relaxation to be completely negligible for our experiments. The
only remaining mechanism leading to a decay of nuclear spin polarization in a QD is
spin-diffusion out of the QD into the surrounding bulk material. The spin-diffusion
constant in GaAs has been measured experimentally to be D = 10−13 cm2 s−1 [36].
The typical timescale for diffusion out of a QD with a diameter d ≈ 20 nm is there-
fore d2/D ≈ 1 min. However, the different nuclear species and local lattice structure
within the QD compared to its surrounding bulk material should further reduce the
diffusion constant and increase the diffusion time. Experimental work on nuclear
spin diffusion between quantum wells has shown that this reduction amounts at least
to a factor of 10 [37].

3.2.1 The concept of a nuclear spin temperature

A solid state nuclear spin system, in contrast to its counterparts in liquids or gases,
can usually be described by a single constant of motion, its mean energy or, equiva-
lently, its temperature. The validity of this spin temperature approximation is based
on two assumptions [38]. First, due to nuclear spin-spin interactions, the off-diagonal
elements of the nuclear density matrix all evolve at different frequencies spread over
an energy interval ∆E ≈ ~γBloc. As far as the expectation values of observables
are concerned, these elements can therefore be taken to be equal to zero after a
time T2 ≈ ~/∆E, after which the nuclear spin density matrix is effectively diagonal.
This is the random phase approximation. By further assuming that all observables
of the nuclear spin systems are unique, smooth functions of the energy, one can fully
describe the properties of the nuclear spin system by knowing its mean energy. The
nuclear spin density matrix is then diagonal and the values of the diagonal elements
are given by a Boltzmann distribution with the nuclear spin temperature T .

Describing the nuclear spin system by a spin temperature is therefore valid for
times t > T2 after the preparation of a certain nuclear spin state. The relaxation
of this nuclear spin temperature to the temperature of its environment (the “lat-
tice”) is denoted as T1. In the presence of an external magnetic field exceeding Bloc,
nuclear spin temperature is equivalent to a polarization along the direction of the
magnetic field. Bringing the system to zero field, the polarization is destroyed by
nuclear spin-spin interactions on a timescale T2, the nuclear spin temperature (or
entropy) however is conserved for a much longer time T1, even at zero field. This
fact can experimentally be tested by re-introducing the nuclear spin system into
a magnetic field and by measuring its nuclear spin polarization. In corresponding
experiments on bulk Lithium [39], it was indeed found that the nuclear spin tem-
perature is conserved over a long time, even though nuclear spin polarization is
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destroyed in zero field - a result that can only explained in the context of a nuclear
spin temperature [38].

3.3 Hyperfine interaction

The dominant contribution to the coupling between the electron- and the nuclear-
spin systems in III-V semiconductors originates from the Fermi contact hyperfine
interaction. For an electron in a QD and in first order perturbation theory, this
interaction can be written as [3, 5, 40]:

Ĥhf =
ν0

8

∑
i

Ai|ψ(Ri)|2Ŝel · Î
i
, (3.5)

where ν0 is the volume of the InAs-crystal unit cell containing eight nuclei, ψ(r)
is the electron envelope wave function1, and Ri is the location of the ith nucleus.
Ai = 2

3
µ0g0µB~γi|u(Ri)|2 is the hyperfine coupling constant and g0 the free electron

g-factor. Ai depends on the value of the electron Bloch function u(Ri) at the nuclear
site. For all the nuclei in our system it is positive and on the order of 50 µeV (i.e.,
AIn = 56 µeV and AAs = 46 µeV [41]). We note that only electrons in the conduction
band couple to the nuclear spins through (3.5). For carriers in the valence band
of III-V semiconductors, this interaction vanishes due to the p-type symmetry of
u(Ri) [42].

With the identity Ŝel · Î
i

= Î i
zŜz + 1

2
(Î i

+Ŝ− + Î i
−Ŝ+), where Ŝ+ and Ŝ− are the

electron spin raising and lowering operators, respectively, (3.5) can be decomposed
into two parts [23]: A dynamical part (∝ I i

+S− + I i
−S+), allowing for the transfer

of angular momentum between the two spin systems, and a static part (∝ I i
zSz),

affecting the energies of the electron and the nuclear spins.
The dynamical contribution leads to a thermal equilibration of the electron and

the nuclear spin systems. In an external magnetic field exceeding Bloc in strength,
this leads to a polarization of the nuclear spins. Neglecting other spin relaxation
mechanisms and polarization of the electronic or nuclear spins due to thermalization
in the external magnetic field, the mean nuclear spin polarization 〈I i

z〉 along the
quantization axis z is linked to the electron spin polarization Sz through the Curie-
law like relation [43]:

〈I i
z〉 = I iBIi(x), with x = I iln

(
1 + 2Sz

1− 2Sz

)
. (3.6)

BIi is the Brillouin function of order I i. For small electron spin polarizations Sz �
1/2, (3.6) can be expanded to 〈I i

z〉 ≈ 4/3I i(I i+1)〈Sz〉, while for Sz ≈ 1/2, 〈I i
z〉 ≈ I i.

The static part of the hyperfine interaction leads to the notion of the “effective
magnetic fields”, either seen by the electron due to spin polarized nuclei (Overhauser
field Bnuc), or by the nuclei due to a spin polarized electron (Knight field Bel). Here,
we only consider their projection along the z-axis, which we denote as Bnuc and Bel,

1In our convention, |ψ(r)|2 is normalized to 8
ν0

. Typical values of ψ(r) are therefore
√

8
ν0N for r

being within the QD.
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respectively. The corresponding Knight field operator B̂i
el for the ith nuclear spin is

B̂i
el = − 1

~γi

ν0

8
Ai|ψ(Ri)|2Ŝz. (3.7)

Its expectation value Bi
el = 〈S| B̂i

el |S〉 depends on the electron spin state |S〉 and on
the exact location of the nucleus i. For a fully polarized electron bound to a shallow
donor2 in GaAs, the maximal value of Bi

el has been estimated to be 13 mT for Ga
and 22 mT for As. These values, however, are further reduced to felB

i
el if the QD is

occupied by a single electron only in a finite fraction fel of the total measurement
time [3].

Analogously, the Overhauser field operator can be written as

B̂nuc =
1

g∗elµB

ν0

8

∑
i

Ai |ψ(Ri)|2 Î i
z, (3.8)

with the expectation value Bnuc = 〈µ| B̂nuc |µ〉 for a given nuclear spin state |µ〉.
This effective field leads to a total electron Zeeman splitting in the presence of both
nuclear and external magnetic fields:

∆EZ
el = g∗elµB(Bext +Bnuc). (3.9)

The change of the electron Zeeman splitting due to spin polarized nuclei is referred
to as the Overhauser shift (OS), ∆EOS. For a fully polarized nuclear spin system in
bulk InAs, the total OS amounts to ∆Emax

OS = 0.5 9
2
56µeV+0.5 3

2
46µeV= 161 µeV,

with the first contribution coming from the In nuclei and the second from the As
nuclei. The weighting factors of 0.5 thereby correspond to the stoichiometric ratio
of In and As in InAs. For a typical electron g-factor of gel = 0.7, this corresponds
to a nuclear magnetic field of Bnuc = 4 T

Singly charged excitons are ideal candidates for a spectroscopic study of DNSP
in QDs. In these charge complexes, exchange interactions between the carriers
play no role [29] and the magnetic field dispersion of the spin splittings of excitonic
recombination lines is solely due to Zeeman interaction of the spins with (effective)
magnetic fields. ForX−1, the total Zeeman splitting ∆EZ

X−1 of the PL recombination
line is given by the difference of the Zeeman splittings of the initial and final states
of exciton recombination. It thus amounts to

∆EZ
X−1 = −g∗hµBBext − g∗elµB(Bext +Bnuc), (3.10)

where g∗el and g∗h are the electron- and hole g-factors, respectively.
Exciting the QD with linearly polarized light creates residual electrons in a super-

position of spin up and down, resulting in no nuclear polarization and therefore in
Bnuc = 0. Thus, comparing the Zeeman splittings of X−1 under linearly- and circu-

larly polarized excitation (∆EZ,lin.
X−1 and ∆EZ,σ±

X−1 , respectively) gives a direct measure
of ∆EOS and Bnuc:

∆EOS = ∆EZ,σ±

X−1 −∆EZ,lin.
X−1 = −g∗elµBBnuc. (3.11)

The analysis of the spin splittings of X+1 is analogous and will not be given here.

2With a Bohr radius of 10 nm - comparable to our QD confinement length.
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3.4 Hyperfine-induced electron spin decoherence

As we argued in Sect. 3.1, QD electron spins are well protected from relaxation and
their evolution of the spin is governed by the Zeeman interaction of the electron
with (effective) magnetic fields. Besides the externally applied magnetic field, the
electron experiences the strong nuclear magnetic field Bnuc. This field can attain
values of several T for fully polarized nuclei and can therefore significantly contribute
to the QD electron spin dynamics. If the nuclear spins are not explicitly prepared
in a specific spin state, each nuclear spin points in a random direction and the mean
nuclear spin polarization of the ensemble of nuclear spins is a random variable with
a Gaussian distribution, having a width ∝

√
N . The fluctuating nuclear field can

therefore be estimated to be ∆Bnuc ' A/
√
Ng∗elµB, which is on the order of 10 mT

for typical QD sizes with N ≈ 105.
In low external magnetic fields, Bext ≈ ∆Bnuc, the evolution of the direction of the

electron spin is therefore mostly determined by its interaction with the nuclear spins.
The transverse components of Bnuc with respect to the electron spin direction lead
to coherent Larmor precession of the electron spin. Equivalently, the flip-flop terms
in (3.5) drive transitions between the electron spin up and down states, thereby
coupling these two states and defining a new quantization direction for the electron
spins.

In a magnetic field Bext � ∆Bnuc, where the electron Zeeman splitting largely
exceeds the hyperfine coupling strength of the electron with the random nuclear field,
electron-nuclear flip-flop events become energetically forbidden and the components
of the nuclear field transverse to Bext can be neglected. However, the longitudinal
components of the nuclear field fluctuations lead to a fluctuation of the energies
of the electron spin states. This fluctuation in turn leads to a decoherence of the
electron spin with a corresponding T ∗

2 time [40]:

T ∗
2 =

~
g∗elµB

√
2∆B2

nuc/3
. (3.12)

With ∆Bnuc ≈ 10 mT, T ∗
2 is of the order of 3 ns, in accordance with recent trans-

port measurements in a QD system [44]. We note that this apparent decoherence on
a timescale T ∗

2 only comes from the fact that real experiments constitute an aver-
age over many measurements, each of which is realized under another nuclear spin
configuration. In each run, the electron therefore has another Larmor precession
frequency, which combined with the experimental averaging leads to an apparent
damping of the electron spin precession. For a given nuclear spin state, however,
the evolution of the electron-nuclear spin system is perfectly coherent as long as the
direction and magnitude of the nuclear field are not altered. The effect of time- (or
ensemble-) averaging can be eliminated by using spin-echo techniques [45] which un-
wind the effect of a static nuclear field on the electron spins. Under such conditions,
the electron spin dephasing time in electrostatically defined QDs was found to be
T2 ≈ 1µs at Bext = 100 mT - 2 orders of magnitude longer than T ∗

2 [44].
The remaining electron spin decoherence is a consequence of the evolution of

the nuclear spin system and in particular of the z-component Bz
nuc of the nuclear

field. This evolution was neglected in deriving (3.12) and the arguments leading
to the finite T ∗

2 time were given based on the picture of the “frozen fluctuations”
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of the nuclear field. In order to understand the dephasing processes for a QD
electron (characterized by a time T2), it is therefore necessary to understand the
mechanisms which cause the evolution of ∆Bnuc and the timescale at which this
evolution happens.

In Sect. 3.2 it was shown that nuclear spin lattice relaxation is negligible in the
temperature range relevant to the experiments discussed here. The only interactions
relevant for the evolution of the nuclear field are therefore the nuclear dipole-dipole
interactions (3.4) and the hyperfine interaction with conduction band electrons (3.5).
The main effect of both of these interactions in changing Bz

nuc are flip-flop processes
between different nuclei (i and j), which change the nuclear field because the two
coupled nuclei might have different interaction strengths with the electron spin (i.e.,
|ψ(Ri)|2 6= |ψ(Rj)|2).

Nuclear dipolar interaction strengths are characterized by the local dipolar field
Bloc (cf. Sect. 3.2). The evolution of a nuclear spin due to interactions with its
neighbors therefore happens at a rate corresponding to the nuclear Larmor precession
frequency of about 10 kHz in the field Bloc. For external magnetic fields exceeding
Bloc, the only relevant contribution for the evolution of Bz

nuc are the secular terms
of the dipole-dipole interaction which lead to diffusion and re-distribution of the
nuclear spins. The corresponding rate of change of Bz

nuc due to dipolar interactions
is therefore further reduced. The time required to change a given nuclear field by a
magnitude ∆Bnuc has been estimated to be ∼ 0.01− 10 s [46].

The role of the hyperfine interaction for the evolution of the nuclear spin sys-
tem is twofold. First, the Knight field Bel of a QD electron leads to precession of
the nuclear spins around the electron spin at a rate given by the nuclear Larmor
frequency in a field Bel. Being on the order of 1 mT [15], the Knight field leads to nu-
clear spin evolution on timescales comparable to the corresponding estimates for the
dipolar interactions. This evolution, however gets suppressed in external magnetic
fields exceeding Bel, where electron-nuclear flip-flop processes vanish to first order.
The second effect of the hyperfine interaction on the nuclear spins are electron-
mediated, long ranged nuclear spin-spin interaction. This second order process
termed “indirect interaction” consists of a virtual electron-nuclear spin-flip followed
by a spin-“flop” of the electron with another nuclear spin. The resulting decorre-
lation time of the nuclear magnetic field has been shown to scale as N3/2∆EZ

el/A
2

for A/∆EZ
el � 1[47], with a rough estimate of 1 ms for N = 105, A = 50 µeV and

∆EZ
el = 200 µeV. This estimate, however, is an upper bound for the rate of change of

the nuclear field that neglects, for instance, effects of the Knight field gradient which
will further slow down this rate. For cases where the approximation A/∆EZ

el � 1
is not valid, no theoretical predictions for the evolution of the nuclear spin system
due to indirect interactions exist.

Calculating the electron spin dephasing rate caused by the slow but random nu-
clear field fluctuations occurring on a timescale of ∼ 100µs turns out to be a difficult
task [48]. This rate not only depends on the timescale of nuclear field fluctuations,
but also on the correlations of these fluctuations as well as on the width of the
initial nuclear field distribution. Still, attempts have been made to calculate this
quantity including the interaction mechanisms discussed above [5, 49]. The results
of these calculations lead to an electron T2-time of 1 − 100 µs, in rough agreement
with experimental results [44].
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Since most solid state systems contain nuclei with non-zero spin, the only way
to further increase the electron spin coherence time is to manipulate the nuclear
spins. The goal of such a manipulation is then to suppress fluctuations of the mean
nuclear spin, thereby leaving the electron to interact coherently with a static nuclear
field. Two methods for suppressing nuclear spin fluctuations have been proposed
up to now. They involve creating a very high degree of nuclear spin polarization [5]
or, alternatively, repeated projective measurements of the nuclear field [8], causing
a “quantum Zeno effect” on the nuclear spins.
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4 Optical Pumping of Nuclear Spins
in Low Fields

Experimental evidence for dynamical nuclear spin polarization induced by
a single, optically oriented electron in zero external magnetic field is pre-
sented. Nuclear dipole-dipole interactions are suppressed by the relatively
strong effective magnetic field that the quantum dot electron exerts on the
nuclear spins. By applying external magnetic fields, this Knight field can
be compensated, allowing for a direct measurement of its magnitude, which
turns out to be on the order of one mT.

In low external magnetic fields, the evolution of the nuclear spin system is gov-
erned by the nuclear dipole-dipole interactions, characterized in strength by a local
magnetic field Bloc (cf. Sect. 3.2). If the total magnetic field seen by the nuclei is
smaller than Bloc , nuclear angular momentum is not a conserved quantity. Instead,
the nuclear spins evolve into a highly entangled many body state due to their dipolar
coupling. In order to observe any nuclear spin polarization, it is therefore necessary
to apply a magnetic field exceeding Bloc. This fact has been observed experimentally
in different QD systems [14, 50] as well as in various bulk NMR experiments [38].
Remarkably, in a situation of tight electron confinement, the Knight field Bel can
attain values exceeding the local field Bloc, thereby “stabilizing” the nuclear spin
polarization and allowing for the observation of dynamical nuclear spin polarization
(DNSP) even in the absence of an externally applied magnetic field.

4.1 Nuclear spin cooling in the Knight field of the
QD electron

Creating a Knight field strong enough to suppress the non-secular terms of the
dipole-dipole interaction requires a sizable QD electron spin polarization. We realize
this situation by exciting our QDs resonantly in one of their excited (“p-shell”) states
as described in Sect.2.4.

Figure 4.1(a) shows the emission spectrum of X−1 at zero external magnetic field
obtained by using a scanning Fabry-Perot interferometer (cf. AppendixA.1) under
linearly and circularly polarized excitation. Under σx-polarized laser excitation, no
fine structure splitting is observed, confirming the absence of nuclear spin polariza-
tion. Exciting the QD with σ±-polarized light, spin doublets with a splitting appear
of ∼ 13 µeV. For X−1, PL peaks that are co-circular with the excitation laser have
lowest energy for both σ+- and σ−-excitation (Fig. 4.1(a)), indicating that the direc-
tion of the effective magnetic field causing the observed splitting is determined by
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Figure 4.1: Exciton spin splitting induced by the Overhauser field. High-resolution
PL spectra measured with a Fabry-Perot scanning interferometer (spectral resolu-
tion ∼ 1µeV) under Bext = 0. The polarizations of the excitation laser are denoted
in the figure. PL is detected co- and cross- polarized with respect to the excita-
tion polarization (squares and triangles, respectively). Under circularly polarized
excitation of X− (a) as well as of X+1 (b), a significant nuclear spin polarization
with the corresponding OS denoted in the figure develops. In contrast, linearly po-
larized excitation does not lead to nuclear spin polarization. An energy offset of
E0 = 1.3155eV (1.3215eV) is subtracted from the X− (X+) data

the direction of the QD electron spin. We therefore attribute the observed splitting
to DNSP and further test this hypothesis by performing an analogous measurement
using X+1 trion excitation (Fig. 4.1(b)). For X+1 , the observed energy sequence
in PL emission is reversed, indicating that for a given excitation polarization the
electron spin is polarized in opposite directions in the case of trions [14]. This is
consistent with the respective electron spin systems for X−1 and X+1 that were
identified in Sect. 3.1.

Generally, the expectation value of the Overhauser field in an external magnetic
field Bext and in the presence of nuclear dipolar interactions can be expressed as [3,
23, 43, 51]:

Bnuc = b∗n
〈S〉 ·Btot

B2
tot + ξB2

loc

Btot, (4.1)

where Btot = Bext + Bel is the total effective magnetic field seen by the nuclei and
Btot = |Btot|. 〈S〉 is the average QD electron spin, ξ is a numerical factor of order
unity and b∗n is a proportionality constant determined by (3.6) and (3.8) and by the
rates of nuclear spin relaxation1. The fact that we observe DNSP even if Bext = 02

1As we will show in Chap. 5, the rate of nuclear spin relaxation due to electrons depends on
the magnetic field as well. This dependence explains the behavior of DNSP in magnetic fields
Bext � Bloc.

2We measured the stray field in our set-up to be 0.05 ± 0.01 mT at an angle of ∼ 25◦ to the
optical axis.
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suggests that the Knight field of a single spin-polarized electron is strong enough to
ensure Bel > Bloc.

4.2 Direct measurement of the Knight field of the
QD Electron

Based on (4.1), it could be concluded that the application of an external field that
cancels the Knight field should result in the complete disappearance of DNSP. Fig-
ure 4.2(a) shows the dependence of the observed Overhauser shift ∆EOS of X−1 on
Bext. A dip in the OS at Bext = −Bel ≈ ±0.6 mT is observed under excitation with
σ±-polarized light, which gives a direct measurement of the average Knight field Bel

experienced by the QD electrons. As indicated by (3.7), the direction of Bel is solely
determined by the direction of the spin of the QD electron3 and is always antiparallel
to the direction of the electron spin. Excitation of the QD with σ+-polarized light
leaves a residual electron with spin up in the QD; this implies that the Knight field
indeed has to point in the negative direction, while the nuclear spins are polarized
in the positive direction. From this, one can conclude that the sign of the nuclear
spin temperature under optical spin cooling in the Knight field is opposite to the
sign of the nuclear gyromagnetic ratio γi. For all the nuclei in our system, γi > 0,
which leads to a negative nuclear spin temperature at Bext = 0.

The Knight fields we measured with this method range from ±0.6 mT to ∼
±3 mT, depending on the degree of PL polarization, the excitation light intensity
and the QD that was studied. The measured values indicate a time-averaged electron
spin polarization between 3% and 30%. A fully polarized electron spin would have
given rise to a Knight field on the order of 10 − 20 mT (cf. Sect.3.3). Predicting
an exact number for this maximal value of Bel in a self-assembled QD however is
difficult due to large uncertainties in the exact confinement length-scale and in the
composition of the QD.

Even when Bext = −Bel in Fig. 4.2(a), ∆EOS is only reduced from ∼ 16 µeV to
∼ 12 µeV, indicating that the cancellation of the Knight field Bel by the external field
is not complete. One reason for the incomplete reduction in DNSP at Bext = −Bel

is the inhomogeneity of the Knight field. Since Bext is homogeneous, the condition
Btot = 0 is satisfied only for a small class of nuclei at any given Bext. The rest of the
nuclei still experience a sizable total magnetic field and as a result, the Overhauser
field is only slightly modified when Bext = −Bel. To demonstrate the role of the
inhomogeneous nature of the Knight field, we extended (4.1) to account for the
inhomogeneity: We assume an in-plane Gaussian electron wave-function |ψ(Ri)|2 ∝
exp[−(x2

i +y2
i )/l

2] which we convolve with (4.1) to estimate the total contribution of
the different classes of QD nuclei. The choice of a maximum Knight field of 1.5 mT
in the center of the dot, Bloc = 0.11 mT and a confinement length scale l = 20 nm
gives a reasonable description of the experimental data (solid curves in Fig. 4.2(a)),
even though we only assumed a single nuclear species.

An additional reason for the finite value of ∆EOS even at Bext = −Bel is the fact
that a significant fraction of the QD nuclei experience a large quadrupolar splitting

3We note that the nuclear gyromagnetic ratio γi drops out of the expression (3.7) for Bel, since
A ∝ γi; the sign of γi therefore plays no role for the sign of Bel.
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Figure 4.2: Overhauser shift ∆EOS (a) and PL polarization (b) as a function of
applied external magnetic field Bext. Here, the measured spin splitting is determined
by a weighted average of the X−1 spectral lines measured by the spectrometer. The
light gray curves in (a) and (b) are fits according to the model described in the text.
Observation of correlated dips in the spin splitting and in ρc as a function of Bext

suggests an average Knight field Bel ≈ 0.6 mT seen by the nuclei. Under σ+- (σ−-)
excitation, the corresponding Knight field Bσ+

el (Bσ−

el ) is parallel (anti-parallel) to
the wave-vector k of laser excitation. The schematic in the inset of (b) sketches the
orientations of the laser wave-vector and a positive external magnetic field

due the strain in the QD. The quadrupolar interaction can dominate the spectrum of
the QD nuclei and render them insensitive to the effect of dipole-dipole interactions.
However, we neglect this effect in the present chapter and postpone its detailed
discussion to Chap. 6.

Remarkably, a minimum in the degree of PL polarization is also observed for
the same Bext where ∆EOS has a minimum (Fig. 4.2(b)): this is at first surprising
since polarization of the X−1 trion line is solely determined by the hole-spin which
has a negligible coupling to the nuclear spins. A possible explanation is based on
AEI: after the resonant excitation of the QD, the electron excited into a p-shell
state is expected to tunnel out into the n-doped GaAs layer in . 10 ps [30]. After
tunneling, the QD is neutral and the remaining electron-hole pair is subject to AEI
which rotates the spins of the electron and the hole [52]. This coherent rotation
is interrupted by the formation of an electron spin singlet after re-injection of an
additional electron from the n-doped GaAs layer into the QD s-shell in τel ≈ 20 ps,
as required by the charging condition. Because tunneling is a random process, the
time the QD spends in the neutral state is random and the post-tunneling hole-spin
state is partially randomized, which leads to a finite ρc.

As the application of a magnetic field reduces the effect of AEI, the Overhauser-
field competes with the exchange-mediated reduction of electron and hole spin po-
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larization and a reduction in DNSP will lead to a reduction in ρc, consistent with our
observation in Fig. 4.2(b). The PL polarization in the presence of an Overhauser
shift ∆EOS and an exchange-splitting ∆Eex due to AEI can be described by the
formula [53]:

ρc =
1 + ∆E2

OSτ
2
el/~2

1 + (∆E2
OS + ∆E2

ex)τ
2
el/~2

, (4.2)

provided other spin relaxation processes are neglected. Fitting the polarization
ρc(X

−1) with the measured spin splitting in Fig. 4.2(a), τel = 30 ps is obtained4. By
reducing the QD excitation power below saturation of the X−1 PL line, a decrease
in both OS and ρc arises. This observation further confirms our model of exciton
spin preservation during relaxation from the p- to the s-shell due to the nuclear
magnetic field (4.2).

The electron (spin) exchange with the n-doped GaAs layer also explains how spin
pumping of the QD electron is achieved in a negatively charged QD: irrespective
of the electron spin state before light excitation, the sequential tunneling ensures
that the QD ends up in a trion state where the electrons form an s-shell singlet.
Preservation of hole-spin during relaxation in these QDs then implies that the post-
recombination electron is always projected into the same spin-state.

4As shown in Fig. 2.5(b), the PL from this QD exhibits a different degree of PL polarization
under σ+- and σ−-polarized excitation: the origin of this asymmetry is not clear and was not
observed on all QDs studied.
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5 Bistability of the Electron Nuclear
Spin System

The dependence of optically induced dynamical nuclear spin polarization on
longitudinal external magnetic fields is studied. The experiment shows that
the coupled electron-nuclear spin system behaves in a highly nonlinear way,
which is modelled in a classical rate equation picture. A striking manifes-
tation of the nonlinearity of this system is the experimental observation of
bistability of the electron-nuclear spin system.

The behavior of dynamical nuclear spin polarization (DNSP) is qualitatively dif-
ferent in low and high external magnetic fields. While the low field case was studied
in the previous section, we now investigate a situation where the coupled electron-
nuclear spin system is exposed to a magnetic field which is on the order of the
Overhauser field Bnuc. There, the external magnetic field can fully compensate the
nuclear field Bnuc, thereby greatly enhancing the transfer of angular momentum be-
tween the electron and the nuclear spins which depends on the effective Zeeman
splitting of the electron spin.

In external magnetic fields, nuclear spin polarization manifests itself in a difference
in emission energies between excitation with circularly and linearly polarized light
as was discussed in Sect. 3.3. Fig. 5.1(c) shows the X−1 emission energies of a single
QD under excitation with circularly polarized light as a function of external mag-
netic fields. Gray (black) denotes excitation with σ+- (σ−-) polarized light, while
squares (triangles) stand for detection of co- (cross-) circularly polarized light with
respect to the excitation polarization. The polarizations for excitation and detection
are denoted as (σα, σβ) where σα and σβ correspond to excitation and detection,
respectively. The data shown in Fig. 5.1(c) was obtained in a single sweep from
Bext = −2 T to Bext = +2 T, varying excitation and detection polarization for each
value of the magnetic field in the order (σ+, σ−) ⇒ (σ+, σ+) ⇒ (σ−, σ+) ⇒ (σ−, σ−)
such that any memory of the nuclear spin system was erased during the sweep. The
data for |Bext| < 500 mT was taken with smaller magnetic field steps in order to
highlight the detailed behavior of DNSP at low fields. Every data point represents
the center of mass of the emission peak of X−1 taken from a single spectrum with
1 s integration time and a signal to noise ratio of ∼ 100 : 1 for co-circular detec-
tion (Fig. 5.1(b)). The effects of nuclear polarization can be seen in the range of
|Bext| . 1.2 T where emission energies for a given detection polarization depend
strongly on the helicity of the excitation light. Excitation with σ+-light creates a
residual electron with its spin pointing in the positive z-direction (see Fig. 5.1(a)).
According to (3.5) and (3.8), this creates a nuclear spin polarization in the same
direction and, due to the negative sign of the g∗el, a nuclear field pointing in the
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Figure 5.1: (a) Configurations of X−1 before and after the emission of a σ±-
polarized photon. Open (filled) triangles denote the spin of the hole (electron). (b)
Raw spectra at Bext = −0.96 T for the four excitation/detection configurations in
the circular basis: gray (black) denotes excitation with σ+- (σ−-) polarized light.
Detection is co- or cross-circular (squares and triangles, respectively). (c) Energy
dispersion of X−1 under circularly polarized excitation: The emission energies (Eem)
are different for σ+- and σ−-polarized excitation due to DNSP and the resulting
effective nuclear magnetic field Bσ+

nuc (Bσ−
nuc) under σ+- (σ−-) excitation (orientation

indicated by the arrows in the figure). An energy E0 = 1.3155 eV was subtracted
from Eem. The inset shows the relative orientation of k-vector, quantization axis z
and positive magnetic field

negative z-direction. This scenario is consistent with the polarization sequences and
lineshifts observed in Fig. 5.1(c). Above 1.2 T, the emission energies of the QD are
almost independent of excitation light polarization, indicating that nuclear effects
become very small. Another striking feature in this data is the symmetry under
simultaneous reversal of the excitation light helicity and the sign of the magnetic
field. However, the data is not symmetric under the reversal of only one of these
parameters. This asymmetry indicates that the system distinguishes between nu-
clear fields pointing along or against the external magnetic field - we will see in the
following that it is more efficient for the electron-nuclear spin system to create a
nuclear field pointing against Bext than one that points along this field.

In order to obtain a more quantitative picture of the magnetic field dependent
DNSP, we performed the following analysis steps on the data (see Fig. 5.2): We first
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extract the Zeeman splittings for excitation with σ+- and σ−-polarized light from
the raw data shown in Fig. 5.1(c). To this data, we fit a linear Zeeman splitting such
that the fit coincides with the data at magnetic fields Bext > 1.8 T, where nuclear
polarization is very small (Fig. 5.2(a)). The excitonic g-factor, g∗ex ≡ g∗el + g∗h =
−1.87 that we find with this fitting procedure matches within a few percent to an
independent measurement of g∗ex that we performed with linearly polarized excitation
(not shown here). The Overhauser shift can now be extracted from this fit with the
help of (3.11); the result is plotted in Fig. 5.2(b). There is a striking difference
when polarizing the nuclei along or against the external field. Nuclear polarization
with Bnuc pointing along the applied field is rather inefficient and shows a slight
decrease with increasing magnitude of the applied field. Polarization with Bnuc

pointing against the external magnetic field on the other hand shows a much richer
behavior: The nuclear polarization first increases almost linearly as the magnitude
of the external field increases and then shows a sudden drop when |Bext| ≈ 1.2 T. At
Bext = 0, DNSP abruptly changes its dependence on magnetic field and dBnuc/dBext

shows a quick change, resulting in a “kink” of Bnuc(Bext).
From the spectral data we can also extract information about the hole spin

polarization before- and the residual electron spin polarization after recombina-
tion of X−1. For this, we define a degree of QD spin polarization as ρ±c ≡
(I(σ±,σ±) − I(σ±,σ∓))/(I(σ±,σ+) + I(σ±,σ−)) under σ±-excitation. I(σα,σβ) are the in-
tensities of the dominant X−1 PL-peaks in the corresponding analyzer/polarizer
configurations. At Bext = 0 , ρ±c is equivalent to the PL circular polarization defined
in Sect. 2.4. At finite Bext, however, ρ±c measures the relative weight of the two
Zeeman split emission lines1 and is therefore a measure of hole spin preservation
during relaxation from the p- to the s-shell. The measured quantity ρ±c is plotted
in Fig. 5.2(c) as a function of external magnetic field. It is roughly constant and
on the order of 85% over a wide range of magnetic fields. Only for the fields where
the exciton Zeeman splitting vanishes due to its cancellation with the OS, ρ±c dips
to roughly 65%. This behavior is consistent with the rotation of the exciton spin
during relaxation of the optically created electron from the excited p-shell state to
the s-shell via the electron reservoir which was already observed in Sect. 4.2.

As in the data presented in Chap. 4, there is a certain asymmetry in the data shown
in Fig. 5.2(c) that remains unexplained: ρ−c is larger than ρ+

c at high magnetic fields
and the dip in ρ+

c at lower fields is less pronounced than for ρ−c . A possible reason
for this asymmetry could be the different excitation efficiencies in the QD for σ+-
and σ−-excitation.

5.1 Modelling of the data

Most of the above-mentioned effects of optically induced DNSP in the presence of
an external magnetic field can be described by a simple rate equation model pro-
posed earlier [14, 40, 50] and originally based on publications by D’yakonov [54] and
Abragam [34]. The rate equation is based on the condition for dynamical equilib-
rium (3.6) between the electron and the nuclear spin system in the absence of any
coupling to the environment. This equilibrium is reached on a typical timescale

1These lines are perfectly circularly polarized as evidenced by the raw spectra shown in Fig. 5.1(b).
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Figure 5.2: Nuclear Polarization in external magnetic fields: (a) Spin splitting of
X−1 under circularly polarized excitation. Gray and black symbols correspond to
excitation with σ+- and σ−-polarized light, respectively. The solid line is a linear
fit to the data as described in the text. (b) Deviation of the spin splitting between
circular and linear excitation: Overhauser shift for σ+- and σ−-excitation (gray and
black diamonds, respectively). The solid and dashed lines are the results of the fits
according to the model discussed in the text. (c) QD spin polarization ρ±c under σ±-
excitation extracted from PL intensities as described in the text. The polarization
shows a minimum at the magnetic field where the exciton Zeeman splitting is zero,
consistent with our model of carrier relaxation (Chap. 4)

given by the nuclear spin relaxation time T1e, which can be estimated to be [23]

1

T1e

=
1

T 0
1e

1

1 + Ω2
elτ

2
el

. (5.1)

Here, τel is the electron spin correlation time which broadens the electronic spin
states. Ωel = ∆EZ

el/~ is the electron Larmor frequency which depends on the degree
of nuclear polarization through (3.8) and (3.9). For a given nuclear species, the
nuclear spin relaxation time for a negligible electron Zeeman splitting is given by
1/T 0

1e = felτel(Ai/N~)2, with N the number of QD nuclei and fel the fraction of
time the QD is occupied with a single electron. This expression for 1/T 0

1e is valid
in the regime of “motional narrowing”, where Ai/N~ � τ−1

el . The quantity Ai/N~
corresponds to the precession frequency ωL of a nuclear spin in the Knight field Bel

of the QD electron. The nuclear Larmor precession in the field Bel is interrupted by
a re-initialization of the electron spin after a time interval of length τel during which
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the nuclear spins have rotated by an angle |δΦ| = ωLτel. This leads to a random walk
of the nuclear spin on the Bloch-sphere with

√
〈Φ2〉 = δΦ

√
n after n steps. With

n = t/τ and by defining T1 as the time after which the angle
√
〈Φ2〉 has evolved

to 1 and by adding the factor of finite electron occupancy fel, the before mentioned
expression for 1/T 0

1e results. In this derivation, we assumed a homogenous electron
wave function ψ(r) ∝

√
8/ν0N which is constant within the QD volume and zero

outside.
By adding a nuclear spin decay channel which is dominated by nuclear spin dif-

fusion out of the QD on a timescale Td, we end up with a rate equation of the
form

d〈I i
z〉

dt
= − 1

T1e

(〈I i
z〉 − I iBIi(x))− 1

Td

〈I i
z〉 (5.2)

' − 1

T1e

(〈I i
z〉 − I i)− 1

Td

〈I i
z〉. (5.3)

Due to the high degree of electron spin polarization deduced from the measured
large value of ρ±c , we take the limit of (3.6) for Sz = 1/2, where BIi(x) = 1 to arrive
at (5.3).

This equation was obtained for the coupling of a single electron to a single nuclear
spin species. It can be approximately generalized to the case of an ensemble of
different nuclei in the QD by considering the mean nuclear spin polarization 〈Iz〉 =
1
N

∑
i〈I i

z〉. For this, we replace the hyperfine constant Ai in (5.1) and the nuclear

spin I i in (5.3) each by its average value A and I i over the two dominant nuclear
spin species. With the values for Ai and I i noted in Sect. 3.3, this results in A =
0.5AIn + 0.5AAs = 51 µeV and I i = 6

2
. We take these numbers to be fixed in the

following, even though the In content varies drastically within a QD and accurate
estimates of A and I i are difficult to obtain.

We note that this model was previously applied to situations where DNSP was
induced by neutral excitons [40, 50]. There, anisotropic exchange interaction plays
a crucial role and has to be included in the detuning factor in (5.1). In this work
however, DNSP is induced by a single, spin-polarized electron for which exchange
interaction plays no role2.

Since the electron-mediated nuclear spin relaxation time T1e itself depends on
nuclear spin polarization, (5.3) leads to the following self-consistent nonlinear steady
state solution 〈Iss

z 〉 for the mean nuclear spin polarization:

〈Iss
z 〉 =

I i

1 +
T 0
1e

Td
(1 + ( τel

~ )2(g∗elµBBext + A〈Iss
z 〉)2)

. (5.4)

We note that averaging (5.3) over the different nuclear species, our choice of a
homogenous electron wavefunction and the fact that we neglected the magnetic
field dependence of Td can all limit the validity of this model.

In order to fit our experimental data, we numerically solved the implicit equa-
tion (5.4). The result of such a fit is shown in Fig. 5.2(b). The model qualita-
tively reproduces the data. Still, some features, like the before-mentioned “kink”

2We can rule out the possibility that DNSP is induced by the intermediate state where the QD
is neutral during electron relaxation through the reservoir. In this case the direction of the
nuclear field would be opposite to the one observed in the experiment.
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of DNSP around Bext = 0 as well as the high residual nuclear spin polarization
at high external magnetic fields, could not be explained within the model or any
reasonable extension [50] to the rate equation picture employed here. In the region
1.2 T< Bext < 1.8 T the model predicts three solutions: two stable states, one with
a low and one with a high degree of DNSP and an unstable solution of intermediate
nuclear spin polarization (the last two solutions correspond to the dashed lines in
Fig. 5.2). Since in this experiment we changed the excitation polarization from σ+

to σ− for each magnetic field value, the system always followed the solution with
minimal nuclear spin polarization. The fact that the drop in DNSP in this mea-
surement was rather smooth compared to the model prediction was probably due
to the long timescale of the buildup of DNSP right before its disappearance: since
in the experiment every point was taken with an integration time of 1 s, the nuclear
system did not have time to reach its steady state polarization before the excitation
light polarization was switched. This explanation will be further confirmed by the
time-dependant measurements of DNSP presented in Sect. 7.2. The parameters used
for the fitting curve in Fig. 5.2(b) were T 0

1e/Td = 1.2,τel = 42 ps, g∗el = −0.69, which
are all realistic values for our QD.

The surprisingly short electron spin correlation time found in the fit can be ex-
plained with the resonant excitation scheme that we used in our experiments. The
QD is excited from its ground state into the p-shell and after relaxation through an
intermediate neutral excitonic state, PL emission is observed from carriers recom-
bining from the s-shell. Since this system is pumped close to saturation, the lifetime
and thus the correlation time of the residual electron is limited by the relaxation
time from the p-shell to the n++-GaAs layer by tunnelling. This timescale is ex-
pected to be on the order of 10 ps and the value of 42 ps we find here is in good
agreement with the value found independently in Sec. 4.

The parameters obtained in this fit also allow us to estimate the nuclear spin
relaxation time T 0

1e. Using the value τel = 42 ps, the corresponding value for fel =
0.035 (assuming an X−1-lifetime of 1 ns) and N= 104 − 105, we obtain T 0

1e = 1 −
100 ms, which is in reasonable agreement with the corresponding direct measurement
of T1e that will be discussed in Chap. 7.

5.2 Hysteresis in the magnetic field sweeps

In this section, we focus on the bistable behavior of the coupled electron-nuclear spin
system in the magnetic field range close to the “breakdown” of DNSP. Fig. 5.3(a)
shows a graphical representation of the solutions of the nonlinear equation (5.4). The
result suggests that the maximal achievable degree of DNSP in our system leads to
a maximal OS given by ∆Emax

OS = AI i(1 + T 0
1e/Td)

−1. This value is reached when
nuclear spin relaxation is maximized, i.e., when the total electron Zeeman splitting
is zero (cf. (5.1)). It can also be seen from the figure that there is a regime of
external magnetic fields where two stable solutions for DNSP coexist. One solution
leads to a high degree of nuclear polarization, reaching OSmax at its maximum, while
the other one shows a low degree of nuclear polarization. The graphical solution also
shows that bistability is an inherent property of the solutions of (5.3) for systems
where OSmax is at least on the order of the width of the density of states of the
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Figure 5.3: (a) Graphical solution of (5.4): The right (left) hand side is represented
by the solid curves (dashed line). These terms correspond to gain and loss of DNSP,
respectively. Circles (cross) indicate the stable (unstable) solutions for nuclear spin
polarization. The center of the Lorentzian shifts proportionally to the external
magnetic field, explaining the magnetic field dependence of DNSP. The dark (light)
gray curve show the situation at the critical field Bc

1 (Bc
2). The figure illustrates

that: 1.) Bistability can only be observed if the maximal slope of the Lorentzian is
bigger than 1 and 2.) the difference between Bc

1 and Bc
2 is on the order of the width

of the electron spin states in units of magnetic fields ~/τelg∗elµB. (b) Total magnetic
field Btot seen by the QD electron under optical orientation of nuclear spins with σ+-
polarized light (gray curve). The curve is calculated from (5.3) with the parameters
found from the fit presented in Fig. 5.2. The model shows that when the nuclear
magnetic field Bnuc opposes the external field (i.e., for 0 < Bext < 1.74 T), the nuclei
overcompensate Bext and the electron sees a total magnetic field Btot < 0. When
the nuclear field saturates to its highest value, Btot is very close to zero and the
nuclear spin polarization becomes unstable

electronic spins (~/τel), which is typically the case for localized carriers such as
in QDs, but not for bulk systems. The two stable solutions can be understood
as follows: When increasing an external field while creating a nuclear field in the
opposite direction, the electron Zeeman splitting is reduced compared to the case
where nuclear spin polarization is absent. Therefore, the nuclear spin relaxation
rate T−1

1e remains at a high value such that DNSP can be maintained. As soon as
OSmax is reached, however, the system can no further compensate for an increasing
external magnetic field. DNSP will start to drop, which leads to a negative feedback
on T−1

1e and eventually causes an abrupt jump of DNSP to a low value at an external
field Bc

1. When ramping the external field down again, now in the absence of nuclear
polarization, the system will initially remain in a state of low DNSP since T−1

1e is still
low. At the same time, DNSP will slightly increase and compensate Bext, due to the
increasing rate T−1

1e of nuclear polarization with decreasing magnetic field strength.
At a field Bc

2, the positive feedback of the reduced electron Zeeman splitting on T−1
1e

will take over and an abrupt jump to a state of high nuclear polarization will occur.
As illustrated by Fig. 5.3(a), the difference between the fields Bc

1 and Bc
2 is on the

order of the width of the electronic spin states in units of magnetic fields.

In order to observe the hysteretic behavior of DNSP we performed a magnetic
field dependent PL experiment as described above, now by exciting the QD with
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Figure 5.4: Hysteresis behavior of the coupled electron-nuclear spin-system: Mag-
netic field sweeps under excitation with constant light polarization (σ+). (a) Energy
dispersion of X−1, sweeping magnetic field up or down (as indicated by arrows).
Squares (triangles) denote co- (cross-) circular detection with respect to excitation
polarization. The dashed line is a fit to the case of linearly polarized excitation. (b)
Overhauser shifts extracted from the data shown in (a) for the magnetic field sweep-
ing up and down (solid and open diamonds, respectively). The black line shows the
simulations described in the text

light of constant helicity and by ramping the magnetic field from low to high values
and back again. Hysteretic behavior can be expected if the nuclear field created
in that way is pointing against the external magnetic field. In our system such a
situation is realized when exciting the QD with σ+-polarized light while applying
an external field in the positive z-direction.

Figure 5.4 shows data obtained in this regime: Going from low to high field
amplitude, DNSP is significant up to a magnetic field of Bc

1 = 1.74 T, where it
suddenly drops. Sweeping the magnetic field back to low field amplitudes, DNSP
reappears at a field Bc

2 = 1.36 T, a value different from Bc
1. The difference of 380 mT

between these two field is on the order of ~/(τelg∗elµB) as predicted by the model.

A fit of (5.4) to the data is also shown in Fig. 5.4. The parameters used for this
fit were T 0

1e/Td = 1.25, τel = 39 ps, g∗el = −0.69, consistent with the parameters used
in the fit shown in Fig. 5.2. As in the previous fit, the residual nuclear polarization
at high fields observed in this experiment is slightly higher than what is predicted
by the model.



5.3. Discussion 37

5.3 Discussion

We note that at the point of maximal Overhauser shift (Bext = Bc
1 = 1.74 T), our

model predicts that Bnuc is almost completely cancelled by Bext (see Fig. 5.3(b)).
This point is therefore of particular interest because it enables a direct measurement
of the maximal nuclear field Bmax

nuc = ∆Emax
OS /gµB = B1 = 1.74 T. Remarkably,

the remaining exciton Zeeman splitting at this point is solely due to the Zeeman
interaction of the hole with Bext. We can therefore directly obtain the hole g-factor
for an individual QD and find g∗h = −1.2. This observation has found applications
in the precise and systematic study of electron and hole g-factors in semiconductor
QDs [55].

Our experiment along with the model also shows that the maximal nuclear polar-
ization of ∼ 43%3 achieved in our system is limited by the fraction Td/T

0
1e, i.e., the

ratio between nuclear spin decay time and electron mediated nuclear spin relaxation
time. While Td is a parameter given by the nature of the QD, T 0

1e could potentially
be modified by varying the pump power or the details of the excitation process [41].
In particular, due to the energetically narrow p-shell excitation resonances in our
system, it is likely that the QD excitation process becomes less efficient as we in-
crease the magnetic field. Indeed, by adjusting the energy of the excitation laser
to a p-shell resonance at Bext = 5 T, we were able to observe DNSP along with
the previously discussed, bistable behavior, on the same dot at Bext ≈ 4 T. Fig. 5.5
shows the corresponding data for a magnetic field sweep with constant excitation
light polarization. The resulting value of ∆Emax

OS in this experiment was 130 µeV,
corresponding to a nuclear spin polarization of 80% - to the best of our knowledge,
the highest degree of DNSP achieved by optical orientation of nuclear spins in an
individual, self-assembled QD.

We extended the rate equation (5.2) and included the dynamics of the mean
electron spin 〈Sz〉 by expanding (3.6) to first order in 〈Sz〉. The evolution of 〈Sz〉
is described by a rate equation similar to (5.3). The main differences between the
electron and the nuclear spin dynamics are that the electron spin system, in the
absence of other relaxation mechanisms, reaches the thermal equilibrium state (3.6)
at a rate N/T1e. Compared to the nuclear spin relaxation rate, the electron spin
relaxation is faster by the number of nuclei N in the system. In addition, the
electron spin is repumped into its initial state S0

z = ρ±c /2 at a rate corresponding
to the X−1 recombination rate on the order of 1 ns−1. This extension, however,
did not lead to any new insights on the behavior of the nuclear spin system. A
numerical study of this extended model suggested though that the mean value of
the electron spin decreases linearly with increasing nuclear spin polarization. The
electron spin thus seems to follow the intricate dynamics of the nuclear spin system.
This observation motivates further studies on the positively charged exciton where
PL light polarization gives a direct measure of the mean electron spin [56].

The qualitative disagreement of the model with our data in the low field regime
where the measured DNSP shows a clear “kink” as a function of magnetic field in-
dicates that our simple approach does not give a full description of the nonlinear
processes that lead to an equilibrium value of DNSP in a QD. A further extension

3We estimate the degree of nuclear spin polarization by comparing ∆Emax
OS = 70 µeV to the OS

for a fully polarized nuclear spin system, which was given in Sect. 3.3.
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Figure 5.5: Nuclear Polarization in high external magnetic fields. The energy
of the excitation light is tuned to a p-shell resonance at Bext = 5 T, shifting the
critical field |Bc

1| to higher values compared to Fig 5.2, where the excitation laser was
tuned to a resonance at Bext = 0. The presented data was extracted from the raw
spectra according to the procedure described for Fig. 5.2. (a) Overhauser shift for
continuous excitation with σ−-polarized light. The maximal OS, ∆Emax

OS ≈ 130 µeV
corresponds to a nuclear spin polarization of ∼ 80%. (b) PL light polarization ρ−c
under σ−-excitation. Since the excitation energy was optimized for Bext = 5 T,
DNSP is negligible at zero field and the minimum in ρ−c occurs at Bext = 0. A
further local minimum of ρ−c is observed at Bext ≈ −1.2 T and is probably a result
of the specific nature of the p-shell excitation resonance.

of the model could include light-induced nuclear spin relaxation due to the nuclear
quadrupolar interaction [57] which could induce an additional loss of nuclear spin
polarization at low external magnetic fields. Another possible nuclear depolariza-
tion mechanism relevant at low fields is the coupling of the nuclear Zeeman spin
temperature to the nuclear dipolar spin temperature [38]. Since the heat conductiv-
ity for dipolar spin temperature is at least on the same order than the one for the
Zeeman spin temperature [58], the rate of nuclear spin depolarization in the QD will
increase as soon as the two temperature reservoirs couple. This coupling of nuclear
Zeeman and dipolar reservoirs might therefore also explain the observed “kink” of
DNSP at low fields. While our rate equation approach was purely classical, it could
also be conceived that the quantum mechanical nature of the electron spin system
would alter the behavior of DNSP at low fields and explain the unpredicted features
in our measurement. In order to confirm this hypothesis, further theoretical and
experimental studies are required.
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6 Nuclear Spin Polarization in
Transverse Magnetic Fields

In the framework of the nuclear spin temperature, the polarization of a cooled
nuclear spin system has to be aligned with an external magnetic field. Here
it is shown that this statement can be partly relaxed if the external magnetic
field is on the order of the Knight field or if the nuclear spins experience
strong quadrupolar interactions. For this purpose, the behavior of nuclear
spin polarization in transverse magnetic fields is studied through the Hanle
effect - the depolarization of electron spins in transverse magnetic fields.

In the preceding chapters, we studied nuclear spin polarization as a function of
external magnetic fields applied in the direction of light excitation and electron
spin orientation. This study is complemented by examining nuclear effects in a
situation where the external magnetic field is applied transverse to the electron spin
polarization. As we argued in Sect. 3.2.1, in cases where the nuclear spin system
can be described by a nuclear spin temperature, a finite nuclear spin polarization
necessarily has to be aligned along the total magnetic field the nuclei are exposed
to. One would therefore not expect the nuclear spin system to acquire a polarization
due to optically oriented electrons if an external magnetic field is applied transverse
to the direction z in which the electrons were oriented. Taking into account a more
detailed description of the nuclear spin system, however, this statement is only
partly true. In a situation of Knight field enabled nuclear spin cooling, described in
Chap. 4, the nuclei feel a total magnetic field which is tilted away from the optical
axis if the transverse magnetic field is on the order of Bel. As the projection of
the electron spin on this oblique axis is nonzero, the nuclear spins can be polarized,
although the applied magnetic field is purely transverse. Furthermore, the QD
nuclei are subject to a substantial quadrupolar splitting induced by the large strain
in self-assembled QDs. As a result of this splitting, the nuclear gyromagnetic ratio
γ becomes strongly anisotropic and can almost vanish in the direction transverse to
the QD growth direction. In this case, nuclear spins are insensitive to transverse
magnetic fields Bext,⊥ and DNSP can be observed even if Bext,⊥ largely exceeds Bel.
In this chapter we will discuss the theory of DNSP in transverse magnetic fields and
the resulting evolution of the electron spin system. The precession and relaxation of
charge carriers can be studied by measuring the Hanle effect - the depolarization of
PL light in magnetic fields applied transverse to the axis of optical spin orientation.
We will present measurements of the Hanle effect for X−1 and X+1 PL and discuss
how nuclear spins affect the observed Hanle curves.
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6.1 Theory of the Hanle effect

The evolution of an electron spin in a magnetic field is a combination of Larmor pre-
cession in the total magnetic field seen by the electron and electron spin relaxation,
which is described by the Bloch equation

d 〈S〉
dt

=
g∗elµB

~
B× 〈S〉 − 〈S〉 − S0

τ
. (6.1)

Here, S0 = (0, 0, S0) is the average, optically generated electron spin polarization
in the absence of a magnetic field and τ−1 = τ−1

el + τ−1
S is the total rate of loss

of electron spin orientation, which is a combination of the finite electron lifetime
τel and the electron spin relaxation rate τ−1

S . In steady state and in the presence
of a magnetic field lying in the x-z plane, the resulting steady state electron spin
polarization along the z-axis amounts to

〈Sz〉 = S0

B2
1/2 +B2

z

B2
1/2 +B2

z +B2
x

. (6.2)

For Bz = 0, this corresponds to a Lorentzian dependence of the mean electron spin
polarization on the transverse magnetic field Bx, with a half-with B1/2 = ~

g∗el,⊥µBτ
,

and g∗el,⊥ being the transverse electron g-factor. Measuring the Hanle effect is there-
fore a useful tool to directly determine the reduced lifetime g∗el,⊥τ of the recombining
exciton.

6.1.1 Modifications due to the nuclear field

Equation 6.2 describes the Hanle effect of optically oriented electrons, which can be
observed by monitoring the polarization of PL light. This, in turn, depends on the
mean electron spin polarization along the direction of light collection. The situation
becomes more complicated when taking into account the nuclear spin system and the
resulting nuclear magnetic field Bnuc that acts on the electron spins. In this case, the
magnetic field appearing in (6.1) and (6.2) has to be replaced by B = Bext+Bnuc. By
using the low-field dependence of DNSP described by (4.1), the component of Bnuc

relevant in (6.1) can be expressed as Bnuc = KBext, with K = b∗nS0
Bz+Bel,z

B2+ξB2
loc

[3]. Since

in this expression Bel,z ∝ 〈Sz〉, the resulting equation of motion for the electron spin
is nonlinear. Due to the presence of Bnuc, the external magnetic field is “amplified”
by a factor (1 + K), where the “amplification factor” K can be on the order of
106 for transverse magnetic fields Bext,⊥ with Bext,⊥ . Bel [3]. As a result, the
PL polarization drops upon application of a small transverse magnetic field on the
order of the Knight field. For transverse magnetic fields Bext,⊥ � Bel, nuclear spins
cannot be polarized anymore because the total magnetic field seen by the nuclei is
orthogonal to the direction of electron spin polarization. The Hanle curve therefore
falls back to its original Lorentzian lineshape in this magnetic field region. The total
resulting depolarization of PL as a function of transverse magnetic field takes the
form of a Lorentzian with a “W-shaped” dip of width Bel in the center, as illustrated
by the numerical simulation shown in Fig. 6.1(a). The “amplification factor” K can
in principle take both signs, positive or negative. While in the former case the
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Figure 6.1: (a) Anomalous Hanle effect due to the nuclear field (gray) compared to
the normal Hanle effect (black). When Bext is on the order of the Knight field Bel,
the nuclei see a total magnetic field which is oblique resulting in a tilt of the nuclear
spin polarization away from the optical axis z. Since Bnuc � Bel, Bext is significantly
enhanced due to the transverse component of Bnuc, resulting in a fast depolarization
of the electron spin even in low fields. The corresponding relative orientation of
Bext, Bel andBnuc is shown in the right panel. The orientation ofBnuc is drawn for the
case g∗elγi < 0. The parameters used in (a) are b∗n = 10 B1/2,Bloc = Bel = 5·10−3 B1/2

and S0 = 0.5. (b) Anomalous Hanle effect due to the nuclear field, under the
influence of quadrupolar interactions (gray). These interactions stabilize the nuclear
field along the z-axis, which in turn protects the electron spin from depolarization
in a transverse magnetic field. The right panel shows the relative directions of
Bext, Bnuc and Bel. The parameters used for simulating the curve in (b) according
to the extension of (6.1) discussed in the text are b∗n = 10 B1/2 and S0 = 0.5

nuclear field aligns with Bext leading to the described narrowing of the Hanle curve,
Bnuc can compensate Bext and substantially broaden the Hanle curve in the latter
case. The sign of K/ 〈Sz〉 (at Bz = 0), which distinguishes these two cases, is given
by the sign of b∗n which in turn is given by −sign(gelγi). Since this quantity is positive
in our case, we would at first expect a narrowing of the Hanle curve due to nuclear
effects in our InAs QDs.

6.1.2 The influence of nuclear quadrupolar interactions

The properties of the nuclear spin system are further modified by taking into account
the nuclear quadrupolar interactions (QI). The resulting modifications of the Hanle
curve was recently discussed both theoretically and experimentally in [59]. The QI
describes the coupling of a nucleus of spin I to electric field gradients. This cou-
pling arises because the charge distribution within a nucleus shows deviations from
spherical symmetry, which to first order can be described by a quadrupolar moment
Q [60]. For a uniaxial, symmetric electric field gradient Vz′z′ , with its principal axis
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z′, the resulting Hamiltonian of the nuclear QI is [61]

HQ =
hνQ

2

(
Î2
z′ − Î2/3

)
, (6.3)

with νQ =
3eVz′z′Q

2I(2I − 1)h
,

In bulk Zincblende crystalline structures, the electric field gradients at the nuclear
sites are zero. However, by applying strain to the structure, the crystal lattice gets
distorted and electric field gradients can arise. Due to the strain-driven formation of
self-assembled QDs discussed in Sect. 2.2 the electric field gradients can be expected
to be particularly strong in the case of the QDs studied here. The symmetry of the
QD thereby requires that the mean QD strain axis coincides with the QD growth
direction, so that z′ = z. The electric field gradient can be expressed through the
corresponding component of the deformation tensor ezz through the linear relation
Vzz = S11ezz. The constant S11 has been measured experimentally for a variety of
III-V semiconductors [62] and was found to be S11 = 5.4 · 1022 V/m2 for In nuclei
in InAs. The exact degree of deformation along the z-axis is difficult to obtain
experimentally; atomistic calculations of the structural properties of QDs predict
ezz to be in the range 4%− 8% with the maximum strain in the periphery, and the
minimal value in the center of the QD [63]. With the quadrupolar moment for In,
QIn = 0.76·10−28 m2, this results in a maximal quadrupolar splitting of νq ≈ 3.3 MHz
corresponding to the Larmor frequency of an In nucleus in an external magnetic field
of 3.5 T.

Since the Hamiltonian 6.3 commutes with the operators Î and Îz, I andmz are still
good quantum numbers for the nuclear spins. Contrary to a pure Zeeman interac-
tion, the energies corresponding to the states |I,mz〉, however, are now proportional
to m2

z, with a constant energy offset. If an external magnetic field Bext is applied
to these nuclei, the states |I,mz〉 with different |mz| are not coupled to first order
in Bext. Nuclear spin states in an |mz| manifold can then be treated as effective
spin-1/2 particles with a highly anisotropic nuclear gyromagnetic ratio γ [23]. In
particular, if a magnetic field Bext,⊥ is applied perpendicular to the quantization
axis z, γ is zero and the nuclear spins do not feel the presence of Bext,⊥ to first
order.

In the present QD system, the quantization axis for the quadrupolar Hamiltonian
lies along the axis of the growth direction which is perpendicular to the external
magnetic field in the Voigt geometry. The nuclear spins are therefore not affected
by an applied transverse magnetic field Bext,⊥ and Bnuc is always oriented along the
QD growth direction. The modification of the Bloch equation 6.2 therefore consists
in replacing B by Bext + Bnuc, where Bnuc = bn (S · ez) ez [59]. Here, ez is a unit
vector along the QD growth direction and bn is a fitting parameter denoting the
strength of the nuclear field.

With the influence of QI the qualitative picture of the role of the nuclear spins
in the Hanle effect changes again. Instead of amplifying small external magnetic
fields and thus leading to an enhanced depolarization of the electron spin in Bext,⊥,
the nuclear spins subject to a strong quadrupolar splitting act as a strong, static
magnetic field along the growth direction. This field stabilizes the electron spin and
leads to a broadening of the Hanle curve. This is exemplified in Fig. 6.1(b) which
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shows a numerical solution of (6.1) including the effect of a nuclear field stabilized
by the QI.

6.2 Experimental signatures of the nuclear field in
Hanle effect measurements

In order to experimentally investigate the two discussed effects of nuclear spins on
the Hanle curve of QD excitons, we measured the degree of circular PL polarization
ρc as a function of transverse magnetic field both on the positively and on the
negatively charged excitons in an individual QD. In addition to the PL polarization
we monitor the total Zeeman splitting ∆EZ between the co- and cross-polarized PL
peaks with respect to the excitation light polarization. While for small transverse
magnetic fields, ∆EZ is a direct measure of nuclear spin polarization, ∆EZ arises
from the Zeeman interaction of the QD electron with both the transverse external
magnetic field Bext,⊥ and the longitudinal nuclear magnetic field Bnuc.

6.2.1 Negatively charged exciton

We first measure the Hanle effect on the recombination line of X−1. This charge
complex consists of two electrons in a singlet state and a single QD hole (cf. Fig. 2.4).
After radiative recombination of one of the electrons with the hole, a single electron is
left in the QD. The polarization of the emitted photon is thereby determined by the
spin polarization of the QD hole right before radiative recombination. The evolution
of the hole spin is described by a Bloch equation analogous to (6.1). Since holes do
not couple to the nuclear spins in III-V semiconductors (cf. Sect. 3.3) one would ex-
pect the corresponding Hanle curve to show no anomalies due to nuclear spins, which
would allow for a direct measure of τhg

∗
h,⊥. Fig. 6.2 shows a measurement of the Hanle

curve of X−1 for σ+- and σ−-polarized excitation along with the corresponding mea-
surement of ∆EZ as a function of Bext,⊥. For |Bext,⊥| > 3 mT, the Hanle curve is well
fitted by a Lorentzian of half-width B1/2 = 420 mT. Assuming that the hole lifetime
in the excitonic state is limited by the radiative lifetime of X−1, τX−1 ≈ 1 ns [64] the
resulting transverse hole g-factor is g∗h,⊥ ≈ 0.03. This value agrees reasonably well
with the reported values of g∗h,⊥, which are greatly reduced compared to the longi-
tudinal g-factor g∗h,‖ due to the heavy-light hole splitting in structures of reduced

dimensionality [65]. Apart from the expected Lorentzian dependence on Bext,⊥, ρc

shows an anomalous feature at |Bext,⊥| < 3 mT (cf. Fig. 6.1(a)). We attribute this
“spike” at Bext = 0 to the tilting of Bnuc upon application of transverse external
magnetic fields on the order of Bel, as discussed above. It is at first surprising that
the PL polarization ofX−1 depends on nuclear spin polarization. However, while the
spin of the QD hole is not expected to couple to nuclear spins directly, the nuclear
field can stabilize the hole spin during relaxation from the p-shell in which it was
created to the s-shell in which it recombines. Such an effect was already discussed
both in Chap. 4 and Chap. 5, where the observed correlation between nuclear spin
polarization and PL polarization (Fig. 4.2 and Fig. 5.2, respectively) was assigned
to a competition between hyperfine interaction and exchange coupling in the inter-
mediate neutral exciton state, which occurs during carrier spin relaxation through
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Figure 6.2: Measurement of PL polarization (Hanle curve, (a)) and exciton Zeeman
splitting (b) of X−1 as a function of transverse magnetic field strength. The insets
show a close-up of the corresponding curves over a width of 40 mT around Bext = 0.
For larger fields, the Hanle curve fits well to a Lorentzian of half-width B1/2 =
420 mT, corresponding to τhg

∗
h,⊥ = 20 ps. The central feature of half width ∼

2 mT is a signature of the strong longitudinal nuclear field, which preserves the
hole spin during relaxation from the p- to the s-shell. The exciton Zeeman splitting
∆EZ shows the same feature which arises from a tilting of the nuclear polarization
upon application of a weak external magnetic field on the order of Bel. Due to the
stabilizing effect of quadrupolar interactions, signatures of nuclear spin polarization
can be seen in ∆EZ for transverse magnetic fields of up to 500 mT

the electron reservoir. The data presented in Fig. 6.2(a) therefore has a qualitative
difference to the Hanle curve described in Fig. 6.1(a): In the present case, the form
of the Hanle curve is a consequence of the stabilizing effect of the longitudinal com-
ponent of Bnuc on the hole spin during relaxation, while in the previously discussed
case it is a consequence of the depolarizing effect of the transverse component of
Bnuc on the electron spin before recombination. This qualitative difference explains,
why we do not observe the recovery of the PL polarization as soon as Bext,⊥ > Bnuc

that is apparent in Fig. 6.1(a). The anomalous behavior of ρc around Bext = 0
is accompanied by a corresponding decrease of DNSP upon application of Bext,⊥
on the order of 3 mT. This further confirms the correlation between nuclear spin
polarization and the degree of polarization of X−1 PL light.

The measurement of ∆EZ is performed by calculating a weighted average over the
exciton emission peaks in co- and cross circular polarization detection with respect
to the excitation light polarization1, a technique discussed in more detail in Sec. 2.4.
While this is a direct measurement of the nuclear magnetic field, as long as Bext,⊥ is
small (cf. Sect. 3.3), the situation gets more complicated, when the transverse field
is on the order of the nuclear field (i.e. |Bext,⊥| & 500 mT). In this case, Bext,⊥ leads
to a mixing of the electron spin states in the final state of exciton recombination, and
discriminating the emission peaks of the two exciton spin states by the polarization
of the emitted light is no longer possible. Using larger external magnetic fields on
the order of 3 − 6 T (not shown here), we were able to resolve the splitting of the
PL emission line without relying on polarization discrimination. We can thereby

1In order to establish the necessary symmetry upon reversal of the sign of Bext, we subtracted a
linear offset of −3.25 µeV/T from the data presented in Fig. 6.2(b). This offset might be due
to a slight misalignment between Bext and k.
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determine the transverse excitonic g-factor which we find to be g∗ex,⊥ = 0.46. The
corresponding Zeeman splitting of ∼ 10 µeV that we expect for |Bext| = 500 mT
can not be resolved by our spectrometer. We therefore believe that the features of
the exciton Zeeman splitting ∆EZ that we observe for |Bext| . 500 mT are due to
DNSP. The fact that we observe effects of nuclear spin polarization in transverse
magnetic fields of up to 500 mT is a clear indication that the stabilizing effect of
nuclear QI is significant in our QD structures. We will further study these effects
by investigating the Hanle effect on the positively charged exciton.

6.2.2 Positively charged exciton

Studying the Hanle effect on X+1 allows for a direct measurement of the spin of the
QD electron before exciton recombination (cf. Fig. 2.4). X+1 consists of two holes in
a singlet state and a single electron. It decays radiatively to a state with a single hole
in the QD. The polarization of the emitted photon is therefore determined by the
spin polarization of the QD electron before radiative recombination. As we showed
in Chap. 4, excitation of X+1 can lead to a substantial degree of nuclear spin polar-
ization and we therefore expect the Hanle curve to show deviations from a Lorentzian
due to the nuclear magnetic field. Fig. 6.3(a) shows measurements of the Hanle effect
on X+1 with light of constant circular polarization as well as under a 2 kHz square-
wave polarization modulation from σ+ to σ−. If the helicity of the excitation light is
constant, the Hanle curve is broadened and highly distorted from a Lorentzian. This
is a consequence of DNSP of nuclear spins experiencing a strong QI. Furthermore,
the nonlinearity induced by the nuclear field scales with both the degree of PL polar-
ization and the degree of nuclear spin polarization as one can see by comparing the
data obtained under σ+- and σ−-polarization. At |Bext,⊥| = 570 mT, the stabilizing
effect of the nuclear field on electron spin polarization breaks down and the curves
for constant excitation light polarization coincide with the one where the excitation
polarization was modulated2. Even though the cross-over between these two regimes
is rather abrupt, we did not observe any effect of hysteresis as a function of Bext,⊥
in this measurement, although this might be expected due to the nonlinearity that
arises from including a nuclear field Bnuc ∝ Bz to (6.1). Furthermore, taking into

2We note that the symmetry with respect to the sign of Bext of the data shown in Fig. 6.3(a)
strongly depends on the exact angle θ between the magnetic field and the sample growth
direction. In order to observe the symmetric curves presented here, the magnetic field had to
be tilted away from the sample normal by θ ≈ 1.5◦ ± 0.1◦ for one QD and by θ ≈ 0.5◦ ± 0.1◦

for another dot. This observation could be explained by the direction z′ of the principal axis
of strain, which might deviate slightly from the sample growth direction z and which will vary
from dot to dot. If θ deviated by more than ∼ 0.1◦ form the indicated values, the Hanle curves
became asymmetric upon reversal of sign(Bext) but remained symmetric under the simultaneous
reversal of sign(Bext) and the helicity of the excitation light.
Furthermore, we could drastically modify the exact shape of the Hanle curves by changing the
energy of the excitation laser to another p-shell resonance. Most of these resonances showed
qualitatively the same behavior as the presented data. In some cases, however, the Hanle
curves obtained under polarization modulated excitation were identical to the ones obtained
without the modulation and both showed strong deviations from a Lorentzian. In these cases
the shape of the Hanle curve was not due to nuclear effects but rather a consequence of the
Larmor precession of carriers during p- to s-shell relaxation which can also strongly influence
the shape of the Hanle curve [23].
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Figure 6.3: Hanle curve (a) and exciton Zeeman splitting (b) of X+1 as a function
of transverse external magnetic field under excitation with light of constant helicity
and modulation of the excitation light helicity at 2 kHz. Under excitation with
constant light polarization, strong distortions of the Hanle curve occur due to the
effect of nuclear spin polarization, stabilized by quadrupolar interactions, which is
qualitatively described by (6.1) and its modification due to the nuclear spins dis-
cussed in the text. The exciton Zeeman splitting shows a very similar behavior as
in the case of X−1 excitation, indicating that the Knight field Bel is on the same
order for X−1 and X+1 excitation

account the Bloch equation 6.1 and its modification due to Bnuc only, we were not
able to obtain a quantitative fit to the experimental data presented in Fig. 6.3. The
exciton Zeeman splitting ∆EZ measured on X+1 (Fig. 6.3(b)) shows a very similar
behavior to the one measured on X−1 (Fig. 6.2(b))3. This makes sense, since DNSP
is comparable for the two cases at Bext = 0 and the response of the nuclear spin
system in transverse magnetic fields should be identical between X+1 and X−1. The
narrow, central feature of ∆EZ around Bext = 0 which shows the reduction DNSP
in transverse magnetic fields on the order of Bel indicates that Bel is on the same
order in X+1 and X−1. Surprisingly, this feature in ∆EZ is not accompanied by a
corresponding change of ρc of X+1 PL light around Bext = 0.

The Hanle curve obtained under modulated excitation polarization has Lorentzian
wings but shows an unexpected behavior at Bext = 0, where it has a pronounced
“cusp”. This behavior is independent of the frequency of helicity modulation within
the experimentally accessible range of modulation frequencies of up to 100 kHz.
For modulation frequencies slow enough to allow for the buildup of a nuclear spin
polarization (i.e. . 100 Hz), the Hanle curve gradually changes its shape towards the
one observed under constant excitation polarization. Hanle curves with a “cusp” at
Bext = 0 have been observed earlier [23] and have been attributed to a combination
of diffusion of electrons to local traps and simultaneous Larmor precession of the
spin of these electrons in Bext. This explanation, however, seems unlikely for our
system, where exciton creation happens directly in the QD and carrier diffusion
should play no role. Another explanation of the “cusp” at Bext = 0 could be the
existence of a small degree of DNSP which is able to follow the modulated light
helicity. This fast component of nuclear spin polarization would then lead to an
additional stabilization of the electron spin at zero magnetic field.

3We again subtracted a linear offset of 3 µeV/T from the data presented in Fig. 6.3(b).
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6.2.3 Conclusion

The presented Hanle curves of singly charged excitons show signatures of both the
tilting of Bnuc upon application of a small external magnetic field on the order of Bel

and the stabilizing effect of QI which fix the axis of nuclear spin polarization in space.
At first, these two observations seem to contradict each other. However, the strain in
self-assembled QDs is highly non-uniform, inhomogeneous and can even change sign
from negative (compressive) to positive (expansive) [63]. It is therefore reasonable
to assume that for a certain class of QD nuclei the strain is sufficiently small or
suitably oriented [23] to be neglected for the discussed experiments. This class of
nuclei would then cause the low field effects observed in Fig. 6.3 and Fig. 6.2(b). In
this scenario, the degree of DNSP of nuclei being stabilized by QI would be coupled
to the orientation of the remaining nuclei via the QD electron: Tilting Bnuc by a
small external magnetic field leads to depolarization of the electron spin, which in
turn reduces the degree of DNSP of the nuclei which were stabilized by QI. Therefore,
even if the total number of nuclei which do not experience any strain is small, the
resulting effect on DNSP in Bext,⊥ on the order of Bel could be large and explain
the corresponding, large signatures in Fig. 6.3(b) and Fig. 6.2(b).

Our discussion of the experimental Hanle curves shows that by using (6.1) and
its discussed extensions arising from DNSP, we can only qualitatively reproduce
the experimental data. Therefore, our model is probably too simplistic to fully
describe the influence that QI have on the optical orientation of QD nuclei. In
this model, we assumed the main strain axis in the QD to be aligned with the
growth direction. While this is a reasonable approximation after averaging over
all nuclei, this assumption is violated for most nuclei in the QD. As a result, the
transverse, nuclear g-factor will not be zero for most QD nuclei and will alter the
description of the nuclear spin system in transverse magnetic field. Also, since
the maximal transverse magnetic field applied in our experiment comparable to
the quantity hνq/γ, characterizing the QI, it might be necessary to consider the
full quadrupolar and Zeeman Hamiltonian to accurately describe the nuclear spin
system. Furthermore, not only the direction, but also the magnitude of strain that
the different nuclei experience varies over the dot [63]. This is already apparent from
the fact that at least a certain subset of nuclei react to external magnetic fields on
the order of the Knight field, leading to the corresponding experimental signatures
around Bext = 0 (as shown in the insets in Fig. 6.2). A full description of the QD
nuclear spin system should take these inhomogeneities and the effect of the large
transverse magnetic field into account and could potentially give a more quantitative
description of our experimental findings. An interesting experimental complement
would be the observation of nuclear magnetic resonance from a single QD. Judging
from the data presented in Fig. 6.2 and 6.3 the quadrupolar shifts and broadenings of
the resonance lines should be substantial and would allow for a further investigation
of the influence of QI on QD nuclear spins. We note however, that if the resulting
broadening of the NMR line is too strong, observation of optically detected NMR
from a single dot might be practically impossible.
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7 Time-resolved Measurement of
Nuclear Spin Polarization

This chapter describes time-resolved measurements of the nuclear spin po-
larization in an individual quantum dot. It is found that the number of
excess quantum dot charges has a big influence on the lifetime of nuclear
spin polarization. Furthermore, the dependence of nuclear spin lifetime on
external magnetic fields is studied in two distinct regimes. In magnetic fields
below one mT, nuclear dipole-dipole interactions greatly reduce the nuclear
spin lifetime. Conversely, in fields on the order of one T, the decay of nu-
clear spin polarization is very slow and non-exponential due to the nonlinear
character of the electron-nuclear spin system.

A key ingredient for the understanding of the coupled electron-nuclear spin system
is the knowledge of the relevant timescales of the dynamics of nuclear spin polar-
ization. This has already become apparent in Chap. 5, where (5.4) shows that the
maximal nuclear spin polarization in a QD is limited by the ratio of buildup and de-
cay times of the nuclear spins. Many other aspects like the respective roles of nuclear
spin diffusion, quadrupolar relaxation and trapped excess QD charges influence the
dynamics of DNSP and remain essentially unexplored up to now. While the buildup
time of DNSP (τbuildup) is likely to depend on the way the nuclear spin system is
addressed, the DNSP decay time (τdecay) is an inherent property of the isolated nu-
clear spin system of a QD. Furthermore, experimental determination of τdecay, which
directly yields the correlation time of the fluctuations of the Overhauser field along
the axis in which the nuclei are polarized, can be crucial for understanding the limits
of electron spin coherence in QDs [18].

7.1 Dynamics of nuclear spin polarization in low
magnetic fields

7.1.1 Technique for time-resolved measurement of nuclear spin
polarization

In order to study the buildup and decay of DNSP, we extended our standard PL
setup (Sect. 2.4) by the ability to perform “pump-probe” measurements [20]. An
acousto-optical modulator (AOM) served as a fast switch of excitation light inten-
sity, producing light pulses of variable lengths, with rise- and fall-times � 1 µs
(details about the AOM setup are given in AppendixA.1). We differentiate between
“pump” pulses of duration τpump, used to polarize the nuclear spins, followed by
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“probe” pulses of length τprobe, used to measure the resulting degree of DNSP. The
intensity of each pulse corresponds to the saturation intensity of the observed emis-
sion line, maximizing both the resulting OS and the signal to noise ratio (SNR) of
the measurement. A mechanical shutter placed in the PL collection path is used to
block the pump pulses while allowing the probe pulses to reach the spectrometer.
Pump and probe pulses are separated by a waiting time τwait with a minimal length
of 0.5 ms, limited by the jitter of the shutter opening time. In order to measure the
buildup (decay) time of DNSP, τpump (τwait) are varied, respectively, while keeping
all other parameters fixed. The timing and synchronization of the pulses is computer
controlled via a digital acquisition card operating at a clock period of 2 µs, which
sets the time resolution of the pulse sequences. Individual pump-probe sequences
are repeated while the signal is accumulated on the spectrometer CCD in order to
obtain a reasonable SNR. We verify a posteriori that individual pump-probe pairs
are separated by much more than the measured DNSP decay time.

7.1.2 Buildup and decay of nuclear spin polarization

Figure 7.1(b) and (c) show the results for buildup and decay curves of DNSP ob-
tained with this technique. The resulting curves fit surprisingly well to a simple
exponential, yielding τbuildup = 9.4 ms and τdecay = 1.9 ms1. The small residual OS
observed for τpump = 0 (τwait � τdecay) in the buildup (decay) time measurement is
due to the nuclear polarization created by the probe pulse. Comparing our experi-
mental findings to previous experiments is not straightforward, since, to the best of
our knowledge, the dynamics of DNSP at zero external magnetic field has not been
studied up to now. However, in experiments performed at external magnetic fields
of ∼ 1 T, the buildup time of DNSP in QDs was estimated to be on the order of a
few seconds [19, 50]. A further shortening of τbuildup arises from the strong localiza-
tion of carriers in our QDs, which has been shown to be an important ingredient for
efficient nuclear spin polarization [37]. Localization of electrons increases the mean
value of the Knight field (3.7) and therefore increases the rate of electron-mediated
nuclear spin relaxation given by (5.1). Most strikingly, previous experimental re-
sults in similar systems revealed DNSP decay times on the order of minutes [36]. It
is thus at first sight surprising that we find a DNSP decay time as short as a few
milliseconds.

7.1.3 Electron mediated nuclear spin decay

A possible cause for the fast decay of DNSP is the presence of the residual QD
electron even in the absence of optical pumping. We study its influence on τdecay

with the following experiment: While the nuclear spin polarization is left to decay, we
apply a voltage pulse to the QD gate electrodes, ejecting the residual electron from
the QD into the nearby electron reservoir. This is achieved by switching the QD gate
voltage to a value where the dominant spectral feature observed in PL stems from

1The rate equation model presented in Chap. 5 predicts deviations from an exponential depen-
dence due to the feedback of DNSP on the nuclear spin cooling rate. However, the limited SNR
of our experiment and the finite length of the probe pulses do not allow us to observe these
deviations at zero magnetic field.
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Figure 7.1: (a) Schematic of the pulse sequences used in the buildup and decay time
measurements of DNSP. An acousto optical modulator (AOM) deflects the excitation
beam on and off the sample, serving as a fast switch (o (c) denote the open (closed)
state, respectively). The AOM creates pump (probe) pulses of respective lengths
τpump (τprobe), separated by a waiting time τwait. A mechanical shutter blocks the
pump pulses from reaching the spectrometer, while letting the probe pulses pass.
(b) DNSP buildup curves obtained by varying τpump at fixed τwait (0.5 ms) and
τprobe (0.2 ms). The gray (black) data points correspond to QD excitation with light
of positive (negative) helicity. The light gray line is an exponential fit, yielding a
buildup time of τbuildup = 9.4 ms. (c) DNSP decay curves obtained by varying τwait

at fixed τpump (50 ms) and τprobe (0.5 ms). The color coding is identical to (a). The
exponential fit reveals a decay time of τdecay = 1.9 ms

the recombination of the neutral exciton. Using transient voltage pulses, we are able
to perform this “gate voltage switching” on a timescale of 30 µs, which is verified
by an experiment which is discussed in detail in Appendix A.2. Before sending the
probe pulse onto the QD, the gate voltage is switched back to its initial value in
order to collect PL from X−1 recombination. The dramatic effect of this gate voltage
pulsing on DNSP lifetime is shown in Fig. 7.2(b). On the timescale of the previous
measurements, almost no DNSP decay can be observed. By prolonging τwait up
to a few seconds (Fig. 7.2(c)), we estimate the spin decay time of the unperturbed
nuclear system to be τdecay ≈ 2.3 s. We note that the increase of τwait necessary for
this experiment results in a reduced SNR, which makes an exact determination of
τdecay difficult.

7.1.4 Control experiments

The role of the residual electron in depolarizing the nuclear spins was further con-
firmed in two independent control experiments. First, we performed a modified
version of the gate voltage switching experiment. We polarize the nuclear spins at
a gate voltage V1 (corresponding to the center of the 1-e− occupation window in
gate voltage) with a pump pulse of length τpump = 50 ms. After this, we imme-
diately switch the gate voltage to a value V2, where we let the nuclei evolve for a



52 Time-resolved Measurement of Nuclear Spin Polarization

0 0.5 1.0 1.50 5 10
0

5

10

15

c

(b)

τ
wait

 (s)τ
wait

 (ms)

|∆
E

O
S
| (

µe
V

)
V

2
t

(a)

V
1

A
O

M

τ
pump

τ
wait

τ
probe

t

V
g

o

(c)

 

 

Figure 7.2: (a) Timing diagram for the gate voltage switching experiment: DNSP
is established at a gate voltage V1, corresponding to the center of the X−1 stability
plateau. During the period τwait, the QD gate voltage is switched to a value V2 and
the nuclei are left to decay. Using transient pulses, the switching time is 30 µs.
(b) Measurement of DNSP decay, with V2 corresponding to the center of the X0

stability plateau. As a result, the residual QD electron is ejected during DNSP
decay, which dramatically increases DNSP lifetime. The gray (black) data points
represent DNSP decay under σ+- (σ−-) excitation. For comparison, the light gray
curve shows the mean of the data presented in Fig. 7.1(b). (c) Same measurement
as in (b), but over a longer timescale. The exponential fit (light gray) indicates a
decay time constant of τdecay ≈ 2.3 s

time τwait = 20 ms. We measure the final degree of nuclear spin polarization with
a probe pulse of length τprobe = 1 ms at the initial gate voltage V1. Fig. 7.3 shows
the resulting OS as a function of the gate voltage V2 at which the nuclei were left
to evolve freely. One can clearly distinguish regions of fast and slow DNSP decay,
corresponding to QD occupations with an even or odd number of electrons, respec-
tively. We can increase the number of electrons in the QD up to four. After this
point, the diode structure used for QD gating (cf. Fig. 2.3) becomes conductive due
to the large applied bias voltage and the QD as well as the WL become completely
filled with electrons. The stepwise increase of the QD charge as a function of Vg is
accompanied by corresponding changes in the PL spectra (Fig. 2.5)[28], which allow
us to determine the absolute number of electrons in the QD.

When two electrons occupy the QD ground state (for 0.1 V. Vg . 0.35 V), the
Pauli principle ensures that they form a spin singlet state, which does not couple
the QD nuclei, resulting in a prolonged lifetime of DSNP on the order of seconds.
The third electron occupies the next QD orbital (the p-shell), where it can again
interact with the QD nuclei and lead to a fast depolarization of nuclear spins on
a ms timescale. Injecting a fourth electron into the QD at Vg ≈ 0.6 V increases
DNSP lifetime again. This last observation is at first surprising, since Hunds rule
states that the first two electrons occupying the p-shell of a QD should form a spin
triplet at Bext = 0 [27] and should therefore still couple to the QD nuclei. Assuming
a symmetrical, harmonic QD confinement potential, the singlet-triplet splitting in
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Figure 7.3: (a) Nuclear spin polarization after free evolution of the nuclear spins
at a gate voltage V2. DNSP lifetime has a strong dependence on the charging state
of the QD at Vg = V2. If the number of QD electrons is odd, DNSP decays in a ms-
timescale, while the decay takes seconds for an even number of electrons. The QD
electron occupation number as extracted from a Vg dependent PL measurement is
indicated in the figure. Gray (black) data points correspond to QD excitation with
σ+- (σ−-) polarized light; the measurement sequence is the same as for Fig. 7.2, the
timing parameters are τbuildup = 50 ms, τwait = 20 ms and τprobe = 1 ms. (b) Same
measurement as in (a) but at Bext = 1.5 T. The behavior of τdecay as a function of
V2 is qualitatively different on the 1e−-plateau compared to the 3e−-plateau. This
is a consequence of motional narrowing, which will be discussed in Chap. 7.2

the p-shell can be extracted from spectral features of PL of X−3 [66]. Based on this
estimate, this splitting should be on the order of 1 meV in our QDs. However ,the
splitting can be reduced for deformed QDs with a broken cylindrical symmetry [67]
or even for cylindrically symmetric QDs if the atomistic symmetry of the underlying
Zincblende lattice is taken into account [68]. Under these circumstances, Hunds rule
is violated and the first two p-shell electrons occupy the same orbital, where they
form a spin singlet state. Our data suggests that this scenario is indeed the case
for the QD under investigation. It is interesting to note that in this case, the QD
nuclear spins act as a probe for the properties of the QD and allow for an efficient
test of Hunds rule (in the p-shell) of an individual QD.

The second control experiment we performed, consisted in measuring DNSP dy-
namics at a constant gate voltage where X+1 is the stable QD charge complex (the
data is not shown here). As we showed in Chap. 4, optically pumping the X+1 ex-
citon can also lead to DNSP. However, in this case, the optically created electron
polarizes the nuclear spins and no electron is left in the QD after the pump pulse
is turned off. The corresponding DNSP decay channel is therefore not present. As
expected, τdecay is also on the order of seconds for this case.

7.1.5 Mechanisms for the electron-mediated nuclear spin decay

We argue that two mechanisms could lead to the efficient decay of DNSP due to the
residual QD electron. The first mechanism is caused by the randomization of the
electrons spin through co-tunnelling to the close-by electron reservoir. Co-tunnelling
happens on a timescale of τcot ≈ 3 ns for the structure studied in this work [30]. The
resulting electron spin depolarization is mapped onto the nuclear spin system via
hyperfine flip-flop events. Taking into account the detuning ∆EZ

el of the two electron
spin levels and using (5.1), the nuclear spin depolarization rate can be estimated to
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be T−1
1e ≈ (A/N∆EZ

el)
2/τcot [23]. In order to get a rough estimate of the resulting

timescale, we take ∆EZ
el to be constant and equal to half the maximum measured

OS. With these values, we obtain a nuclear spin depolarization time on the order of
10 ms, roughly consistent with our measurement.

A second possible mechanism is the indirect coupling of nuclear spins due the
presence of a QD (conduction band) electron [34]. While this process conserves
the total angular momentum of the nuclear spin system, it can lead to a decay
of the OS by re-distributing the nuclear spin polarization within the QD and by
increasing the nuclear spin diffusion rate out of the QD. The resulting decay rate for
the nuclear field has been estimated to be on the order of T−1

ind ' A2/N3/2∆EZ
el as

discussed in Sect. 3.4. The corresponding estimate for τdecay of approximately 1 ms
was obtained for an unpolarized nuclear spin system and in the limit of ∆EZ

el � A.
Since this estimate was a “worst case scenario” as discussed in Sect. 3.4 and since
the approximation ∆EZ

el � A is not valid in our case, giving a correct estimate for
the corresponding timescale of DNSP decay seems difficult for our situation.

7.1.6 Low field nuclear spin dynamics

Our study of DNSP timescales was complemented by adding a permanent magnet
to our sample. The resulting magnetic field is antiparallel to the excitation beam
direction and has a magnitude of Bext = −220 mT at the site of the QD. The
buildup and decay time measurements in the presence of Bext are shown in Fig. 7.4.
In accordance with the discussion of Chap. 5, an asymmetry between the cases of
σ+- and σ−-excitation is observed. The situation where Bnuc opposes Bext is more
efficient than the one where Bnuc aligns with Bext; equilibrium is therefore reached
faster and at a higher nuclear spin polarization in the first case, which corresponds to
σ−-excitation for the present magnetic field direction. The measurements presented
in Fig. 7.4(a) and (b) confirm this picture: we find that τbuildup and τdecay are both
increased by a factor of ∼ 2 − 3 when the polarization of the excitation light is
changed from σ− to σ+.

We again performed the “gate voltage switching” experiment in the presence of
Bext (Fig. 7.4(c)). Since in this case DNSP decay is not mediated by the residual
QD electron, no dependence of τdecay on excitation light helicity was found and only
the average between the two data sets (σ+- and σ−-excitation) is shown. Compared
to the case of zero external magnetic field, the decay of nuclear spin polarization is
further suppressed. Even though extracting exact numbers is difficult in this case due
to the required long waiting times, we estimate τdecay to be on the order of a minute.
This further suppression of DNSP decay rate can be induced with a magnetic field
as small as ∼ 1 mT as shown in the inset of Fig. 7.4(c): Keeping τwait = 1 s fixed, we
sweep an external magnetic field while measuring the remaining OS. The resulting
dip around Bext = 0 has a half-width of ∼ 1 mT. This indicates that nuclear spin
depolarization at zero magnetic field is governed by the non-secular terms of the
nuclear dipole-dipole interactions (3.4) which can be suppressed by applying an
external magnetic field that exceeds the local dipolar field Bloc ≈ 0.1 mT [23]. The
exact nature of this zero field decay of DNSP, however, is still unclear since nuclear
dipole interactions should depolarize the nuclear spins at zero field in a much shorter
time on the order of T2 ≈ 10− 100 µs. Furthermore, upon application of the probe
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Figure 7.4: Measurements of buildup and decay of DNSP in an external magnetic
field Bext ≈ −220 mT: (a) Buildup of DNSP. In the presence of Bext, it is more
efficient and thus faster to produce a nuclear magnetic field compensating the latter
(black, σ−-excitation) than one that enforces it (gray, σ+-excitation). (b) If DNSP
decay is mediated through the residual QD electron, it is again more efficient to
depolarize the nuclei if the total effective magnetic field seen by the electron is
minimized. The color coding is the same as in (a). Solid curves in (a) and (b) show
exponential fits to the data, the resulting buildup- and decay times are given in the
figures. (c) Decay of DNSP in the absence of the QD electron. Compared to the
zero-field case (Fig. 7.2(c)), DNSP decay time is prolonged to τdecay ≈ 60 s. The inset
shows OS after a waiting time of 1s as a function of external magnetic field. DNSP
decay is suppressed on a magnetic field scale of ∼ 1 mT, indicative of DNSP decay
mediated by nuclear dipole-dipole interactions. (d) shows the respective directions
of the external magnetic field and the nuclear fields Bσ+

nuc (Bσ−
nuc) induced by QD

excitation with σ+- (σ−-) polarized light

pulse which generates a Knight field in the QD, DNSP should reappear due to the
long lifetime of nuclear spin temperature (cf. Sect. 7.1.7). We speculate that an
interplay of nuclear dipolar interactions and quadrupolar shifts could explain this
experimental results at low magnetic fields.

We also investigated the possible role of nuclear spin diffusion and the resulting
DNSP of the bulk nuclei surrounding the QD. For this purpose, we studied the
dependence of τdecay on the nuclear spin pumping time τpump for τpump � τbuildup

in the absence of the QD electron. A nuclear spin polarization in the surrounding
of the QD would lead to an increase of τdecay with increasing τpump[36]. However,
within the experimental parameters accessible to our experiment, we were unable
to see such a prolongation and hence any effect of polarization of the surrounding
bulk nuclei. We interpret this fact as a strong indication that we indeed create
and observe a very isolated system of spin polarized nuclei. The QD boundaries
constitute a barrier for spin diffusion and the small remaining flux of nuclear spin
polarization is too low to saturate the bulk material surrounding the dot.
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7.1.7 Spin temperature considerations for the pump-probe
measurements

To further test the influence of the probe pulse on the measured degree of DNSP,
we tested how our experimental results depend on the polarization of the probe
pulse. We repeated all experiments presented in this section using probe pulses
both with linear polarization or with orthogonal polarization with respect to the
pump pulse. This test revealed that our experimental findings are independent of
the polarization of the pump pulse. While for experiments performed in the presence
of an external magnetic field this shows that our probe pulses indeed does not alter
the nuclear spin polarization, this observation is surprising for experiments in zero
magnetic field. As we discussed in Sect. 3.2, in the absence of external magnetic
fields, nuclear spin polarization is destroyed on a timescale T2 ≈ 10 − 100 µs by
nuclear dipole-dipole interactions. At the same time, nuclear spin temperature has
a lifetime T1 � T2, even at zero magnetic field (see [23], Chap. 5). In Chap. 4, we
interpreted our experimental observation of DNSP at zero magnetic field with the
presence of a relatively strong Knight field during optical pumping of QD nuclear
spins. Since this Knight field is zero in the absence of laser excitation, one would
expect DNSP to decay within a time T2 after switching off the pump pulse. The
probe pulse arriving after τwait (with T2 < τwait < T1) would then lead to the
reappearance of DNSP oriented along the Knight field created by the probe pulse.
This is a consequence of the fact that by adiabatically ramping the Bext to zero and
back to a finite value in a time smaller than T1, the nuclear spin temperature, but
not necessarily the nuclear angular momentum is conserved. If the helicity of the
pump pulse is switched with respect to the probe pulse, the Knight field created by
the probe pulse opposes the one created by the pump pulse and we would expect
a reversal of the nuclear spin polarization compared to the case of co-circularly
polarized pump and probe pulses. The fact that we do not see this reversal of
the sign of DNSP suggests that the nuclear T2 time is on the order of T1 for the
QD nuclear spin system. A possible reason for this could be the strong nuclear
quadrupolar interactions in QDs [59] (cf. Chap. 6) which can partly suppress the
effect of nuclear dipole-dipole interactions [69].

The switching of the pump and probe pulses in our experiment occurred on
timescales of a few 100 ns as mentioned in Sect. 7.1.1. Since this timescale is much
shorter than the nuclear T ∗

2 time, the analysis of the nuclear spin dynamics at low
external magnetic fields has to be done carefully. If DNSP at Bext = 0 is indeed
enabled by the Knight field of the QD electron, the fast switching of the pump
and probe pulses constitutes a non-adiabatic change of the magnetic field the nuclei
experience, which might in principle affect the nuclear spin polarization. The be-
havior of the nuclear spin temperature under a non-adiabatic change of the external
magnetic field has been treated in [38]. It was found that if the magnetic field was
non-adiabatically switched from an initial value Bi to a final value Bf , the corre-
sponding inverse nuclear spin temperatures βi(= 1/kBTi) and βf (= 1/kBTf ) were
related through

βf = βi
BiBf +B2

loc

B2
f +B2

loc

. (7.1)

In the case of DNSP at zero magnetic field, the initial magnetic field value is given
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by the Knight field, Bi = Bel, while, after switching off the excitation light, the
final magnetic field is zero. Iterating (7.1) twice, we can relate the inverse nuclear
spin temperature at the beginning of the probe pulse with the one at the end of the
pump pulse. We denote these respective quantities as βprobe and βpump and find

βprobe = βpump
B2

loc

B2
el +B2

loc

. (7.2)

Equations (7.1) and (7.2) are valid in the limit of high nuclear spin temperatures,
where 〈Iz〉 ∝ βBtot. Therefore, the OS at the end of the pump pulse and the OS at
the beginning of the probe pulse at Bext = 0 are related through the same relation
(7.2) as the respective inverse nuclear spin temperatures.

In our experiment, the measured average Knight field of Bel ≈ 0.6 mT is about a
factor of five higher than the estimated local field Bloc. We would therefore expect a
26-fold decrease of the OS in our pump-probe measuring sequence for a non-adiabatic
switching of the light pulses. The data presented in Fig. 7.1 allows for a comparison
of DNSP with and without measurement pulses: The data point at τwait = 0 in
Fig. 7.1(c) corresponds to a measurement of DNSP under continuous QD excitation,
while the data points at τwait ≥ 40 ms in Fig. 7.1(b) correspond to a measurement of
DNSP after switching off the excitation light for 0.5 ms. The corresponding values
of the OS differ by 2 µeV, which is at the edge of our energy resolution but certainly
much smaller than the drop expected from the considerations discussed before.

We explain this discrepancy between our experimental data and the expectations
from the theory of nuclear spin temperature by the role of QI already discussed in
Chap. 6. The QI stabilizes the nuclear spins at Bext = 0 and suppresses the effect
of the nuclear dipolar interactions. Only for a fraction of the QD nuclei the local
strain field is small enough neglect the influence of QI. These nuclei are responsible
for the effects discussed in Chap. 4 (Fig. 4.2) and might also cause the small drop in
OS when applying a pump-probe measurement sequence to the nuclei at Bext = 0.
At external magnetic fields largely exceeding Bloc, the effects of a non-adiabatic
switching of the excitation light are of course negligible, as one can see from (7.1).

7.2 Nonlinear nuclear spin dynamics in high magnetic
fields

In view of the nonlinear coupling between the electron and the nuclear spin system
that was demonstrated in Chap. 5, the purely exponential buildup and decay curves
measured in Sect. 7.1 might come as a surprise. Since the nuclear spin relaxation
rate T1e due to the QD electron depends on electron spin detuning, the buildup
and decay rates of DNSP should depend on the degree of nuclear spin polarization
and therefore change during the time traces presented in Fig. 7.1. These nonlinear
effects are most prominent at the moment where the external and nuclear magnetic
fields cancel. Since at low external magnetic fields this corresponds to the regime of
almost zero nuclear spin polarization (i.e., to the beginning of the buildup- resp. to
the end of the decay-curves), the experimental signature of the nonlinear character
of the electron-nuclear spin system is not very pronounced there.
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Figure 7.5: (a) Buildup of DNSP in external magnetic fields on the order of the
Overhauser field. The experiment was performed with the procedure and external
parameters described in the main text at magnetic fields B1 = 1.1 T, B2 = 1.2 T,
B3 = 1.3 T and B4 = 1.4 T. (b) Simulations according to the classical nonlinear
rate equation (5.3) with the parameters found in the fit for the data presented in
Fig. 5.2. The magnetic fields used for the simulation are B1 = 1.22 T, B2 = 1.24 T,
B3 = 1.26 T and B4 = 1.28 T.

When increasing the external magnetic field, the nuclear spin dynamics slow down
due to the increasing electron Zeeman splitting. However, in a configuration where
Bnuc opposes Bext, the total magnetic field felt by the QD electron crosses through
zero at some point during the buildup and the decay of DNSP (cf. Fig. 5.3(b)). At
this point, the nuclear spin dynamics speed up again and T1e = T 0

1e.
In order to observe the nonlinear buildup and decay curves discussed above,

we performed the pump-probe measurement of DNSP described in Sect. 7.1.1 in
a regime of positive magnetic fields and with excitation light of positive helicity
(σ+). Additionally, the nuclear spin polarization is reset between every pump-probe
pulse pair by illumination with linearly polarized light for 100 ms. This ensures that
individual pump-probe sequences are independent of each other.

7.2.1 Buildup and decay of nuclear spin polarization

Figure 7.5(a) shows the buildup curves of DNSP measured at various external mag-
netic fields. The nonlinear effects discussed before are clearly visible in this measure-
ment. A numerical simulation of the dynamics described by the nonlinear equation
of motion (5.3) at the corresponding magnetic fields is presented in Fig. 7.5(a). The
parameters for these curves are directly taken from the fit to the data shown in
Fig. 5.2 without any further adjustments2. We note that the magnetic fields applied
in the measurement do not completely agree with the magnetic fields used in the
simulation. This is most probably due to slightly different excitation conditions (in
terms of excitation power and energy) between this experiment and the one pre-
sented in Chap. 5. Changing these parameters can significantly alter the critical
magnetic fields Bc

1,2 defined in Chap. 5 and therefore influence the magnetic field
dependence of the buildup of DNSP.

A much more interesting situation arises for the decay of DNSP in sizable external
magnetic fields. Since the nuclear spin decay rate depends strongly on the electronic

2Since these fits only gave the relative time-constants of buildup and decay but not their absolute
values, the time axis in Fig. 7.5(b) is given in arbitrary units.
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environment of the nuclei, the dependence on ∆EZ
el of the electron-mediated DNSP

decay rate can have various forms, depending on the relative importance of the
different possible mechanisms discussed in Sect. 7.1.3.

A good picture of the different decay characteristics at various QD gate voltages
in high magnetic fields can be obtained by measuring DNSP simultaneously as a
function of gate voltage and time. The nuclei are initialized in a state of maximal
DNSP at a gate voltage V1 corresponding to the center of the X−1 plateau. The
gate voltage is then switched to a value V2 and DNSP is measured after a waiting
time τwait. In this measurement we scan τwait first and step to the next value in
V2 after a full time trace is recorded. The measurement result as a function of
V2 and τwait is shown in Fig. 7.6(a), where the final degree of DNSP is encoded in
gray-scale. The voltages corresponding to the crossover between the (n)- and (n+1)-
electron regimes as determined from a gate voltage dependent PL experiment (at
the lowest possible excitation power) are marked in the figure3. In agreement with
the discussion in Chap. 7, the measurement shows three clearly distinct regions of
DNSP decay: When the QD is occupied by a single electron, DNSP decays in tens
of ms; when zero or two electrons are present, there is no decay of DNSP on the
timescale of the presented measurements. Even when increasing the measurement
time to 5min, DNSP shows virtually no decay in these regions. We speculate that
the corresponding nuclear T1 time is on the order of hours.

In the region where the QD is occupied with one electron, the fast DNSP de-
cay shows a much richer behavior. The decay rate shows a marked increase when
V2 approaches the edge of the 1e−-plateau, where co-tunnelling rates increase sub-
stantially [30]. This illustrates the importance of co-tunneling in electron-mediated
DNSP decay, which is twofold: Co-tunneling ensures that the mean electron spin po-
larization is zero due to the coupling to the (unpolarized) electron reservoir; this sets
the equilibrium nuclear spin polarization through (3.6). Furthermore, co-tunneling
limits the electron spin correlation time τel, which broadens the electron spin states
and allows for electron-nuclear spin flips to happen at first place.

7.2.2 Motional narrowing of nuclear spins

When approaching the 1e−-2e− transition point however (0.02V < V2 < 0.04V ),
nuclear spin lifetime increases again, even though the stable configuration of the
QD is still singly charged. This observation is a signature of motional narrowing of
the nuclear spins: While a finite τel is necessary to overcome the energy mismatch
of the initial and final states of an electron-nuclear spin flip-flop, the nuclei cannot
undergo such a transition if the electron spin fluctuations become too fast. This
becomes apparent by inspecting (5.1) which shows that T1e has a maximum for
τel = 1/Ωel. We observe the maximal electron-nuclear spin relaxation rate at a
gate voltage V2 = 0.02 V. Since at τwait = 0 the total electron Zeeman splitting,
g∗elµB(Bnuc + Bext), amounts to ∼ 20 µeV, the corresponding electron co-tunnelling

3We note that these voltages do not correspond to the same voltages indicated in Fig. 2.5. The
reason for this is light-induced accumulation of space-charges in our gated structures during
laser excitation. These charges screen the applied gate voltage, thereby shifting it to lower
values. During the interval τwait, however, no space charges are present in the QD structure,
causing the apparent shift of Vg between Fig 7.6 and Fig 2.5.
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Figure 7.6: Decay of DNSP in an external magnetic field of Bext = 1 T. The
nuclear spin polarization was initialized with a 100 ms, σ+-polarized pump pulse at
a gate voltage V1 corresponding to the middle of the 1e−-plateau, resulting in an
initial Overhauser shift ∆EOS(τwait = 0) ≈ 55 µeV. Immediately after this nuclear
spin initialization, the gate voltage was switched to a value V2. (a) Measurement of
∆EOS as a function of waiting time twait and gate voltage V2. The dashed, gray lines
indicate the transition between the QD charging states identified by the low power
PL experiment shown in the left panel. (b) and (c) are line-cuts through figure (a)
at fixed twait and V2, respectively, as indicated by the gray arrows in (a) ((a), (b)
and (c) have all been obtained by independent measurements). The black curves in
(c) are fits according to (5.3), which are discussed in more detail in the text

rate at this gate voltage should be on the order of 30 GHz, according to (5.1). This is
in reasonable agreement with independent calculations of the electron co-tunnelling
rate in QD structures similar to the one studied here [30]. Motional narrowing is
not observed on the 0e−-1e− transition, where one would at first expect a similar
behavior as in the 1e−-2e− transition since co-tunneling processes are equivalent
for these two regimes. However, this is not strictly true since the tunneling rate is
exponentially growing when increasing the gate voltage. Therefore, co-tunneling is
slower on the 0e−-1e− transition than on the 1e−-2e− transition and τel might never
reach the value 1/Ωel on the low-voltage side of the 1e−-plateau.

The fact that increasing fluctuations of the electron spin can lead to and increase
of DNSP lifetime (as long as τel < 1/Ωel) can be illustrated by two additional,
independent experiments. Fig. 7.3(b) shows the remaining OS after a free evolution
of the nuclear spin system at Bext = 1.5 T and at a QD gate voltage Vg, which
sets the QD charge state. The dependence of τdecay on Vg is qualitatively different
in the 1e−- plateau, compared to the 3e−-plateau. While in the first case, DNSP
decay is mediated by co-tunneling of an s-shell QD electron, in the latter case a
p-shell electron leads to depolarization of the nuclear spins. Due to the exponential
dependence of the tunneling rate on the height of the tunneling barrier, we estimate
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the co-tunneling rate of the p-shell electron to be about one order of magnitude
higher than the one for the s-shell electron4. As a result, DNSP is slower in the
three-electron case compared to the case where only one electron occupies the QD.
The data suggests, that in the center of the 1e−-plateau, τel > 1/Ωel, while the
opposite is true for the 3e−-plateau. This would explain why τdecay has a local
maximum in the center of the 1e−-plateau, while it has a local minimum in the
center of the 3e−-region.

The second surprising consequence of motional narrowing is that the nuclear spin
lifetime increases if we excite the QD with light of linear polarization during the
period τwait (not shown here). Again, the light excitation shortens τel which explains
why τdecay is prolonged in this case. The resulting relaxation of DNSP to zero
resembles the buildup curves presented in Fig. 7.5 with a reversed time evolution.
This result is reasonable, since the decay of DNSP under illumination with linearly
polarized light is a driven relaxation, similar to the buildup of DNSP.

7.2.3 Nonlinear decay of nuclear spin polarization

The center of the 1e−-plateau shows a lifetime of DNSP of roughly 10 ms, limited
by the interactions of the QD nuclei with the residual QD electron which is ran-
domized by co-tunnelling with the reservoir. Due to the nonlinear electron-nuclear
spin coupling, the decay in this region is highly non-exponential as illustrated by
the data presented in Fig. 7.6(c). Nuclear spin depolarization initially happens at a
rather slow rate but speeds up as soon as Bnuc and Bext cancel after τwait ≈ 7 ms and
at ∆EOS ≈ 36 µeV. Once |Bnuc| < |Bext|, the electron Zeeman splitting increases
with time and DNSP decay slows down again. We fitted the measured decay curve
by a numerical solution of the rate equation (5.2) for Sz = 0 and an initial condi-
tion ∆EOS(0). The parameters found for the best fit5 were ∆EOS(0) = 47 µeV,
T 0

1e = 3.3 ms, Td = 110 ms, τel = 360 ps and g∗el = −0.62, in agreement with the
corresponding numbers found in Sect. 5.2. However, the electron spin correlation
time we found is surprisingly short given that here, the measurement was performed
in the absence of optical excitation. We would expect τel to be on the order of 1 ns
with a slight reduction due to the fact that the DNSP decay curve was not measured
exactly at the center of the 1e−-stability plateau (cf. Fig. 7.6(a)). Another surprising
feature is the remaining nuclear spin depolarization time of Td = 110 ms. We note
that this nuclear spin relaxation cannot be due to spin diffusion mediated by nuclear
dipole-dipole interactions, since this rate would have to be much smaller given the
long DNSP lifetime found by the measurement in the 0e−- and the 2e−-regions of
Fig. 7.6(a). We tried to fit the data in Fig. 7.6(c) using a corresponding nuclear spin
decay time of Td = 100 s (dashed, black curve). While this gives a reasonable fit to
the experimental data for short timescales, the fit underestimates the nuclear spin
decay rate for longer times. All fitting parameters for the dashed curve were the
same as for the first fit, only that τel had to be reduced to 275 ps. This value is even
shorter than the previously quoted electron spin correlation time and renders these

4This rough estimate can be made based on the sample geometry and trap depths sketched in
Fig. 2.3 and Fig. 2.4.

5We note that the quality of the fit is very sensitive to even small changes of the fitting parameters,
which is a consequence of the nonlinear character of (5.2).
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fitting parameters less realistic. We therefore deduce that for modelling the data
in Fig. 7.6(c), an additional nuclear spin decay rate of Td = 110 ms, caused by the
presence of the QD electron, has to be introduced. Possibly, indirect nuclear spin
interactions mediated by the QD electron cause this decay through the mechanism
discussed in Sect. 3.4. This decay is not expected to be exponential and further
study of the DNSP decay dynamics in this regime is required to fully understand
the measurement presented in Fig. 7.6(c).

7.2.4 Open questions and conclusions

A surprising feature arises in the transition between the 1e− and 0e− regimes
(−0.14V < V2 < −0.1V ). Fig. 7.6(b) shows that in this regime, DNSP has an
initial, fast decay (on a timescale � 1 ms, not resolved in this measurement) after
which it settles at a finite value of DNSP and shows no further decay on the timescale
of our experiments. This unexplained observation is very surprising since it occurs
in a regime where the QD electron is strongly coupled to the electron reservoir and
electron spin fluctuations should become very large. Furthermore, decay of DNSP
seems to stop at a value where the total electron Zeeman splitting is smaller than
its value at τwait = 0 and where one would therefore expect DNSP decay to be en-
hanced. A possible, but highly speculative interpretation of the observed signature
is the following: The strong coupling of the QD electron with the reservoir could lead
to the formation of a spin-correlated (singlet) state between the localized electron
and its reservoir. In this case, DNSP decay would stop, if this electron spin state is
energetically well separated from a state where the QD electron is flipped. The for-
mation of such a correlated spin state would be assisted by minimizing ∆Eel

Z , which
the situation in which we observe the suppression of DNSP decay in Fig. 7.6(b).
Full understanding of the interesting dynamics of DNSP decay in this QD charging
regime, however, requires further investigation.

We note that we have repeated the experiment discussed above for external mag-
netic fields of Bext = 0, 0.5 and 1.5 T. All the features we previously described have
been observed at all those fields. At Bext = 0, however, DNSP decay in the 1e−-
region is too fast for our experimental setup to observe a variation of co-tunnelling
rates over the 1e−-stability plateau. We also checked the dependence of our results
on the exact form of the gate voltage-overshoots used to switch Vg between V1 and
V2 (cf. Fig. 7.2) and found that the gate voltage-switching does not influence our re-
sults. A further check for the validity of our results was to change the order in which
τwait and V2 were measured. Sweeping V2 and stepping τwait gave results identical to
the ones depicted in Fig. 7.6.

We conclude that we have good understanding of the decay dynamics of DNSP in
the regimes where the QD electron occupancy number is well defined. In the cross-
over regions where the QD charging state is changed, DNSP decay shows unexpected
features that warrant further investigation. Especially a systematic investigation of
the temperature dependance of the decay of DNSP could shed light on the processes
that cause the unexplained behavior of DNSP decay in the region where the QD
electron is strongly coupled to its reservoir.
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8 Conclusion & Outlook

One of the principal experimental findings presented in this work was the identifi-
cation of the QD electron as an efficient source of nuclear spin decay. While in our
approach the electron is indispensable for building up a nuclear spin polarization in
the first place, it also acts against this buildup by inducing indirect nuclear spin in-
teractions as well as co-tunnelling mediated depolarization. In order to increase the
maximal attainable degree of nuclear spin polarization it would therefore be inter-
esting to investigate possibilities of suppressing this electron-mediated DNSP decay.
This could be achieved by increasing the tunnelling barrier between the QD and the
electron reservoir in our structures. However, changing this parameter also has the
consequence of changing the electron spin correlation time τel and the fraction of
QD electron occupation, fel. Both these factors crucially influence the QD nuclear
spin dynamics in various ways. Systematically studying the dependence of DNSP
on the QD tunneling barrier thickness could therefore yield valuable information on
how to enhance DNSP in self-assembled QDs.

For the interpretation of all of our experimental results, considering the nuclear
spins as an ensemble of classical magnetic moments was sufficient. Investigating their
quantum mechanical nature would be interesting for both fundamental reasons and
applications that aim at tailoring the fluctuations of the mean nuclear spin [8]. The
back-action of a (quantum-mechanical) measurement of the nuclear spin polarization
along a given axis would be an interesting experiment in this direction. In order to
perform a projective measurement on the QD nuclear spin system, the accuracy of
the detection of the Overhauser-shift has to be greatly improved as compared to our
experimental technique. The necessary energy resolution for such an experiment has
recently been estimated to be on the order of A/N3/2 [8]. Using optimistic numbers,
this corresponds to an energy resolution of ∼ 0.1 neV or ∼ 25 kHz. While this
resolution is out of reach with our present spectroscopic techniques, more advanced
methods like optically detected electron spin resonance [70] or EIT [71] are close to
reaching the required sensitivity. A first step in this direction would be the use of
differential transmission measurements [72] to prepare and detect DNSP.

Our measurements of the Overhauser-shift of a QD electron give information
about the mean nuclear field that the electron is exposed to. Investigating the
role that the different nuclear species play in the dynamics of the nuclear field
requires a further extension of our experimental techniques. Applying an NMR field
resonant with a given nuclear spin species could induce additional heating for those
spins, thereby giving information about the contribution of the different spin species
to the measured Overhauser-shift. Such experiments are complicated by the large
inhomogeneous broadening of the corresponding NMR lines caused by strain-induced
quadrupolar shifts. Using more refined NMR- and optical detection techniques,
however, NMR experiments could prove useful in investigating the dynamics of QD
nuclear spins in greater detail.
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Another exciting perspective is the experimental observation of the onset of nu-
clear order in a single QD. Different theoretical scenarios for these nuclear phase
transitions have been proposed. Based on the experimental results presented in this
work, realizing these proposals seems to be within experimental reach. Nuclear self
polarization was predicted to occur for the case where nuclear spins couple to an
electron spin system which is artificially maintained in a disordered spin state at
sufficiently low temperatures [54]. Combining recent advances in electron spin reso-
nance in self-assembled QDs [70] with the fast, non-invasive measurement of DNSP
via pulsed PL could allow us to observe this spontaneous nuclear spin polarization
which was predicted to occur at moderate temperatures of a few K. At much lower
temperatures, a true ferromagnetic phase transition of the nuclear spins was recently
predicted to occur in semiconductor nano-structures [73]. A possibility for reaching
low nuclear spin temperatures in the µK range is adiabatic demagnetization of QD
nuclear spins. Bringing the optically cooled nuclear spin system from a field on the
order of 1 T adiabatically to zero field could result in a nuclear spin temperature
being 2 − 3 orders of magnitude lower than what can be achieved through direct
optical cooling.



Appendix A

A Appendix

A.1 Experimental setup

This Appendix gives a sketch of the experimental setup and a short list of the most
important optical components used in this work to perform measurements of the PL
on an individual QD. Figure A.1 shows the schematics of the experimental setup,
while Table A.1 gives a more detailed list of the optical components.

A schematic drawing of our setup is sketched in Fig.A.1. It corresponds to a
standard PL setup with a few modifications that we will describe in the following.
All optical elements of the PL setup were oriented on the optical axis marked by
the black, dashed line. Laser light for PL excitation was directed onto the optical
axis using a small gold mirror (GM) which replaces the beam-splitter which is used
for this purpose in most other PL experiments. The advantages of using the gold
mirror over a beam splitter are twofold. First, a beam splitter necessarily leads to
a loss of PL light, which in our case was reduced due to the small diameter of the
gold mirror compared to the diameter of the PL beam path. Second, a gold mirror
provides excellent preservation of excitation light polarization if this polarization is
linear and parallel to the mirror surface.

Lens L1 in combination with the SIL was used to focus the excitation light onto
the sample and to collect PL light from the QDs. The SIL - if properly mounted on
the sample surface - had the advantages of increasing the PL collection efficiency by
increasing the NA of the collection optics and by reducing total internal reflection
of PL light from the sample surface [74]. We observed a corresponding ∼ 10-fold
increase of photon collection efficiency by comparing PL from the same sample with
and without SIL.

The lens pair L2 and L3 was mounted in a confocal geometry, so that a virtual
image plane of the sample was created at the focal point. A pinhole (PH) placed
in this image plane can be used to block stray laser- or PL-light and only observe
PL from an individual QD. Furthermore, an external spectrometer shutter (Sh) was
placed near the confocal point, where the effective switching speed for PL light
is maximized. The narrow bandpass interference filter (F) was used to block the
excitation laser light, while letting the PL light pass. It was mounted on a rotating
stage for fine-adjusting its pass-band to the PL emission wavelength.

The polarization optics of the experiment was based on a combination of liquid
crystal devices (W and R) with linear polarizers (P1 and P2), as shown in Fig. A.1.
Polarizer P1 (in a fixed, vertical orientation) together with the liquid crystal wave
plate W (with its fast axis oriented at −45◦1 with respect to the orientation of po-
larizer P1) were used to set the light polarization at the QD location. The liquid
crystal wave plate allowed for a setting of the retardance between λ/4 and 3λ/4

1The sign of this angle refers to an observation in the direction of excitation light propagation.
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Figure A.1: Schematics of the PL setup used in the experiments discussed in this
thesis. The drawing is not to scale, relevant length scales are given in cm. The
elements are, respectively: Sp: Spectrometer, C: CCD camera FM: Flip mirror L4:
Focussing lens, P2: Polarizer (orientation horizontal, fixed), R: Linear polarization
rotator, F: Bandpass filter for QD PL, FP: Fabry-Perot etalon, L3: Collimation
lens, PH: Pinhole, Sh: Shutter, L2: Focussing lens, GM: Miniature gold mirror, W:
Variable wave plate (principal axis at 45◦ to vertical, fixed), L1: Collection lens,
SIL: Solid immersion lens, S: Sample, PP: Piezoelectric positioner, CR: Cryostat,
P1: polarizer (orientation vertical, fixed), PC: Pockels cell (principal axis at 45◦ to
vertical, fixed), L: Laser source, M: Mirror, HN: HeNe Laser. Elements described
in brackets in the figure were optional and elements marked in light gray are used
for alignment purposes only. Table A.1 gives a detailed description of the individual
components.

corresponding to excitation with σ−- and σ+-polarized light [60]. The liquid crystal
polarization rotator R together with the fixed analyzer P2 were then used to ana-
lyze the polarization of the PL light. The combination of R and P2 is equivalent
to a single, rotatable analyzer, with the great advantage of having no mechanically
moving parts. This greatly facilitated the coupling of PL into spectrometer S and
avoided artifacts in the PL polarization measurements due to mechanical rotation
of an analyzer. The polarization rotator allowed for a voltage controlled rotation
of the axis of polarization of linearly polarized light over a total angle exceeding
180◦. By setting the rotation such that the combination of R and P2 corresponded
to an analyzer setting perpendicular (parallel) to the orientation of P1, PL polar-
ization with co-circular (cross-circular) polarization with respect to the excitation
light polarization was observed.

For experiments, where a high switching speed of the excitation light helicity was
required, the liquid crystal devices operating at a maximal modulation frequency of
10 Hz were too slow. In this case, the setup was extended by the Pockels cell (PC)
which was used to turn the linear polarization of the excitation light after P1 by 90◦,
resulting in a fast switching of the excitation light helicity on the sample. Using a
suitable high voltage amplifier, this switching could be achieved in less than 10 µs.

For the measurement of PL polarization under modulated excitation helicity pre-
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sented in Sect. 6.2, the wave plate W was replaced by the Pockels cell PC, with its
fast axis oriented at −45◦ from vertical. By switching the PC retardance from λ/4
and 3λ/4, we were able to modulate the excitation light helicity at a frequency of up
to 100 kHz. Since the PL light was collected through the PC aperture as well, the
detection would always remain co- or cross-circularly polarized with respect to the
actual excitation light polarization. While this technique allows for a measurement
of DNSP even under polarization modulation of the excitation light, it has the dis-
advantage of reducing light collection efficiency due to the inevitably small aperture
of the PC of 2 mm.

The gray elements in Fig. A.1 were used for the initial alignment of the optical
elements as well as for aligning the sample with respect to the light excitation di-
rection z and the external magnetic field. The alignment was based on observing
the back-reflection of the HeNe laser (HN) beam from either one of the optical ele-
ments or from the rear surface of the sample, which was optically accessible. Before
mounting the optical elements, the HeNe laser beam was aligned with the optical
axis. Successively, each optical element was introduced into the setup, starting with
elements close to the cryostat and moving towards the spectrometer. Each element
was centered and aligned with respect to the HeNe beam by observing the HeNe
back-reflection on a white screen. Lenses L1, L3 and L4 were then put into their
focal position with the help of camera C, which for this purpose was equipped with
an infinitely corrected focussing lens. The camera was positioned successively after
each of the two collimating lenses (L1, L3), and the lenses were adjusted to give a
clear image of the sample structure on the camera screen. Similarly, L4 was brought
into focus by imaging the spectrometer slit with the camera through L4.

The setup used for the creation of the pump and probe laser pulses necessary for
the measurements presented in Chap. 7 is discussed in great detail elsewhere [75].
The acousto-optical modulator (AOM) and the driver used in our setup were pro-
duced by Crystal Technology, the AOM was model no. 3080-125 together with driver
model no. 1080AF-AIF0-2.0. After the AOM setup, the laser beam was coupled into
a fiber and directed to the PL setup. The fiber coupling served two purposes. First,
passing the laser-beam through the fiber resulted in a cleaner spatial mode-profile,
which in turn led to an improved focussing of the excitation laser onto the sample.
Second, the fiber coupling decoupled the alignment of the AOM setup from the
alignment of the PL setup, which was of great practical advantage compared to the
case of free space propagation of the laser beam.

The whole experiment, including the applied gate voltage Vg, the setting of the
AOM drive power, the opening of the spectrometer shutter as well as the readout
of the spectrometer CCD was controlled by a digital acquisition card (DAQ), which
allowed for the output of digital as well as analog channels. The DAQ card used in
this experiment was model no. PCI-6229 from National Instruments.
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Item Description Manufacturer

Sp Spectrometer Princeton Instruments/Acton Research,
SpectraPro 2759, f= 0.750 m

Detector Princeton Instruments, Spec-10:100BR/LN.
1340×100 pixel back-illuminated CCD array

C CCD camera Watec, WAT-120N
FM Flip mirror Thorlabs, BB1-E03
L3,L4 Achromatic lens,f = 0.1 m Thorlabs, AC508-100-B
P1, P2 Polarizer Newport, Glen-Laser polarizer,

10GL08AR.16
R Liquid crystal polarization

rotator
Meadowlark, LPR-200-0915

F Bandpass filter Thorlabs FB950-10, λ = 950 nm,∆λ =
10 nm

FP Fabry-Perot etalon Burleigh, TL-15
PH Pinhole, ø100 (20) µm Thorlabs, P100S (P20S)
Sh Shutter Uniblitz, LS6ZM2
L2 Achromatic lens,f = 0.2 m Thorlabs, AC508-200-B
GM Miniature gold mirror Homemade, 250 nm gold evaporated on

10 nm Ti on a GaAs substrate. Cut to
2× 2 mm and glued onto thin glass-strip

W Liquid crystal wave plate Meadowlark, LRC-200-0915
L1 Achromatic lens (with

bath cryostat)
Thorlabs, C220TME, NA=0.25, f= 11 mm

Microscope objective (with
flow cryostat)

Mitutoyo, 378-823-4. M Plan Apo NIR 10x,
NA= 0.26, W.D.= 30.5 mm

SIL Solid immersion lens A.W.I. Industries, E14571. Hyper-
hemispherical ball lens, ZrO2, uncoated.
Mounted to sample surface using “Quick
stick 135” TEM mounting wax

S Sample Described in detail in Sect. 2.2
PP Piezoelectric positioners Attocube, ANPx50/LT and ANPz50/LT.

Controller ANC150/3
CR Flow cryostat Oxford instruments, MicrostatHe

Bath cryostat Oxford instruments, Spectromag with 12T
split-coil magnet

PC Pockels cell Linos, LM0202
Pockels cell driver SI, HVA 3/450

L Ti:Saph laser (for PL) Tekhnoscan, TIS-SF-07. Pumped by a Co-
herent, Verdi-V5 (5W)

Diode Laser (for imaging) Melles Griot, 56IC5210, λ = 780 nm, Pmax =
50 mW

M Mirror Thorlabs, BB1-E03
HN HeNe Laser Melles Griot, 05-SRP-812

Table A.1: Detailed list of the most important elements used for the PL setup
sketched in Fig. A.1
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A.2 Measurement of the gate voltage switching time
and sample RC time constant

For the experiments involving a rapid switching of the QD gate voltage Vg that were
discussed in Chap. 7 it was important to measure the speed at which the electric
field E at the position of the QD could be switched. This electric field controls the
charging state of the QD which has to be set faster than the dynamical timescales of
the QD nuclear spins. In order to measure E in a time-resolved way, we employed
a stroboscopic measurement technique. During acquisition of a single QD PL spec-
trum, the excitation laser was chopped into a periodic sequence of light pulses of
length 10 µs, using the AOM setup described in Appendix A.1. Simultaneously, a
periodic modulation of the gate voltage was applied to the sample, where the period
was the same as for the laser modulation and where the shape of the modulation cor-
responded to the gate voltage switching sequences to be employed in the experiment.
The phase between the modulated light intensity and the gate voltage modulation
was thereby changed in steps in order to trace the time evolution of E. Owing to
the quantum confined stark effect (cf. Fig. 2.5), the energy of the QD emission lines
can be used as a measure for the electric field E.

Figure A.2 shows the resulting measurement of the gate voltage switching time
with and without the application of gate voltage “spikes” to increase the switching
time. The data presented in Fig. A.2(a) show a direct measurement of the RC time
constant τRC of the QD gate structure (Fig. 2.3). By fitting an exponential to the
experimental data, we find τRC = 61.2 µs. We note that this RC time constant was
strongly dependent on the way the sample was contacted. Bad contacts resulted in
a prolonged τRC of up to 2 ms. The gate voltage “spikes” we applied in order to
decrease the switching time of Vg consisted in constant overshoots with an amplitude
of 0.25 V and a length of 30 µs. The amplitude was adjusted to obtain the best
switching behavior for Vg and the final switching time was limited by the length of
the overshoots. Fig. A.2(b) shows the resulting gate switching performance. With
the gate voltage “spikes”, we can switch the gate voltage between two fixed gate
voltages in 30 µs. The final emission QD energy after the gate voltage switching
was stable within a few µeV.

We note that the method presented here is very convenient to determine the RC
time constant of gated QD samples based on PL of a single QD. This time constant
is a relevant parameter in all experiments where QD gate voltage modulation is
required, such as single QD absorption experiments [76].
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Figure A.2: Measurement of the spectral response of X0 PL emission energy to a
change of the gate voltage. A constant offset of E0 = 1.149 eV is subtracted from
the data. The measurement is based on a stroboscopic detection which is illustrated
in the insert of the figure and discussed in more detail in the text. The length of
the repeated probe pulses was 10 µs; IL stands for the laser intensity. The energy
of the emitted photons directly measures the electric field E the QD is exposed
to. (a) Gate voltage switching behavior under square wave modulation of the gate
voltage (c). The measured RC time constant of the diode structure is ∼ 61.2 µs. (b)
Applying overshooting “spikes” (illustrated in (d)) to the gate voltage modulation,
the electric field at the QD site can be switched much faster. Here, the switching
speed is limited by the length of the “spikes”, which is 30 µs. After the gate voltage
switching, Eem is stable within a few µeV.
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