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We investigate the arrival statistics of Stokes (S) and anti-Stokes (aS) Raman photons generated in thin diamond
crystals. Strong quantum correlations between the S and aS signals are observed, which implies that the two proc-
esses share the same phonon; that is, the phonon excited in the S process is consumed in the aS process. We show
that the intensity cross-correlation g�2�S;aS�0�, which describes the simultaneous detection of Stokes and anti-Stokes
photons, increases steadily with decreasing laser power and saturates at very low pump powers, implying that the
number of Stokes-induced aS photons is comparable to the number of spontaneously generated aS photons.
Furthermore, the coincidence rate shows a quadratic plus cubic power dependence, indicating the generation
of multiple S photons per pulse at high powers. © 2015 Optical Society of America
OCIS codes: (290.5860) Scattering, Raman; (190.4180) Multiphoton processes; (270.5290) Photon statistics;

(160.4760) Optical properties.
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Raman scattering, typically used to probe the vibrational
modes of a system, can also create correlated Stokes–
anti-Stokes photon pairs in bulk solids such as diamond
[1–3] or in gases such as Cesium [4,5] or Rubidium vapor
[6–8]. In the uncorrelated regime, both Stokes (S) and
anti-Stokes (aS) intensities are linear with excitation
laser power, i.e., a single laser photon spontaneously
scatters into a single S or aS photon [see Fig. 1(a)].
However, if the phonon energies are high enough that
the thermal phonon occupation is low, the spontaneous
aS process is rare and correlations between S and aS
photon generation set in [see in Fig. 1(b)]. In this case,
we expect that the aS intensity depends on the squared
excitation laser power, since one laser photon creates
the phonon in the S process, and another laser photon
scatters from the phonon in the aS process [9,10].
Recent work has shown theoretically and experimentally
that the Stokes-generated phonon (or spin wave, for
Cesium [4,5] and Rubidium vapors [6–8]) acts as a quan-
tum memory, where the S and aS signals act as write and
read commands [1–3,9]. In parallel, research in photon
pairs produced through four-wave mixing (FWM) in
optical fibers has shown highly nonclassical correlations
[11,12], analogous to studies in spontaneous parametric
down-conversion (SPDC) [13,14]. Entanglement between
photon pairs generated through FWM in Rubidium va-
pors has also been demonstrated [15]. However, whereas
SPDC and FWM are broadband processes, here the S and
aS energies are determined by the phonon energy. The
Stokes–anti-Stokes (SaS) process is thus a version of co-
herent anti-Stokes Raman scattering (CARS) in which the
beam at the S wavelength is generated spontaneously in
the material.
In Lee et al., nonclassical correlations between S and

aS photons in diamond were observed, but superbunch-
ing was never achieved, and the correlations were ob-
served for only a single pump power [1]. In this Letter,
we report the generation of highly nonclassical photon
superbunching in diamond at low excitation powers
and analyze Stokes–anti-Stokes photon correlations as
a function of pump power. Our data reveal the range

of conditions under which Stokes-induced anti-Stokes
scattering (SaS) can be used to generate correlated
photons in diamond. This information is useful for de-
signing efficient phonon-based quantum memories and
heralded single-photon sources for quantum communica-
tion. Contrary to FWM in optical fibers [11] and SPDC
in nonlinear crystals [13], we observe a saturation of
Stokes–anti-Stokes correlations at very low intensities.

Here we measure Stokes and anti-Stokes photons in
diamond as a function of laser power PL. Our setup
for measuring correlations between S and aS photons
is illustrated in Fig. 2(a). The excitation wavelength is
λ � 785 nm from a Ti:Sapph laser, and the Stokes and
anti-Stokes photons appear at the wavelengths λS �
877 nm and λaS � 711 nm, respectively, as defined by the
phonon frequency of 1332 cm−1 in diamond [1]. The
duration of the excitation laser pulses is τ � 130 fs, with
a repetition rate of Δf � 76 MHz. The sample is a free-
standing 50-μm-thick diamond crystal, suspended over
a 3-mm-diameter hole in a 1.5-mm-thick quartz substrate.
As shown in Fig. 2(b), the S signal shows a linear power
dependence, whereas the aS signal exhibits a quadratic
power dependence at high intensities, as predicted for

Fig. 1. Schematic representation of Stokes (S) and anti-Stokes
(aS) Raman scattering. (a) Uncorrelated (i.e., spontaneous) S
and aS processes (S & aS). The phonons responsible for the
aS process are generated thermally. (b) Anti-Stokes photons
can also be generated by the phonons created through the
Stokes process. Stokes photons and Stokes-induced anti-
Stokes (SaS) photons become correlated.
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the SaS process illustrated in Fig. 1(b) [10]. At low
powers, on the other hand, the spontaneously generated
aS process is comparable to the SaS process, and hence
the aS signal deviates from the quadratic dependence.
We also record histograms of the difference in arrival

times between S and aS photons. The S and aS photons
are detected at a pair of APDs in free space, and we send
the APD pulses to the “start” and “stop” inputs of a com-
mercial time-correlated single-photon counting (TCSPC)
system. A representative coincidence histogram is shown
in Fig. 3(a). The coincidence rate is calculated by divid-
ing the coincidence counts at time delay Δt � 0 by the
measurement time, where Δt represents the difference
in arrival times between the S and aS photons. Thus
Δt � 0 represents the simultaneous arrival of one Stokes
and one anti-Stokes photon, within the experimental bin-
ning time of 4 ps. The accuracy of the measurement is
limited by the timing uncertainty (≲50 ps) of the APDs.
The coincidence rate can be written in terms of prob-

abilities of generating Stokes and anti-Stokes photons.
The product rule allows the probability of measuring a
Stokes–anti-Stokes pair P�S; aS� to be rewritten as

P�S; aS� � P�aSjS�P�S� � P�SjaS�P�aS�; (1)

where P�aSjS� denotes the conditional probability of
detecting an anti-Stokes photon given that a Stokes pho-
ton has already been detected, and similarly for P�SjaS�

[1]. P�S� and P�aS� are the unconditional probabilities
for detecting Stokes and anti-Stokes photons. The two
primary contributions to the total coincidence rate are
from the Stokes-induced aS [Pcorr, due to correlated
coincidences shown in Fig. 3(b)] and spontaneously
generated aS [Pacc, due to accidental coincidences
shown in Fig. 3(c)]. Note that the accidental coinciden-
ces are independent of time delay, i.e., the probability of
Fig. 3(c) is equal to that of Fig. 3(e), and similarly for
Figs. 3(d) and 3(f). In the absence of thermal phonons,
P�SjaS� is given by the collection and detection
efficiency ηS at the Stokes frequency [9]. In other words,
detection of an anti-Stokes photon requires that a Stokes
photon was created, though it may be undetected. The
power dependence of the coincidences is therefore
determined by the power dependence of the anti-Stokes
signal, that is, Pcorr�S; aS� � ηSP�aS�. In the absence of
thermal phonons, the anti-Stokes signal scales quadrati-
cally with laser power PL (see Fig. 2) and hence
Pcorr�S; aS� ∝ P2

L, which agrees with our coincidence
measurements shown in Fig. 4(a). Note, however, that
spontaneously generated coincidences also exhibit a
quadratic power dependence. In this case, Stokes and
anti-Stokes processes are independent, that is, P�SjaS� �
P�S�, and hence Pacc�S; aS� � P�S�P�aS� ∝ P2

L. Contrary
to the SaS process, spontaneous coincidences are inde-
pendent of time delay Δt. Thus the total coincidence
rate alone gives no information about the degree of cor-
relation. We must account for accidental coincidences
as well.

At high pump powers (PL > 150 mW), we observe the
onset of a cubic term in the coincidence rate. Here the
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Fig. 2. (a) Experimental setup. A 0.5-NA objective (L1) fo-
cuses 785-nm linearly polarized light (shown in green) on a
50-μm-thick diamond sample. The scattered light is collected
with a 0.9-NA air objective (L2). A notch filter blocks the exci-
tation light. The light is sent either to a spectrometer and CCD
(using a flip mirror FM) or to a pair of avalanche photodiodes
(APD) in free space. A dichroic beamsplitter (DBS) separates
the S (red) and aS (blue) signals, sending them to separate
APDs. Bandpass filters BP1 and BP2 block all remaining light
except at the S and aS wavelengths, respectively. A TCSPC sys-
tem creates histograms of relative arrival times between S and
aS photons. (b) Dependence of Stokes signal (red circles) and
anti-Stokes signal (blue triangles) on average excitation power
measured in the forward direction. The data points are the area
of Gaussian fits to the spectral lines, normalized by the integra-
tion time. The Stokes signal is linear with laser power, whereas
the anti-Stokes signal shows a linear power dependence for low
laser powers and quadratic dependence for high laser powers.
The aS data and fit have been multiplied by a factor of 5 to show
it on the same scale as the S data. The gray lines are the linear
(dotted) and quadratic (dashed) parts of the aS fit.

Δt = 13ns Δt = 13ns

(a) (b) (c) (d)

(e) (f)

C
oi

nc
id

en
ce

 c
ou

nt
s

0

100

50

150

200

250

300

Δt (ns)
-100 100-50 500

Fig. 3. (a) A typical coincidence histogram. Count rates for
this experiment were 4.2 kHz for Stokes and 200 Hz for anti-
Stokes. The average incident power was 8.6 mW. (b),(c), and
(d) show the contributions to the peak at Δt � 0. Red (blue)
arrows indicate Stokes (anti-Stokes) photons, and the wavy
black lines are phonons. The gray circles show which photons
are detected and thereby contribute to the measured coinciden-
ces. (b) True coincidences, corresponding to the process from
Fig. 1(b). (c) Accidental coincidences from spontaneous aS.
(d) Accidental coincidences from generatingmultiple S photons
per pulse. (e) and (f) show the accidental coincidences between
different pulses, taking the peak at Δt � 13 ns as an example.
(e) A S photon is generated in one pulse, and an aS photon is
generated spontaneously in the pulse immediately following.
Since the S and aS photons are separated by one pulse, the
TCSPC bins this accidental coincidence into the peak near
Δt � 13 ns. (f) Accidental coincidences due to the generation
of a S photon in one pulse and a Stokes-induced aS photon in
the subsequent pulse.
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probability of generating multiple phase-matched pho-
nons per pulse is no longer negligible. The cubic depend-
ence arises from detecting a S photon followed by an aS
photon generated through a second S photon, i.e., two S
photons and one aS photon in the same pulse. Since this
requires the creation of an additional S photon, the prob-
ability scales as P3

L [see Fig. 3(d)].
To understand the interplay between the spontaneous

and the Stokes-induced aS processes, we measure the
second-order intensity cross-correlation g�2�S;aS�0� as a
function of average laser power. Using the recorded
histograms, we can evaluate g�2�S;aS�0� by dividing the total
coincidences at Δt � 0 by the average accidental coinci-
dences taken from the peaks at Δt ≠ 0. The phonon life-
time in diamond is ≈3.6 ps, which determines the lifetime
of the cross-correlations between the S and aS signals
[1]. The separation between pulses (given by the laser
repetition rate) is 13 ns. It is thus unlikely that a phonon
generated in one pulse survives until the subsequent
pulse, implying that correlations should only exist for S
and aS photons generated within the sample pulse, i.e.,
at Δt � 0. Thus the peaks at Δt ≠ 0 represent accidental
coincidences, i.e., S and aS photons that are generated
in different pulses and are therefore uncorrelated [see
Figs. 3(e) and 3(f)].
Classically, g�2�S;aS�0� is related to the autocorrelations

through the inequality g�2�S;aS�0� ≤
��������������������������������
g�2�S;S�0�g�2�aS;aS�0�

q
[1,16].

The autocorrelations are classically bound by g�2�S;S�0�,
g�2�aS;aS�0� ≤ 2, where the equality holds for the thermal
state of a single-mode field [1,16]. For a large range of
intensities, our value of g�2�S;aS�0� violates the inequality

since the photon arrival statistics cannot be described
classically. Specifically, the value of g�2�S;aS�0� increases
as the power is decreased and then eventually reaches
a maximum value of ≈25 [see Fig. 4(c)].

The cross-correlation g�2��τ� is typically defined in
terms of temporal correlations between intensities
I1�t1� and I2�t2�. Letting I1�I2� to be the intensity of the
Stokes radiation IS (anti-Stokes radiation IaS) and assum-
ing stationary statistics, g�2��τ� is defined as follows:

g�2��τ� � hIS�0�IaS�τ�i
hISihIaSi

; (2)

where τ � t2 − t1 and the brackets indicate an ensemble
average [16,17]. So long as the probabilities are low, it is
straightforward to relate the ensemble averages to the
probabilities of detection. For the unconditional proba-
bility of detecting a S photon, we can write

P�S; t1�Δt1 � CShISiΔt1; (3)

where CS accounts for the shape and efficiency of the S
detector [17]. A similar expression follows for detecting
an aS photon. For the joint probability, we have

P�S; t1; aS; �t1 � τ��Δt1Δ�t1 � τ�
� CSCaShIS�t1�IaS�t1 � τ�iΔt1Δ�t1 � τ�: (4)

This describes the joint probability of detecting a S
photon at t1 withinΔt1 and an aS photon at �t1 � τ�within
Δ�t1 � τ� [17]. Putting these expressions into the defini-
tion of g�2��τ� and letting t1 � 0, we find that

g�2�S;aS�τ� �
P�S; aS; τ�
P�S�P�aS� �

P�SjaS; τ�
P�S� ; (5)

from which the expression for g�2��0� follows. Although
pulsed lasers are not stationary, many of them can be
treated as stationary sources that are deterministically
modulated in time [18]. Then the peak heights in a pulsed
g�2��τ� measurement carry the same information as a
cw measurement, so long as the pulse duration is short
compared to the coherence time of the signal [14].

As noted above for a pure SaS signal, P�SjaS� ≈ ηS,
which leads to g�2�S;aS�0� � ηS∕P�S� � ηS∕�kSPL�, where kS
is a constant describing the Stokes scattering strength
and the collection and detection efficiencies. The corre-
lation is therefore expected to increase with decreasing
laser power as 1∕PL. At very high powers, the probability
of multiple S photons is no longer negligible, and the
rate of accidental coincidences will rise [see Fig. 4(b)].
At very low powers, the SaS process is no longer much
stronger than the spontaneously generated anti-Stokes,
which leads to a maximum attainable g�2�S;aS�0�. This ex-
plains why the 1∕PL dependence is violated at low
powers. Parra-Murillo et al. have modeled the behavior
of g�2�S;aS�0� for different thermal phonon occupation num-
bers and found that the behavior deviates from 1∕PL
more strongly for higher numbers of thermal phonons
[10]. In the absence of spontaneously generated anti-
Stokes scattering, we would expect that g�2�S;aS�0� will
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Fig. 4. Correlation of Stokes and anti-Stokes photons as a
function of laser power. (a) Total coincidence rate at Δt � 0.
The fitting curve is quadratic for low PL and cubic for high PL.
(b) Accidental coincidence rate, given by the peaks at Δt ≠ 0.
(c) Second-order correlation for zero time delay g�2�S;aS�0�. The
dashed line indicates the theoretical 1∕PL behavior. At low
powers, g�2�S;aS�0� stops increasing because the yield of Stokes-
induced anti-Stokes photons becomes comparable to that of
spontaneously generated anti-Stokes photons.
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increase without limit as power is reduced [10]. This
implies that cooling the diamond will lead to a higher
value of g�2�S;aS�0�.
In conclusion, by studying the correlations between

Stokes and anti-Stokes photons as a function of laser
pump power, we have shown that the second-order
cross-correlation g�2�S;aS�0� can be varied over a large range
of values. We have discussed distinct processes for pro-
ducing Stokes–anti-Stokes photon pairs: (1) uncorrelated
photons from thermal phonons and (2) correlated pho-
tons from the SaS process. The relative strengths of these
processes depend on experimental parameters (particu-
larly pump power), as well as material properties. For
quantum computing, the optimal material should be in
the SaS regime for a large range of pump powers, which
can be achieved, for example, by exploiting material res-
onances. Future work will therefore focus on developing
engineered samples [19,20] with distinct resonances,
such as optical cavities.
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