
An Open Microcavity for
Diamond-based Photonics

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Sigurd Fl̊agan
aus Norwegen

Basel, 2021



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. Richard J. Warburton

Prof. Dr. Patrick Maletinsky

Prof. Dr. Stephan Götzinger
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Abstract
In recent years, tunable Fabry-Perot microcavities have emerged as a compelling

platform for enhancing the flux of coherent photons from single colour centres in
solid-state hosts. A prominent example of one such colour centre is the nitrogen-
vacancy (NV) centre in diamond. The NV centre has a highly coherent, optically
addressable electron spin. Furthermore, the NV centre is a source of single photons.
Advances in the creation of entangled spin-photon pairs allow for establishing remote
spin-spin entanglement – a key building block in a quantum network. However, the
scalability past a few network nodes is limited by modest entanglement rates, in turn
limited by the detection efficiency of coherent photons. Limiting factors include the
long radiative lifetime and the small branching ratio of “useful” photons into the zero-
phonon line (ZPL). However, neither the radiative lifetime nor the branching ratio are
rigid features of the NV centre – the flux of ZPL photons can be greatly accelerated
in a resonant microcavity.
This thesis reports on the realisation of a high-quality tunable Fabry-Perot micro-

cavity embedded with a diamond membrane. However, the diamond alters the cavity
performance, rendering the cavity sensitive to surface related losses. Despite operat-
ing in a geometry where the standing wave inside the cavity possesses an anti-node at
the diamond surface, quality (Q) factors exceeding 100 000 were realised. The benefit
of this geometry is the strong confinement of the vacuum electric-field to the diamond
– the current cavity design allows for the realisation of Purcell factors exceeding 300,
thus increasing the fraction of photons emitted into the ZPL from 3% to 89%.
The versatile design of the microcavity was demonstrated further by enhancing

the Raman transition from the single crystalline diamond. Compared to free-space
measurements under likewise identical conditions, a 59-fold intensity enhancement
was demonstrated. This enhancement factor encompasses the Purcell effect and the
improved detection efficiency provided by the cavity. The Raman transition couples
to all cavity modes, allowing for in situ optimising and benchmarking the cavity per-
formance. Additionally, it facilitates coupling to the external single-mode detection
optics. Further enhancement of the Raman intensity can be achieved by establishing
a double resonant condition, with both the pump laser and the Raman transition
being resonant. Resonant recirculation of the pump laser increases the power density
inside the cavity, providing a platform with prospects of realising a Raman laser with
∼ mW threshold pump power. Exploiting a small thickness gradient in the diamond
enabled continuous tuning of the double resonance condition across a spectral window
of ∼ 1THz. The tuning range is only limited by the travel range of the piezo – with
an adequate travel range, continuous tuning is, at least in principle, possible across
the entire reflective stopband.
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CHAPTER 1

Introduction

The field of quantum mechanics was born at the turn of the 19th century, when
classical physics failed to explain new and emerging physical phenomena [1]. Max
Planck, regarded by many as the founding father of the field, proposed the idea of
quantised energy levels in his attempt to explain the radiation spectrum of a black-
body [2]. Planck was awarded the 1918 Nobel Prize in Physics “in recognition of
the services he rendered to the advancement of Physics by his discovery of energy
quanta” [3]. The idea of energy quantisation was developed one step further by Albert
Einstein in his explanation of the photoelectric effect. Einstein proposed that light
itself was quantised [4], leading to the birth of the photon [5]. Like Planck, Einstein
was awarded the 1921 Nobel Prize in physics “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect” [6].

The early discoveries of the “first quantum revolution” provide the foundation for
much of the technology of the present everyday life [1]. Two prominent examples;
the understanding of how light interacts with matter lead to the development of the
laser and solar cells. Second, understanding how electrons behave in a solid paved the
way for the creation of the transistor, a key component in the computer industry [7].
While the first quantum revolution could explain the world around us, the control
and manipulation of single atoms and electrons was out of reach [1]. However, we
are now at the doorstep of the “second quantum revolution”, where our increasing
understanding of quantum mechanics alongside technological development pushed by
the likes of the semiconductor industry, allows for engineering and controlling the
behaviour of single electrons and photons at our own will for our own benefit [1, 8].
The second quantum revolution promises new technologies such as, but not limited
to, quantum sensors [9–11], quantum computers [12, 13], secure communication [14]
and the quantum internet [15–17].

The field of quantum information [18] lies at the crossroad between quantum me-
chanics and information science, and concerns the use of quantum mechanics to store,
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manipulate and transfer the information associated with individual quantum states.
In the sub-field of quantum computing, quantum bits (qubits) are used to solve compu-
tational tasks. As a direct consequence of the unique nature of quantum mechanics,
quantum computers offer an exponential speed-up of the computational time com-
pared to its classical counterpart [19, 20]. Contrary to classical bits, which can only
assume the value 0 or 1, a qubit can take the values |0⟩, |1⟩ or a linear superposition
of both |0⟩ and |1⟩, i.e. |ψ⟩ = α |0⟩ + β |1⟩ [21]. In simplified terms, the superpo-
sition state allows for parallel calculations, offering the aforementioned exponential
speed-up [19, 20]. Quantum computers are expected to outperform their classical
counterparts in tasks such as factorising large numbers [22, 23], searching through
large unsorted databases [24] and hopefully in predicting when the next pandemic
will hit [25]. Quantum advantage, or more famously “quantum supremacy”, has been
experimentally demonstrated using photons [26] and superconducting resonators [27].

The development of real-world applications requires the interconnection of many
qubits in a robust, scalable manner. Trapped atoms and ions have been used in various
proof-of-principle experiments [28–31]. However, the scalability of these experiments
remain a great challenge due to the complex laser cooling and trapping techniques
required. Qubits embedded in solid-state host materials, on the other hand, offer a
viable route to scalability on the account of the possibility of integration into pre-
existing microelectronic technologies [32].

Optically active defect centres in wide bandgap semiconductors have attracted sig-
nificant attention over the course of the years [33, 34]. These defect centres often
combine atom-like optical properties with a long-lived electron spin [35, 36]. A qubit
can be formed by coherent manipulation of the electron spin between two discrete
energy levels, for example spin up |↑⟩ and spin down |↓⟩ [7]. Arguably the most
prominent example of such a defect centre is the nitrogen-vacancy (NV) centre in
diamond [37], where the long-lived electron spin can be initialised, manipulated and
readout all optically [38, 39], even at room-temperature [40]. Quantum entanglement
between the electron spin and an emitted photon [41] paved the way for entangle-
ment of well-separated electron spins [42, 43]; a key requirement for remote quantum
information processing protocols [44].

The fields of quantum communication [45] and quantum cryptography [14] concerns
the transfer of quantum information from one place to another in a secure, unhack-
able manner [46, 47]. Single optical-photons are widely used to transmit quantum
information over long distances owing to the small interaction cross-section with each
other and the environment [48], combined with the direct comparability with pre-
existing classical fibre networks [49–51]. However, residual absorption losses in the
fibre links require the use of repeaters. Contrary to classical bits, exact copying of a
quantum state is forbidden by the no-cloning theorem [14, 52, 53]. The development
of quantum repeaters provides a means to overcome the propagation loss [54]. In a
simplified picture, quantum repeaters work by establishing pair-wise entanglement
between neighbouring network nodes, where each network link covers a subsection
of the total distance [55, 56]. Quantum information can be transferred via entan-
glement swapping of the neighbouring network nodes. The distance between each
node needs to be smaller than the distance light can propagate during the coher-
ence time of the qubit [57]. The development of an efficient interface between the
travelling photon and the stationary spin qubits is limited by the inherently weak
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interaction cross-section between light and matter [30, 58]. However, this interaction
cross-section can be greatly enhanced by embedding the spins inside high-quality
photonic resonators [59–61].

The realisation of a large-scale distributed quantum network requires the intercon-
nection of remote network nodes [15, 16]. A key criterion for these quantum nodes is
the ability to store- and process quantum information with high fidelity [17]. As pre-
viously mentioned, the NV centre in diamond possesses a highly-coherent, optically
addressable electron spin [38, 62], and has thus been proposed as a node-candidate in
a near-term quantum network [63–66]. Furthermore, weak coupling between the NV
centre electron spin and nearby 13C nuclear spins [67], allow for the realisation of a
long-lived multi-qubit quantum register [68–71], without compromising the coherence
of the electron spin [72]. Furthermore, the presence of the 13C nuclear spins play
a crucial role in achieving high fidelity remote spin-spin entanglement via entangle-
ment distillation [73]. In this protocol, entanglement is swapped from the electron
spin onto the 13C memory qubit [74], and thus freeing the electron spin for another
round of entanglement [73]. For a fibre-based quantum network, frequency conversion
to telecommunication wavelengths [75, 76] is required to mitigate photon loss in the
network links [14, 48]. All these criteria have been demonstrated in proof-of-principle
experiments using the NV centre.

However, scalability to more than a few network nodes is limited by the modest
entanglement rates owing to the low flux of coherent photons. The rate of indistin-
guishable photons from NV centres are limited by (at least) four factors [77]. First,
the NV centre possesses a long radiative lifetime of ∼ 12 ns. Second, only ∼ 3% of
these photos are emitted along the zero-phonon line (ZPL) [78], while the remaining
97% are emitted accompanied by a rapidly dephasing phonon. Third, the large
contrast in refractive index across the diamond-air interface (nd = 2.41) leads to
total internal reflection, consequently compromising the photon extraction efficiency.
Finally, random spectral fluctuations of the exact transition frequency render two
ZPL photons distinguishable [79, 80]. However, at least in principle, the first three
problems can be addressed by coupling the ZPL emission to a resonant photonic
cavity [81–84].

1.1. The Scope and Structure of the Thesis

The overarching goal of this project is to enhance the flux of coherent photons
from NV centres in diamond. The approach pursued here consists of enhancing
the ZPL transition by resonant coupling to a single optical-mode in a Fabry-Perot
microcavity. This thesis builds on the work performed by Ref. [77, 85], where the
excited state lifetime was reduced from 12.6 ns in bulk to 7.06 ns in the cavity. More
importantly, the fraction of light emitted into the ZPL was increased from ∼ 3%
to 46% [77]. However, the experiment suffered from a modest Q-factor of 58 500
limiting the cavity finesse to F = 5260. Furthermore, the Purcell factor did not
result in a significant increase in the photon countrate; the photons were lost before
they could reach the detectors. Finally, the optical linewidth of the NV centres was
found to increase from ∼ 100MHz in bulk diamond to ∼ 1GHz in thinned (∼ 1µm)
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diamond membranes, presumably as a result of fabrication induced surface damage.
This thesis aims at addressing the Q-nundrum of the low Q-factor and the origin of
the broadening of the optical linewidth.

The remainder of this thesis is divided into 7 chapters, organised in the following
way. Chapter 2 presents the theoretical framework, from which the subsequent ex-
perimental chapters are built upon. The chapter is divided into four main sections,
starting with an overview of the field of cavity quantum electrodynamics. First, the
plano-concave Fabry-Perot cavity will be presented from a classical optics point of
view. Key concepts, like the resonant condition, the mode-structure and the quality
factor (Q-factor) will be introduced. Moving on from the classical description, the
Jaynes-Cummings model, describing the quantum mechanical nature of the interac-
tion between a two-level emitter and a quantised cavity mode, will be introduced
next. Here, the presence of the cavity significantly alters the optical properties of the
emitter; on-resonance, the rate of spontaneous emission is greatly enhanced via the
Purcell effect [86]. Up until this point, the theory discussed is completely generic: no
assumptions will be made on the type of emitter. Therefore, the emitter of choice in
this project, the NV centre in diamond, will be introduced in Section 2.2. Starting
from a discussion of different methods of creating NV centres, the key electronic, op-
tical and to some extent the spin properties of the NV centre will be presented. The
aim of this section is to give the reader an overview of the NV centre, and to point
out key references along the way. The third part, Section 2.3 discusses the drawbacks
and limitations of the NV centre, followed by a short introduction to new and emerg-
ing colour centres. The final section of Chapter 2 introduces Raman scattering, the
inelastic scattering of photons via the creation of optical phonons. Raman scattering
will first be discussed from a generic point of view, before introducing the diamond
lattice and phonons in diamond. The chapter culminates in a short discussion con-
cerning the use of phonons in diamond as a quantum memory and the use of diamond
as the gain medium in a low-threshold Raman laser. Note that the theory presented
in this chapter is by no means a complete review of everything there is to know about
anything; the readers are kindly referred to the indicated references.

The presence of a diamond membrane inside the Fabry-Perot microcavity signif-
icantly alters the cavity mode-structure compared to a conventional, empty cavity.
The finite contrast in refractive index across the diamond-air interface leads to hy-
bridisation of the cavity mode [61]. In Chapter 3, one-dimensional transfer-matrix
simulations will be used to quantitatively describe the resulting mode structure. De-
pending on the exact diamond thickness, two different regimes emerge: the so-called
air- and diamond-confined geometries. For the air-confined geometry, the electric field
is mostly confined to the air-gap, while in the diamond-confined geometry the field
is more strongly confined to the diamond, leading to an enhanced coupling strength
to emitters [87]. The two geometries also exhibit different sensitivity to surface losses
and to length fluctuations.

Chapter 4 is the first experimental chapter of this thesis. This chapter presents
the experimental realisation of a Q-factor exceeding 120 000 and a finesse F ≃ 11 000
on a diamond membrane embedded in a Fabry-Perot microcavity. In this work, the
diamond thickness (∼ 0.73µm) leads to the formation of a diamond-confined ge-
ometry, where the electric field possesses a field anti-node across the diamond-air
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interface. The maxima of the electric field render the cavity sensitive to scattering
losses. Based on the aforementioned one-dimensional transfer-matrix calculations in-
troduced in Chapter 3, a model capturing the cavity losses will be developed. This
model reproduces the cavity finesse to within 10%. The strong confinement of the
electric field to the diamond leads to a theoretical Purcell factor of FP ≃ 170. A
Purcell factor on this order corresponds to ∼ 80% of the photons being emitted into
the ZPL. Note that the Purcell factor depends solely on the cavity parameters. Fur-
thermore, the generic design of the microcavity platform allows for the incorporation
of other colour centres in diamond, or in wide bandgap materials.

Chapter 5 demonstrates that the Raman transition in diamond provides a way
to fully characterise the Fabry-Perot microcavity. The Raman transition acts as
a narrow-band internal lighthouse, providing an efficient method for in situ mode-
matching to external detection optics on two grounds. First, the Raman transition
is bright, offering ∼ 2Mcounts/s on a standard silicon avalanche photodiode (APD).
More importantly, the Raman scattering is an inherent property of the diamond
and is largely independent on the xy-alignment of the cavity mode. Furthermore,
the Raman transition couples to all Gaussian cavity modes, including higher-order
transverse modes. Analysing the spacing of the cavity modes allows for the extraction
of all the geometrical parameters of the cavity, such as the radius of curvature of the
top mirror and the thickness of the diamond membrane. A comparison between
the signal intensity of the cavity-enhanced Raman signal to the free-space Raman
signal puts a number on the single-particle Purcell factor and the enhanced detection
efficiency provided by the cavity. All the techniques developed in this chapter are
directly transferable to measurements where single emitters are used [77].

Chapter 6 is a direct continuation of Chapter 5. Here, the cavity length was care-
fully tuned to establish a double resonance condition, where both the pump laser and
the Raman transition were resonant for the same cavity length. In this configuration,
the Raman transition is enhanced on two grounds. First, as in Chapter 5 the Raman
transition experiences Purcell enhancement. Second, the resonant recirculation of
the pump laser increases the power density inside the cavity. The motivation behind
this chapter was the possibility of establishing a low-threshold tunable diamond Ra-
man laser in the visible regime. The current geometry predicts a theoretical lasing
threshold for continuous wave (CW) pump-power Pth = 189mW. However, with
realistic changes to the geometry, ∼ mW threshold pump powers can be reached for
CW operation. Furthermore, utilising a slight thickness gradient, ∼ THz tuneability
of the double-resonance condition was demonstrated, only limited by the size of the
diamond membrane and the travel-range of the piezo-electric nanopositioners. With
an adequate travel-range and suitable sized diamond, continuous tuning across the
entire reflective stopband is possible, amounting to several tens of THz.

While the first two experimental chapters aim at characterising the cavity, Chap-
ter 7 aims at addressing the final issue listed above, namely the broadening of the
optical linewidth induced during the fabrication of the diamond membranes. The op-
tical coherence of NV centres was investigated on three different samples. In the first
sample, the NV centres were formed by nitrogen ion implantation prior to fabrication.
By measuring the optical linewidths before and after fabrication, it is evident that
even exposing the diamond to a slight etching step has a devastating effect on the
optical coherence. For the the second sample, the NV centres were created by ion im-
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plantation after the fabrication of diamond membranes. In this sample, the measured
linewidths were found to fall within two distinct populations, with narrow and broad
linewidths, respectively. The two populations were attributed to NV centres created
from native and implanted nitrogen ions. The narrow population routinely revealed
linewidths ≲ 100MH in ∼ 3µm thick diamond. For both the samples, a statistical
model was used to quantify the difference in the observed linewidths. In the final
sample, the NV centres were introduced during the growth of an isotopically purified
diamond film. The combination of controlled growth and isotopically purification
offers an ideal condition for long spin coherence times at a depth desired for cavity
coupling. Unfortunately, no narrow linewidths were observed in this sample.
The final chapter of this thesis, Chapter 8, takes a look back and summarises the

work presented, followed by a look towards the future. In this chapter, the pros
and cons of different, realistic mirror configurations will be discussed in terms of
the achievable Purcell factor and photon extraction efficiency. As for Chapter 3, the
analysis presented is largely based on one-dimensional transfer-matrix simulations,
where the thickness of the diamond corresponds to the diamond thickness used in the
second part of Chapter 7.
Finally, experimental techniques and mathematical derivations deemed too tech-

nical for the main text are bundled up in the appendices found at the end of this
document.



CHAPTER 2

Background Theory

The realisation of a large scale quantum network relies on the development of an
efficient interface between stationary and flying qubits. For flying qubits, weakly
interacting photons are the obvious choice [48]. However, deterministic interaction
between stationary qubits and single photons is intrinsically weak. For an emitter
placed in a tightly focused light beam with area A = π

4w
2
0, the absorption cross-

section is on the order of σabs =
3λ2

2π . Deterministic light-matter coupling is possible,
provided σabs ≫ A. Due to the diffraction limit, this condition cannot be met in free
space [30]. However, the interaction between light and matter can be greatly enhanced
by placing the emitter inside a resonant cavity.

This chapter aims to provide the theoretical framework upon which the experiments
presented in the subsequent chapters are built upon. This chapter is organised as
follows. The first section discusses the interaction between light and matter. The
second part of the chapter introduces our qubit of choice; the NV centre in diamond.
Finally, the last section concerns Raman scattering and optical phonons in diamond.

2.1. Cavity Quantum Electrodynamics

Cavity quantum electrodynamics (QED) describes the interaction between matter and
light confined to a small volume. The presence of the cavity significantly alters the
optical properties of an emitter. For example, in the so-called weak coupling regime
of cavity QED, the radiative emission rate of single photons is greatly enhanced via
the Purcell effect [86]. Starting from the classical description of a Fabry-Perot cavity,
this section will discuss the quantum mechanical nature of the interaction between
light and matter confined to small volumes.
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2.1.1. Plano-Concave Fabry-Perot Cavity

The Fabry-Perot cavity consists of two high reflectivity mirrors separated by a distance
Lcav, in such a way that light travelling back and forth between the two mirrors
undergoes constructive interference, thus forming a standing wave. The optical field
|Ψ⟩ inside the cavity can be described as a linear superposition of the cavity modes
|ψi⟩ [88–90]:

|Ψ⟩ =
∑
i

Ci |ψi⟩ . (2.1)

The eigenmodes of the cavity can then be found from

γi |Ψi⟩ = M |Ψi⟩ , (2.2)

where the mode-mixing matrix M describes the change of the optical field after one
roundtrip and γi determines the amplitude of the corresponding eigenmode |Ψi⟩.
For a non-perfect cavity, the loss per round trip Li for mode |Ψi⟩ can be extracted
from [88, 89]

Li = 1−|γi|2 . (2.3)

The mode mixing matrix M is given by

M = e2ikLcav B+ × B− , (2.4)

where B± is the mode overlap integral over the finite extent of the mirrors located at
distance z = ±Lcav

2 , respectively:

B±
n,m =

∫ y0

−y0

∫ x0

−x0

ψ∓
n ψ

±
m

∗
e−2ik∆(x,y)dxdy

∣∣∣∣
z=±Lcav

2

. (2.5)

The term ∆(x, y) describes the deviation of the mirror profile from a planar surface.
For a spherical mirror with radius of curvature R, this deviation can be approximated
by [88]

∆(x, y) ≈ r2

2R
, (2.6)

where r =
√
x2 + y2.

Up until this point, no assumption has been made on the form of ψi. In Cartesian
coordinates, the general solution to the paraxial wave equation is the set of Hermite-
Gauss modes* [91, 93]:

ψnm(x, y, z) =
w0

w(z)
·Hn

(√
2
x

w

)
·Hm

(√
2
y

w

)
e−i(kz−Φmn(z))−i k

2q(z)
(x2+y2) , (2.7)

where w(z) and w0 are the beam radius at distance z and z = 0 from the waist
respectively, Φmn is the Gouy phase, k = 2π

λ is the wave vector and q is complex

beam parameter given by 1
q(z) =

1
R(z) − i λ

πw2(z) . The terms Hn and Hm are Hermite

polynomials of order n and m describing higher-order transverse modes. The Gouy
phase, Φ = (n + m + 1) tan−1(z/zR), with zR being the Rayleigh length, describes
the additional phase shift picked up by a Gaussian beam a distance z away from the
waist compared to a plane wave [93]. The first few Hermite-Gauss and Laguerre-Gauss
modes are shown in Fig. 2.1 (a) and (b), respectively.

*For a system with radial symmetry, the corresponding solution will be expressed by the Laguerre-
Gauss modes [91, 92].
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(a) (b) Laguerre-GaussHermite-Gauss

Figure 2.1.: (a) The spatial extent of the first 25 Hermite-Gauss modes calculated from
Eq. 2.7. (b) The spatial extent of the first 25 Laguerre-Gauss modes for comparison.

To achieve constructive interference, the optical field must replicate itself after one
round trip. This is only possible provided the round trip phase change ϕnm = q · 2π,
where q is the longitudinal mode number* [93, 94]. If Lcav is the separation of the two
mirrors, the cavity is resonant provided [95]

ϕnm = 2kLcav − 2 · (n+m+ 1) ·

[
tan−1

(
z2
zR

)
− tan−1

(
z1
zR

)]
= q · 2π , (2.8)

where z1 and z2 are the positions of the two mirrors with respect to the beam waist
at z = 0 [93]. Introducing the dimensionless parameters g1(2) = 1− Lcav

R1(2)
, where R1(2)

is the radius of curvature for the respective mirror, the resonance frequencies of the
cavity can be derived from Eq. 2.8 for g1, g2 > 0 [93]

νnm =

(
q +

n+m+ 1

π
· cos−1(

√
g1g2)

)
· c

2Lcav
. (2.9)

Here, 0 ≤ g1g2 ≤ 1 set the constrain for possible stable cavity geometries. In the
experimental work presented in Chapter 4, Chapter 5 and Chapter 6, a planar-concave
mirror configuration was used. For a planar mirror, R2 → ∞, hence g2 = 1 and the
stability criterion reduces to 0 ≤ g1 ≤ 1, in other words, R > Lcav [93]. From a simple
rearrangement of Eq. 2.9 one finds that the spacing of the cavity modes is given by

Lcav(q, n,m) =

(
q +

n+m+ 1

π
· cos−1(

√
g1)

)
· c

2νnm
. (2.10)

*Not to be confused with the complex beam parameter q(z) introduced in Eq. 2.7 [93].
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The free spectral range, ∆νFSR = c
2Lcav

, is defined as the frequency separation
between two sequential (fundamental) longitudinal modes, i.e. qi and qi+1. The fre-
quency spacing between two adjacent transverse (higher-order) modes, qm and qm+1,
can be derived from Eq. 2.9:

∆νtrans =
∆νFSR
π

· cos−1

(√
1− Lcav

R

)
. (2.11)

From a simple rearranging, it follows that the radius of curvature of the curved mirror
is given by

R = Lcav ·

[
1− cos2

(
∆νtrans
∆νFSR

π

)]−1

. (2.12)

In other words, from Eq. 2.12 it is apparent that all the geometrical parameters of the
optical cavity can be derived by analysing the frequency spacing of the fundamental
and higher-order modes. This was experimentally demonstrated in Chapter 5.
For a stable Fabry-Perot cavity with arbitrary mirror geometry, the spot-size at the

mirror w and beam waist w0 can be calculated according to* [91, 93]

w2 =
λLcav

nπ
·
√

g2
g1(1− g1g2)

(2.13a)

w2
0 =

λLcav

nπ
·
√
g1g2(1− g1g2)

g1 + g2 − 2g1g2
. (2.13b)

For a plano-concave cavity, i.e. g2 = 1, Eq. 2.13 reduces to

w2 =
λR

nπ
·
(
Lcav

R
− 1

)− 1
2

(2.14)

w2
0 =

λ

nπ
·
(
LcavR− L2

cav

) 1
2

. (2.15)

A smaller beam waist implies tighter confinement of the optical field. The value
of w2

0 can be minimised by two means: minimising Lcav, with a suitable geometry
for coupling to emitters close to the planar mirror [77, 96–103] or by working in the
concentric geometry where Lcav → R. However, in the second case, as w2 → ∞
the cavity is prone to diffraction loss at the finite extent of the mirror [88, 104, 105].
Diffraction losses will be further discussed in Chapter 4.

Energy Stored in an Optical Cavity

So far, the geometrical parameters of the Fabry-Perot cavity have been outlined. In
the following section, the energy associated with the standing wave inside the cavity
will be described. In the following analysis, the two mirrors forming the Fabry-
Perot cavity have reflection- and transmission coefficients r1(2) and t1(2), respectively
where the subscript indicates mirror 1 or 2. Consider an electromagnetic wave with

*More potentially confusing notation. Here, and whenever n appears in connection with λ or c,
i.e. λ

n
and c

n
, n is the refractive index, not to be confused with the mode index.
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amplitude E0 incident from the left (mirror 1). The corresponding electric field inside
the cavity can be calculated from the infinite geometric series [93]

Ecav = E0t1 ·
∞∑
j=0

(
r1r2e

−iϕ
)
=

E0t1
1− r1r2e−iϕ

, (2.16)

where the round trip phase delay ϕ is given by Eq. 2.8. The circulating intensity can
then be calculated from [4, 93]

Icav = |Ecav|2 = I0
t21

(1− r1r2)
2
+ 2r1r2 sin

2
(
ϕ/2
) , (2.17)

which can be approximated with a Lorentzian centred around ϕ = q · 2π, where
∆ϕFSR = 2π is the free spectral range of the cavity. The full width at half max
(FWHM) of Eq. 2.17 is equal to

FWHM = 2ϕ1/2 =
2 (1− r1r2)√

r1r2
, (2.18)

where ϕ1/2 is the phase at half the maximum of Icav. The finesse, F , of the cavity is
defined as the ratio of the free spectral range of the cavity, ∆ϕFSR, to the FWHM of
the resonance, i.e. [93]

F =
∆ϕFSR
2ϕ1/2

=
π
√
r1r2

1− r1r2
. (2.19)

Alternatively, the finesse can be defined in terms of the cavity length Lcav and the
frequency ν of the electromagnetic field,

F =
∆LFSR

δLcav
=

λ

2δLcav
(2.20)

F =
∆νFSR
δν

=
c

2Lcavδν
, (2.21)

where δLcav and δν is the linewidth of the resonance in length and frequency, respec-
tively. Note, for clarity and concise notation, the factor n was dropped and will be
omitted for the remaining of this section*.
The finesse is a measure of the total round-trip losses in the cavity Ltot. By defining

the mirror transmission, T1 = |t1|2 and T2 = |t2|2, where ti = 1−|ri|2, and the round-
trip loss of the cavity Lcav, the finesse can be approximated by: [93, 106]

F =
2π

Ltot
, (2.22)

where Ltot = T1 + T2 + Lcav. In Chapter 4 the interplay between different loss-
mechanisms, such as scattering and absorption, were experimentally studied.
For a general resonator, the quality-factor (Q-factor) is defined as the ratio of the

energy stored to the rate of energy loss [93]

Q =
∧ ωE

dE/dt
= ωtcav, (2.23)

*For completeness c → c
n

and λ → λ
n
.
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Δ𝐿FSR

𝛿𝐿cav

𝑞0𝑞0 − 1

𝑞0 + 1

𝜆 = 636.19nm

𝛿𝜈

𝜈
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Figure 2.2.: Transmission as a function of cavity length for fixed λ = 636.2 nm. Several
fundamental- and higher-order cavity modes are resolved. The cavity modes are labelled
according to qn+m, where n + m = 0 for the fundamental modes. The spacing of the
fundamental modes is given by ∆LFSR = λ

2
. The inset shows a zoom of the fundamental

cavity mode q0 + 3.

where tcav = 2Lcav

cLtot
is the photon lifetime inside the cavity. Using Eq. 2.22, theQ-factor

can be expressed as

Q = ω · 2Lcav

cLtot
=

2Lcavν

c
· F =

2Lcav

λ
· F . (2.24)

From the last equality, the Q-factor can be interpreted as the finesse times the number
of half-waves between the two mirrors [85, 93]. Introducing τ = 2Lcav

c as the cavity
round-trip time combined with ω = 2πν and Eq. 2.22, leads to

Q = 2πνtcav =
2Lcavν

c
· F = ντF , (2.25)

from which the finesse can be interpreted as the relative energy loss per round-trip [85].
From Eq. 2.22 and Eq. 2.24, one obtains the relation between the Q-factor and the
total round-trip loss

Q =
4πLcav

λLtot
. (2.26)

Finally, combining Eq. 2.21 and Eq. 2.25 defines the Q-factor as the frequency reso-
lution of the cavity [93]

Q =
ν

δν
=

ω

δω
=
ω

κ
, (2.27)

where κ = 2π
τF is the photon loss-rate from the cavity.

To conclude this section, Fig. 2.2 shows the transmission of the cavity as a function
of increasing cavity length Lcav for fixed λ = 636.2 nm. Several fundamental and
higher-order cavity modes are resolved. The cavity modes are labelled according to
qn+m, where qn+m=0 are the fundamental modes. The spacing of the cavity modes is
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given by Eq. 2.10. The inset shows a zoom of the mode q0 + 3, illustrating how the
Q-factor is defined*.

2.1.2. Jaynes-Cummings Model

The Jaynes-Cummings model [107] describes the interaction between a single two-
level emitter and a quantised cavity mode of frequency ωc. The cavity is (close to)
resonance with the energy spacing ℏωa between the ground- and excited-state of the
emitter, denoted by |g⟩ and |e⟩, respectively [30, 108]. The Hamiltonian Ĥ describing
the dynamics can be broken down into three components, the emitter Ĥa, the cavity
Ĥc and the interaction ĤI, i.e. [109]

Ĥ = Ĥa + Ĥc + ĤI , (2.28)

where the bare emitter- and cavity terms are given by [110]

Ĥa =
1

2
· ℏωaσ̂z (2.29)

Ĥc = ℏωcâ
†â , (2.30)

where â† and â are the creation and annihilation operators of a cavity photon, re-
spectively, and σ̂z = |e⟩ ⟨e| − |g⟩ ⟨g|. Note that in this definition of the atomic term,
the level of zero energy is defined as halfway between the ground and excited state,
i.e. Ee = −Eg = 1

2ℏωa, consistent with Ref. [110].
In the dipole approximation, where the electric field is assumed to be spatially

uniform, on the grounds that the typical dimensions of the emitter being much smaller
than the wavelength of light, the interaction term is given by [110]

ĤI = −d̂ · Ê = ℏg
(
σ̂ + σ̂†

)
·
(
â+ â†

)
, (2.31)

where d̂ = degσ̂
† + dgeσ̂, Ê and g are the electric dipole operator, the electric field

operator and the coupling constant, respectively. Here σ̂ = |g⟩ ⟨e| and σ̂† = |e⟩ ⟨g|
are the atomic lowering- and raising operators. From this, the emitter-cavity cou-
pling strength can be defined as g = d·E

ℏ [30]. In the interaction picture, the time
dependence of Eq. 2.31 becomes [30]

ĤI(t) = ℏg
(
σ̂†eiωat + σ̂e−iωat

)
·
(
âe−iωct + â†eiωct

)
(2.32)

= ℏg
(
σ̂†âei(ωa−ωc)t + σ̂†â†ei(ωa+ωc)t + σ̂âe−i(ωa+ωc)t + σ̂â†e−i(ωa−ωc)t

)
.

(2.33)

Provided g ≪ ωa, ωc, the rotating wave approximation (RWA) can be applied. In
this approximation, the rapidly varying, energy non-conserving terms σ̂†â† and σ̂â
can be neglected compared to the slowly varying, resonant σ̂†â and σ̂â† terms, on

*Careful here, the Q-factor is more commonly defined in terms of frequency, i.e. Q = ν
δν

, rather

than Q = Lcav
δLcav

. The former definition will be used throughout this thesis.
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the grounds that they average out over the relevant timescales [111]. Consequently,
Eq. 2.33 reduces to [110]

ĤI = ℏg
(
σ̂†â+ σ̂â†

)
. (2.34)

Finally, combining Eq. 2.34 with Eq. 2.29 and Eq. 2.30 yields the Jaynes-Cummings
Hamiltonian [30]

ĤJC = ℏωaσ̂
†σ̂ + ℏωcâ

†â+ ℏg
(
σ̂†â+ σ̂â†

)
. (2.35)

In the Jaynes-Cummings model, for photon number |n⟩, the dynamics can be de-
scribed by considering separate two-level systems with basis vectors [110]

|ψ1⟩ = |e, n⟩ (2.36)

|ψ2⟩ = |g, n+ 1⟩ . (2.37)

The Jaynes-Cummings Hamiltonian can only couple the pair of states |g, n+ 1⟩ and
|e, n⟩ [109]. In other words, the emitter is excited from the ground-state |g⟩ to excited-
state |e⟩ by absorbing a cavity photon. Relaxation from state |e⟩ to state |g⟩ occurs
by emitting a cavity photon, i.e. [85, 110]

|e, n⟩ ↔ |g, n+ 1⟩ . (2.38)

In matrix form, the Jaynes-Cummings Hamiltonian can be expressed as [110]

Ĥ = ℏ ·

(
nωc +

ωa

2 g
√
n+ 1

g
√
n+ 1 (n+ 1)ωc − ωa

2

)
(2.39)

with eigenvalues

En,± =

(
n+

1

2

)
ℏωc ±

1

2
ℏ
√
∆2

ac + 4g2 (n+ 1) , (2.40)

and corresponding eigenvectors

|±, n⟩ = 1√
2

(
|e, n⟩ ± |g, n+ 1⟩

)
. (2.41)

Here, ∆ac = ωa−ωc is the emitter-cavity detuning and Ωn = 2g
√
(n+ 1) is the corre-

sponding Rabi frequency [30]. The eigenvalues of the Jaynes-Cummings Hamiltonian
are the so-called dressed states, where the energy spectrum resulting from Eq. 2.40 is
referred to as the Jaynes-Cummings ladder. Each step in the ladder consists of the
doublet |±, n⟩ with energy spacing ∆En = 2ℏg

√
n+ 1, which increases non-linearly

with the number of excitations n [30, 112].

To conclude this section, consider an emitter initially in the excited-state |e⟩ res-
onantly coupled to a cavity (i.e. ∆ac = 0) containing n photons. The initial state

|i⟩ = |e, n⟩ = (1, 0)
T
can only couple to the final state |f⟩ = |g, n+ 1⟩ = (0, 1)

T
. For
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zero detuning, Ei =
1
2ℏωc + nℏωc and Ef = − 1

2ℏωc + (n+ 1)ωc
*. The state vectors

can be expressed as
|Ψ⟩ = Ci(t) |i⟩+ Cf (t) |f⟩ , (2.42)

with Ci(0) = 1 and Cf (0) = 0 [110]. Solving the Schrödinger equation gives the
probability of finding the system in state |i⟩ (or |f⟩) after a time t

Pi(t) =
∣∣Ci(t)

∣∣2 = cos2(g
√
n+ 1 · t) (2.43)

Pf (t) =
∣∣Cf (t)

∣∣2 = sin2(g
√
n+ 1 · t) . (2.44)

In other words, the system undergoes Rabi oscillations between the state |e, n⟩ and
|g, n+ 1⟩ at frequency Ωn = 2g ·

√
n+ 1. For the case n = 0 the emitter undergoes

vacuum Rabi oscillations with frequency Ω0 = 2g. In this picture, the emitter un-
dergoes “oscillatory spontaneous emission” where a photon is being spontaneously
emitted before being reabsorbed [109].

2.1.3. Emitter-Cavity Coupling in the Presence of Damping

In the above section, the emitter-cavity dynamics were described in the absence of
any loss mechanism: a photon emitted into the cavity mode will undergo oscillatory
spontaneous emission for all eternity. However, in a real-life experiment, photons
leak out of the cavity at a rate κ due to the finite transmission of the end mirrors,
in addition to scattering and absorption from the mirrors. Furthermore, excitations
can be lost at a rate γ due to decay into all other channels than the cavity mode
(Fig. 2.3) [30].
In the presence of losses, the emitter-cavity dynamics can be described by intro-

ducing the density matrix ρ̂ = |ψ⟩ ⟨ψ| and the Lindblad Master equation

dρ̂

dt
=

1

iℏ

[
ĤJC, ρ̂

]
+
∑
i

(
L̂iρ̂L̂

†
i −

1

2
(L̂iL̂

†
i ρ̂+ ρ̂L̂†

i L̂i)

)
, (2.45)

where L̂1 =
√
2γσ̂ and L̂2 =

√
2κâ are the emitter- and cavity jump operators,

respectively [30, 109]. The dynamics are now determined by the relative ratio of g, κ
and γ. A key figure of merit is the cooperativity:� [58]

C =
∧ 4g2

κγ
. (2.46)

In simple words, the cooperativity gives the ratio of the desired coupling to the unde-
sired coupling. Broadly speaking, the value of C give rise to the two different regimes of
cavity QED: the strong coupling regime where g ≫ κ, γ and the weak coupling regime

*Recall that here, the zero energy level is defined halfway between the ground and excited-state
of the emitter [110]. By defining the emitter ground-state as the zero energy level allows the initial
and final energy to be expressed as Ei = ℏωa + nℏωc and Ef = (n+ 1)ωc [30]. For zero detuning,
ωa = ωc and consequently Ei = Ef .

�The exact definition of the cooperativity differ between different sources. The definition used

here follows from Ref. [58, 61, 113, 114]. The alternative definition, C = 2g2

κγ
, is also commonly found

in literature, such as Ref. [99, 115].
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Figure 2.3.: Schematic of a two-level emitter coupled to a single-mode of an optical cavity
with coupling rate g. Photons are lost from the cavity at rate κ due to scattering, absorption
or transmission through the end mirrors. Photon decay into non-cavity modes occurs at rate
γ.

where κ > g, γ. For C ≫ 1, the emitter-cavity coupling is stronger than decoherence
mechanisms, paving the way for deterministic emitter-photon interactions [30, 58, 61].

In the strong coupling regime, the coupling between the cavity and the emitter
is faster than the loss-rates. Therefore, a photon emitted can be re-absorbed by
the emitter before being lost from the cavity, leading to the observation of vacuum-
Rabi oscillations as described in Section 2.1.2 [30, 99]. Strong coupling, and the re-
sulting Jaynes-Cummings ladder, has been experimentally demonstrated on various
platforms, including but not limited to, superconducting resonators [111, 116, 117],
atoms [118], molecules [103] and self-assembled quantum dots coupled to a Fabry-Perot
microcavity [99].

In the weak coupling regime, the loss-rates are greater than the emitter-cavity
coupling. Therefore, a photon emitted in the cavity will be lost before being re-
absorbed, and no vacuum-Rabi oscillations can take place. However, the presence
of the cavity alters the photonic density of states, rendering spontaneous emission
in the weak coupling regime different from free-space spontaneous emission. The
experiments presented in this thesis were conducted in the weak coupling regime.

2.1.4. The Weak Coupling Regime – The Purcell Effect

An emitter coupled to a cavity will experience a different photonic environment com-
pared to an emitter in free-space. On resonance, the photonic density of states are
greatly enhanced, leading to enhanced emission rates and consequently a reduction
in the exited state lifetime [86]. This effect was first characterised by E. M Purcell in
1946, for which the effect now carries his name. For this work, Purcell was jointly
awarded the 1952 Nobel Prize in physics together with Felix Bloch “for their devel-
opment of new methods for nuclear magnetic precision measurements and discoveries
in connection therewith” [119]. For the far off-resonant case, however, the photonic
density of states is suppressed compared to free-space, leading to reduced emission
rates [120].

In the weak coupling regime, the light-matter interaction can be calculated using
perturbation theory; the emitter is perturbed by the vacuum electric-field Evac con-
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fined by the cavity. For an emitter in free-space, the transition rate from excited-state
|e⟩ to ground-state |g⟩ is governed by Fermi’s golden rule:

Γe→g =
2π

ℏ2
·
∣∣Me→g

∣∣2 · ρ(ω) , (2.47)

where Me→g = ⟨g| ĤP |e⟩ is the transition matrix element for perturbation Hamilto-

nian ĤP and ρ(ω) is the density of final states [112]. Using ĤP = −d⃗ · E⃗vac (Eq. 2.31),
the transition matrix element becomes

Me→g = −µ⃗eg · E⃗vac, (2.48)

where µ⃗eg = q ⟨g| d⃗ |e⟩ is the electric dipole moment for electric charge q*. The mag-
nitude of the vacuum electric field confined to volume V can be calculated from [112]∣∣∣E⃗vac

∣∣∣ =√ ℏω
2ϵ0ϵRV

. (2.49)

In vacuum, the photonic density of states is given by [112]

ρ(ω) =
ω2V

π2
·
(
c

n

)−3

. (2.50)

Combining the above, the free-space spontaneous emission rate is given by

Γ0 =
1

3
·
µ2
egω

3

πℏϵ0ϵR
·
(
c

n

)−3

, (2.51)

where the factor of 1
3 arises by averaging over all possible dipole orientations with

respect to the vacuum field [112].
Introducing a cavity with quality factor Q = ωc

δωc
(Eq. 2.27) confines the vacuum

fluctuations to volume V . For a single cavity mode, the density of states have to fulfil∫ ∞

0

ρ(ω)dω
!
= 1 , (2.52)

which is satisfied by a normalised Lorentzian of the form [112]

ρ(ω) =
2

πδωc
· δω2

c

4(ω − ωc)2 + δω2
c

=
2Q
πωc

· δω2
c

4(ω − ωc)2 + δω2
c

. (2.53)

A schematic comparison between the density of states in free-space (Eq. 2.50) to the
density of states in the presence of the cavity (Eq. 2.53) is show in Fig. 2.4.
For the emitter in the cavity, the transition matrix element becomes

M2
e→g = ξ2µ2

egE
2
vac, (2.54)

where

ξ =

∣∣∣d⃗ · E⃗vac

∣∣∣∣∣∣d⃗ ∣∣∣ ·∣∣∣E⃗vac

∣∣∣ = cos(θ) , (2.55)

*The dipole moment is related to the oscillator strength fij =
2mωji

3ℏ
∣∣µij

∣∣2 [112, 121].
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Figure 2.4.: Schematic comparing the density of states in free-space to that of an optical
cavity. For an optical emitter in free-space, the density of states scales with ω2 (red curve),
while in the cavity the density of states scales as a Lorentzian parametrised by the Q-factor
of the resonator (blue curve). Adapted and modified from Ref. [122].

is the vacuum field component along the electric dipole moment of the emitter [112].
As for free-space, the spontaneous emission into the cavity mode can be calculated
from Fermi’s golden rule (Eq. 2.47)

Γcav =
2Qµ2

eq

ℏϵ0ϵRV
· ξ2 · δω2

c

4(ω − ωc)2 + δω2
c

. (2.56)

For an emitter in the excited-state, a photon can be emitted either into the cavity
mode or to any free-space modes, with rates Γcav and Γ0, respectively. Thus, the
total emission rate Γtot is obtained from Eq. 2.51 and Eq. 2.56: [85]

Γtot = Γ0 + Γcav =

(
1 +

Γcav

Γ0

)
Γ0 = FPΓ0 , (2.57)

where FP is the Purcell factor. Intuitively, the value of the Purcell factor captures
the effect of the cavity: the transition rate is enhanced for FP > 1. Using ωc = 2πc

λc
,

the Purcell factor can be calculated from Eq. 2.51 and Eq. 2.56

FP = 1 +
3

4π2
· Q
V

(
λc
n

)3

· ξ2 · δω2
c

4(ω − ωc)2 + δω2
c

. (2.58)

For an emitter perfectly aligned with the cavity field on resonance (i.e ξ = 1 and
ω = ωc), the Purcell factor reduces to [85, 112]

FP = 1 +
3

4π2
· Q
V

·
(
λc
n

)3

. (2.59)

For an emitter located at position r⃗ = r⃗0, the effective mode volume V can be
calculated according to [81, 85, 123, 124]

V =

∫
V
ϵ0ϵR(r⃗)

∣∣∣E⃗vac(r⃗)
∣∣∣2 d3r⃗

ϵ0ϵR(r⃗0)
∣∣∣E⃗vac(r⃗0)

∣∣∣2 . (2.60)
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In Section 2.1.3 the emitter-cavity coupling strength g and the decay rates κ and γ
were introduced. Using the definitions [30, 112]

g =
µegEvac

ℏ
=

√
µ2
egω

2ℏϵoϵRV
(2.61)

κ = δωc =
ωc

Q
=

πc

LF
(2.62)

γ = Γ0 =
µ2
egω

3

3πℏϵ0ϵR
·
(
c

n

)−3

, (2.63)

the Purcell factor can be expressed as

FP = 1 +
4g2κ(

κ2 + 4(ω − ω2
c )
)
γ
, (2.64)

which, for zero detuning, reduces to

FP = 1 +
4g2

κγ
. (2.65)

From Eq. 2.46, the Purcell factor can be expressed in terms of the cooperativity pa-
rameter * [125]

FP = 1 + C . (2.66)

The Purcell effect depends solely on the cavity parameters, not on the properties
of the emitter itself. From Eq. 2.59, it is evident that a cavity with a high Q-factor
and a small mode volume is essential in order to achieve a high Purcell factor. For
short cavities, w ≈ w0 (Eq. 2.14 and Eq. 2.15) the mode volume can be approximated
by [85, 126]

V =
πw2

0Lcav

4
. (2.67)

Using this expression for V and Q = 2LcavF
λ/n (Eq. 2.24), Eq. 2.59 can be written as

FP = 1 +
3

2π

λ

n

2

︸ ︷︷ ︸
σabs

· F
π︸︷︷︸

# of
roundtrips

· 1
πw2

0/4︸ ︷︷ ︸
beam area

, (2.68)

where σabs is the absorption cross-section of the emitter [30, 85]. Intuitively, the cavity
increases the effective absorption cross-section of the emitter, consequently increasing
the light-matter interaction [30].
Finally, the ratio of photons emitted into the cavity mode to the number of photons

emitted into all modes, the so-called β-factor, is given by

β =
Γcav

Γcav + Γ0
. (2.69)

*Using the alternative definition of the cooperativity, C = 2g2

κγ
, one find FP = 1 + 2C.
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From the cavity QED parameters g, κ, γ, Γcav can be written as

Γcav =
4g2

κ
, (2.70)

from which the β-factor becomes

β =
4g2
/κγ

4g2
/κγ + 1

. (2.71)

Using Eq. 2.65 as the definition for the Purcell factor*, the β-factor can be expressed
as

β =
FP − 1

FP
. (2.72)

For large values of FP, β → 1, meaning that photons are preferentially emitted into
the cavity mode, coining the term “one-dimensional atoms” [127].

2.2. The Nitrogen-Vacancy Centre in Diamond

Diamond is a wide-bandgap semiconductor with a range of interesting physical prop-
erties. The high thermal conductivity and extreme hardness make diamond an at-
tractive material for industrial applications, ranging from heat management in high-
power electronics to drill bits for the petroleum industry. Furthermore, diamond is
also an attractive material for applications in quantum technology [128, 129]. The
wide bandgap of 5.5 eV renders diamond transparent from infrared to the ultravio-
let part of the spectrum [130–132]. The wide transparency window combined with
the possibility of chemical synthesis of a near spin-free lattice [133] makes diamond
a prominent solid-state host material for optically active qubits [134–136]. In other
words, diamond has more interesting properties than its use in engagement rings.
The diamond lattice hosts a variety of optically active defect centres [130, 137, 138].

Arguably the most prominent and most studied defect centre is the nitrogen-vacancy
(NV) centre. As the name suggests, the NV centre consists of a substitutional ni-
trogen atom and an adjacent vacant lattice site (see Fig. 2.5). The five unpaired
electrons associated with the surrounding atoms (three from carbon and two from
nitrogen) form the neutrally charged NV centre, NV0 [130]. A sixth electron can be
captured from a nearby donor, leading to the formation of the negatively charged
NV centre, NV− [139–142]. Of the two charge states�, NV− has the more interesting
physical properties [36], and has thus become the victim of extensive research, while
NV0 on the other hand, have largely been left alone [37, 145]. However, during optical
pumping, undesirable charge conversion from NV− to NV0 may occur, resulting in a
“dark” state [146, 147], thereby (potentially) requiring the use of charge state initiali-
sation protocols [148]. Therefore, an understanding of the spin- and orbital dynamics

*Using the alternative definition for the Purcell factor, FP = 4g2

κγ
, the β-factor reduces to the

perhaps more familiar β = FP
FP+1

[102].
�By careful surface treatment, the stabilisation of a positive charge state, NV+, has been demon-

strated [143]. Hydrogen termination of the surface creates a two-dimensional hole gas at the sur-
face, thus changing the Fermi level inside the diamond, consequently favouring the positive charge
state [144].
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Figure 2.5.: Electron configuration for the two charge states of the NV centre. (a) The
neutral charge state NV0 consists of 5 electrons: the substitutional nitrogen atom contributes
with two unpaired electrons while the three carbon atoms surrounding the vacancy each
contribute with one electron. (b) Capturing one electron from the environment leads to the
formation of the negatively charged NV centre, NV−.

of the neutral charge state may provide physical insight into this undesired charge
conversion [145, 149]. In this work, the NV− was the main focus. Therefore, for the
remainder of this thesis, the phrase “NV centre” will be referring to the negative
charge state (NV−), unless explicitly stated otherwise.

Owing to its highly coherent electron spin, the NV centre has attracted attention
as a promising workhorse in emerging quantum technologies, such as quantum sens-
ing [11, 150–154], quantum computation [129] and quantum communication [73]. In
the following sections, the key physical properties of the NV centre will be introduced.

2.2.1. Formation of NV Centres

Two ingredients are needed to form an NV centre; a nitrogen atom and a lattice
vacancy. In general, diamonds are classified by the concentration of residual nitrogen.
For diamonds with a high concentration of nitrogen, vacancies can be introduced into
the diamond by irradiation with high energy particles such as electrons, neutrons or
ions [155–158]. During a thermal annealing process (T ≳ 800◦C), these vacancies
become mobile and diffuse around inside the crystal [159]. During this diffusion pro-
cess, the vacancy can combine with a native nitrogen atom, forming an NV centre.
However, electric and magnetic noise from impurity atoms (mainly nitrogen) limits
the spin- and optical properties of the NV centre [133]. Therefore, a high-quality di-
amond with a low concentration of native nitrogen is favourable for many quantum
applications.

The growth of artificial diamonds using plasma-enhanced chemical vapour de-
position (PE-CVD) allows for precise control over the dopant concentration. In
CVD grown diamond, increased spin coherence times [160] and lifetime-limited op-
tical linewidth [161] have been observed. In ultra-pure diamond, the spin coherence
time is now limited by the nuclear spins of surrounding 13C isotopes (natural abun-
dance of ∼ 1.1%). Using isotropically enriched starting material, the abundance of
13C can be reduced, further increasing the spin coherence times [134]. However, 13C
is not only a source of noise, the nuclear spin can also be harnessed as a quantum
memory with storage time close to a minute [68, 69].
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In application, such as photonic cavities [77, 81] or in all-diamond scanning
probes [152], precise control over the lateral- and vertical positions of the NV cen-
tres are required [162]. In a high-purity diamond, the nitrogen concentration is low
and hence deterministic fabrication is challenging. A way to remedy this problem is
to introduce nitrogen via δ-doping, where nitrogen is introduced during the growth
process [132]. The depth of the NV centres is then controlled by the duration of the
subsequent overgrowth. After growth, vacancies can be introduced via irradiation,
where the use of a transmission electron microscope offers high spatial resolution [163].

Alternatively, nitrogen can be introduced into the diamond post-growth via nitro-
gen ion implantation [164]. In this process, the implanted ions serve both as a source
of nitrogen and as a means to create vacancies. During the subsequent annealing pro-
cess, the vacancies become mobile and can form NV centres with either implanted-
or the native nitrogen ions. In principle, spatial resolution can be achieved by mask-
ing and using focused ion-beam with implantation energy appropriate for the target
depth [165, 166]. However, the implanted ions lose energy in collisions with electrons
and atomic nuclei inside the lattice [167], potentially leaving a trail of damage along
the trajectory [168], where the biggest damage is done around the stopping point of
the ion [169]. Furthermore, collisions with nuclei lead to deviations from the designed
path, reducing the spatial accuracy. This effect, known as “straggling”, depends
on the kinetic energy of the implanted ions, where higher energy leads to a larger
statistical deviation [129, 164, 167].

By only implanting 15N ions (natural abundance of 0.37% [170]), two recent studies
correlated the optical coherence of the NV centre with the nitrogen isotope [168, 171].
The different nuclear spin of 14N (I = 1) and 15N (I = 1

2 ) leads to NV centres formed
by 14N and 15N experiencing different hyperfine interaction. Therefore, optically
detected magnetic resonance can be used to distinguish 14NV from 15NV [170]. In
the aforementioned studies, it was found that NV centres created from the implanted
15N showed much worse optical coherence compared to NV centres created from the
native 14N. These results indicate that ion implantation does leave a trail of hard-to-
anneal lattice damage, causing devastating effects on the NV centres. Therefore, a
less invasive technique to create deep NV centres is desirable.

Finally, recent experiments have demonstrated the possibility to create vacancies
using tightly focused, ultrafast laser pulses [172–179]. The mechanism behind the
vacancy creation is not yet crystal clear [180], but the highly non-linear nature of the
process confines the lattice damage to within the focal volume of the laser. Laser
writing relies on the native nitrogen present in the diamond. By using diamond
with a high nitrogen concentration, vacancy creation with a near-unity yield have
been demonstrated [173]. In the latter experiment, the thermal anneal was performed
using the same pulsed laser and the formation of NV centres was observed by real-
time monitoring the fluorescence [173]. Laser writing constitutes a promising method
for the deterministic creation of NV centres deep in the diamond, while preserving a
pristine crystalline environment [178]. However, the energy required to form vacancies
typically exceeds the energy threshold for surface damage [181, 182]. Therefore, at
the time of writing, the possibility of creating NV centres directly in thin structures
remains a challenge.
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Figure 2.6.: (a) Schematic of the nitrogen-vacancy (NV) centre in diamond. The defect
centre is formed by replacing two carbon atoms (black) by one substitutional nitrogen atom
(blue) and an adjacent lattice vacancy (white). The NV centre possesses C3v symmetry,
with symmetry axis along the ⟨111⟩ crystal axes. (b) The (room temperature) electronic
structure of the NV centre consists of a spin-triplet ground-state, 3A2, where the ms = 0
and ms = ±1 sub-levels are split by 2.87GHz. The spin-triplet exited state manifold, 3E,
lies 1.945 eV higher in energy, and is connected to the ground-states via optical transitions
with a zero-phonon line at λZPL ≃ 637 nm. There exist two spin-singlet states between the
two spin-triplet states. The highest energy singlet state, 1A1, can be populated via an inter-
system crossing, predominantly from the ms = ±1 sub-level of the 3E state. Decay from the
1A1 to the lower-lying 1E state occurs either optically with a zero-phonon line at 1024 nm
(1.190 eV) or via non-radiative transitions. From the long-lived spin-singlet state 1E1 the
population decays equally to the ms = 0 and ms ± 1 sub-levels of 3A2.

2.2.2. Electronic Level Structure

The NV centre is a point defect with C3v symmetry, with the symmetry axis lying
along the ⟨111⟩ crystal axes [37], as depicted schematically in Fig. 2.6 (a). In prin-
ciple, the electronic level structure can be calculated using first principle numerical
calculations [183–185]. However, the symmetry of the NV centre enables an accurate
description of the electronic level structure based on group theory [186]. The full group
theoretic calculations are beyond the scope of this thesis; only the main results are
outlined below. For more details, the reader is guided to Ref. [37, 41, 139, 142, 185–
190] and references therein.

The (room-temperature) electronic level structure of the NV centre is depicted in
Fig. 2.6 (b). From the aforementioned symmetry arguments, one finds that the NV
centre ground-state is an orbital singlet state denoted by 3A2. Here, A2 describe the
orbital symmetry of the wave function, while the superscript indicates a spin-triplet
(S=1), where the sub-levels are labelled ms = 0,±1 [140, 191]. At zero magnetic field,
the sub-level ms = 0 and the degenerate states ms = ±1 are split by the zero-field
splitting D = 2.88GHz, owing to spin-spin interactions [37, 192–194].

The ground-states are connections to the excited-state manifold via optical tran-
sitions with an energy difference of 1.945 eV (∼ 637 nm) [37]. Based on symmetry
arguments one finds that the excited-state is an orbital-doublet spin-triplet state de-
noted by 3E [37]. Here, the states Ex and Ey correspond to ms = 0, while the states
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Figure 2.7.: (a) Low-temperature electronic level structure of the NV centre, where the spin-
conserving optical transitions are indicated. Linearly polarised optical transitions connect
the ms = 0 ground-state to the Ex, Ey excited-states, while the ms = ±1 ground-states
are connected to the E1, E2, A1, A2 excited-states via circularly polarised light. (b) The
ground- and exited state of the NV centre lies deep inside the bandgap of the diamond,
allowing the NV centre to be depicted as a single trapped ion.

A1,2 and E1,2 correspond to ms = ±1 [188]. The presence of local strain affects the
excited-states more strongly than the ground-states [142, 195]. Strain parallel to the
NV axis causes a shift of all energy levels, and thus does not change the wave func-
tions or the corresponding dynamics. On the other hand, strain perpendicular to
the NV axis lifts the degeneracy of the orbital states Ex and Ey [124, 142, 192, 196].
Turning the argument around, measuring the relative energy spacing between the Ex

and Ey transitions yield a measurement on the local strain environment. This will be
discussed further in Chapter 7.
In addition, there exist two singlet states, 1A1 and 1E1, located between the two

spin-triplet states [197, 198]. These singlet states are separated by 1.190 eV (1024 nm),
with the state 1E1 being the lowest in energy [37]. From the exited state 3E, the
system can undergo a spin-state dependent inter-system crossing to the singlet state
1A1 [199, 200]. The probability to undergo this inter-system crossing is significantly
greater for the ms = ±1 spin state compared to ms = 0 [198, 201, 202]. Relaxation
from 1A1 to 1E1 can occur optically with a zero-phonon line at 1024 nm or via non-
radiative decay channels [197, 198]. From the long-lived 1E1, another inter-system
crossing brings the system back to the 3A2 ground-state, with similar decay rates
into the ms = 0 and ms = ±1 spin sub-levels [199]. The presence of the spin-state
dependent decay into the meta-stable shelving states plays a crucial role for optical
spin-initialisation and spin-readout, as will be discussed further in Section 2.2.5.
At cryogenic temperatures, the fine structure components of the 3E excited-state

can be resolved. As shown in Fig. 2.7 (a), each of the excited-state sub-levels can
be addressed from the ground-states via spin-conserving optical transitions* [37, 38].
However, at elevated temperatures, phonon transitions between the fine structure

*The selection rules can be derived based on group theory. For more details, the reader is directed
to Ref. [186] and the supplementary information for Ref. [41].
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sub-levels lead to a rapid averaging over the orbital components, without inducing a
spin-flip [32, 202, 203]. As a consequence, the room temperature fine structure of the
3E excited-state exhibit spin-singlet orbital properties (Fig. 2.6 (b)) [32, 37, 203].

As illustrated in Fig. 2.7 (b), the ground- and exited energy levels of the NV centre
lies deep inside the bandgap of the diamond [36]. Therefore, the NV centre can be
illustrated as a trapped-ion in a crystalline matrix [129, 204]. The NV centre exhibit
atom-like properties, including an optically addressable electron spin, which will be
discussed further in Section. 2.2.5. However, as will be discussed in Section 2.2.3 and
Section 2.2.4, the properties of the host crystal strongly influence the optical properties
of the NV centre.

2.2.3. Phonon Assisted Optical Transitions

The optical spectrum of the NV centre consists of a sharp zero-phonon line (ZPL)
located at λZPL ≃ 637 nm accompanied by a broad phonon sideband (PSB) stretching
up to λ ∼ 800 nm. The ZPL corresponds to the direct electronic transitions between
the 3E excited- and 3A2 ground-state, whereas the PSB originates due to electron-
phonon interactions (Fig. 2.8 (a)).
In a simplified model, the electron-phonon interaction can be described by the

Huang-Rhys model [205], where the quasi-continuum of vibrational modes are replaced
by single vibrational modes [37]. The coordinates of these modes Q are given with the
respect to the equilibrium coordinates of the nucleus, where Q0 = 0 is the equilibrium
coordinates of the nuclei in the electronic ground-state [187, 206, 207]. In Fig. 2.8 (b),
the vibrational modes are described by a quantum harmonic oscillator, where the
energy of the vibrational mode ν is given by Eν = ℏω

(
ν + 1

2

)
[37, 187]. The Huang-

Rhys theory assumes the two parabolas to be identical apart from a linear shift δQ
in the minimum of the parabola [185, 187].
Exciting the NV centre from the 3A2 ground-state to the 3E the excited-stated

changes the symmetry of the electronic orbitals. This change in electron orbitals
shuffles the charge environment, altering the equilibrium position of the nuclei by
δQ [37, 208, 209] (Fig. 2.8 (b)). In the Born-Oppenheimer approximation, the dy-
namics governing electrons and the nuclei can be treated separately, owing to the
much larger nuclear mass. Following this approximation, the Franck-Condon princi-
ple states that the electronic transitions occur on a time scale much faster than the
movement of the surrounding lattice [187, 206].
At room temperature, the thermal phonon population in diamond is low, owing

to a high Debye temperature ΘD ≃ 2200K [196, 210]. Therefore, an incident photon
promotes the NV centre from the vibrational ground-state (νg = 0) of the state 3A2

to a vibrationally excited-state νe of 3E with the same relative coordinates (i.e Q0).
From there, rapid non-radiative relaxation brings the NV centre to the 3E vibrational
ground-state (νe = 0), which displaces the nuclei to the new equilibrium coordinates
δQ [37]. This relaxation occurs via the emission of phonons [207], leading to a blue-
shifted phonon sideband in absorption [37].
Due to the difference in equilibrium coordinates (δQ), the overlap between the

vibrational occupancies of the two electronic states are non-zero. Therefore, radiative
transitions from νe = 0 to any of the νg states are allowed, from where phonon emission
leads to a rapid relaxation to the νg = 0 vibrational state of 3A2. The zero-phonon
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Figure 2.8.: Phonon-assisted optical transitions. (a) Energy level scheme including phonon
sidebands (PSBs). The zero-phonon line arises from direct transitions between the electronic
states 3A2 and 3E. Off-resonant excitations of the NV centre are possible via the creations
of phonons. Similarly, phonon-assisted emission results in a red-shifted phonon sideband.
(b) Huang-Rhys model describing the transition probabilities between ground- and excited-
states via phonons for a single vibrational mode. The nuclear equilibrium configuration in
the excited-state is displaced by δQ compared to the ground-state equilibrium configuration.
(c) The single peaks correspond to optical transitions between the vibronic modes νg ⇌ νe
for a single vibrational mode. The zero-phonon line corresponds to the coupling between
the νe = 0 and νg = 0 states. The envelopes depicting the PSBs arise due to the integration
over all possible vibrational modes. Adapted and modified from Ref. [85].

line arrise from coupling between νe = 0 and νg = 0 states, while transitions between
vibrational states with different occupancy result in red-shited photon emission [37].

In the Huang-Rhys model outlined so far, the vibrational spectrum is described by
single vibrational modes. In reality, to accurately describe the transition spectrum,
the superposition of all vibrational modes must be considered [32]. Coupling of modes
with different occupancy now results in a red-shifted (blue-shifted) continuous phonon
sideband in emission (absorption) (Fig. 2.8 (c)). The zero-phonon line is the result of
transitions between the νe = 0 and νg = 0 state for each mode.

The presence of the phonon-sideband carries certain advantages. Efficient off-
resonant excitation allows for optical spin initialisation and spin readout. Further-
more, the broad extent of the PSB allows for spectral filtering of the ZPL, while still
maintaining an appreciable countrate. Therefore, during resonant excitation of the
NV centre, the laser can be suppressed using a narrow-band filter, mitigating the need
for dark-field microscopy [211, 212]. On the downside, the Debye-Waller factor ξZPL

describing the fraction of photon emitted into the ZPL accounts for only ∼ 3% of the
total photon emission [81]. Since the photons emitted into the PSB are accompanied
by a rapidly dephasing phonon, only the photons emitted into the ZPL are useful
for entanglement protocols relying on the quantum interference of indistinguishable
photons [79, 213]. However, ξZPL can be enhanced by coupling the ZPL emission to
a resonant cavity [77, 81, 214].
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Figure 2.9.: Comparison between photoluminescence spectrum of an NV centre recorded
at room temperature (red) and at cryogenic temperature (blue). At 4K, the PL spectra
exhibit a sharp ZPL. The two spectra are normalised by integrating the intensity of the PSB
(λ = 680 · · · 785 nm).

2.2.4. Resonant Excitation and the Associated Dynamics

Entanglement protocols relying on two-photon quantum interference requires a high
degree of single-photon indistinguishability, quantified by the dip in a Hong-Ou-
Mandel (HOM) interference experiment [215]. Contrary to trapped atoms or ions,
emitters embedded in solid-state materials are strongly influenced by their local en-
vironment [216]. In the excited-state, the electron configuration of the NV centre
is significantly shifted towards the nitrogen atom, resulting in a permanent electric
dipole moment [184, 217–219]. Consequently, the NV centre is highly sensitive to
local variations in the strain or charge environment, manifested by inhomogeneous
broadening of the ZPL linewidth [188], compromising the observable two-photon in-
terference [79, 80, 213]. The NV centre exhibits an exited state lifetime of τ ≃ 12 ns,
which translates to a transform-limited linewidth of ∆ν ≃ 13MHz. However, the
measured linewidths are typically an order of magnitude larger, owing to the men-
tioned sensitivity to the crystalline environment. Measuring the optical linewidth will
be discussed at length in Chapter 7.

At room temperature, the zero-phonon line is broadened to several nanometers
due to interactions with thermal phonons [124]. However, at cryogenic temperatures
(T < 10K), the width of the zero-phonon line approaches the natural linewidth of
13MHz [220]. The ZPL linewidth increases rapidly with temperature, following a T 5

dependence [221]. This temperature dependence can be explained by phonon induced
population transfer between the Ex and Ey transitions (Jahn-Teller effect) [124, 221].
Furthermore, at elevated temperature, the well-defined selection rules for the linearly
polarised Ex and Ey breaks down due to phonon interactions [221]. As a consequence,
cryogenic temperatures are a requirement for quantum protocols relying on single-
photon indistinguishably from NV centres. Figure 2.9 shows the comparison of the
PL spectrum of a single NV centre acquired at room temperature (red) and cryogenic
temperature (blue). A significant reduction in the ZPL linewidth is observed at
cryogenic temperature.
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At cryogenic temperature, the NV centre can be resonantly excited using a laser
frequency matching the ZPL transition frequency (Fig. 2.10 (a)). However, the energy
splitting between the 3A2 ground-state and the 3E exited state is larger than the
energy spacing between the 3E exited state and the conduction band minimum [146].
Therefore, during resonant excitation, there is a probability for an electron to undergo
two-photon absorption from 3A2 to the conduction band, where an Auger process
further detaches the electron from the defect (Fig. 2.10 (b)) [222]. This ionisation
process corresponds to the charge-state conversion from NV− to NV0 [147, 223].
A similar mechanism can restore the charge-state from NV0 back to NV−. After

exciting an electron from the ground- to the exited state of NV0, a second excitation
can promote an electron from the valence band into the now vacant NV0 ground-
state (Fig. 2.10 (c) - (d)) [222]. Since the energy splitting between the ground- and

exited state are larger for NV0 (λNV0

ZPL = 575 nm, ENV0

ZPL = 2.156 eV) compared to NV−

(λNV−

ZPL = 637 nm, ENV−

ZPL = 1.945 eV), the laser frequency used to excite the NV− is
insufficient to excite NV0 (Fig. 2.10 (c)) [147]. Therefore, green light (λ = 532 nm) is
often used to restore the charge-state.
However, green illumination comes at a price: the energy provided by the green

laser is sufficiently large to excite impurities in the vicinity of the NV centre [224, 225],
thereby altering the local charge environment [226]. For example, the ground-state
of substitutional nitrogen impurities is found approximately 1.7 ∼ 2.2 eV below the
conduction band edge [227]; in other words comparable to the 3A2 → 3E energy
difference. As a consequence, excitation of the NV centre with green light simulta-
neously leads to photoionisation of nitrogen impurities inside the focal volume of the
excitation laser [161]. During this photoionisation process, the impurity is transferred
from a neutral to a positive charge state by giving one electron to the conduction
band [228].
As mentioned, the permanent electric dipole moment renders the NV centre tran-

sition frequency susceptible to changes in the surrounding charge environment on
two grounds. First, reconfiguration of the charge environment caused by photoioni-
sation of nearby charge traps shifts the ZPL frequency via the dc Stark effect, lead-
ing to the observation of spectral jumps [229, 230]. Observed over time, the ran-
dom spectral jumps leads to spectral diffusion and inhomogeneous broadening of the
ZPL [130, 194, 226, 230]. This inhomogeneous broadening compromises the spectral
stability required for two-photon interference protocols [220]. However, resonantly ex-
citing NV0 has been demonstrated to significantly mitigate spectral fluctuations of
NV− on the grounds that resonant excitation requires lower laser power [220, 222].
Second, the sensitivity of the local environment leads to different NV centres having

slightly different ZPL frequencies [162], thereby limiting the achievable two-photon in-
terference from spatially separated NV centres. However, the NV centres sensitivity
to electric field allows for controllably tuning of the ZPL frequency via the Stark
effect [42, 161, 217, 227]. An externally applied electric field affects the NV centre
similar to strain (see Section 2.2.2). A longitudinal applied electric field causes an
equal, linear shift of all energy levels, while a transverse electric field split the orbitals
into two branches, where the energy difference is proportional to the applied electric
field [161, 231]. Stark tuning of the relative ZPL frequency of remote NV centres is a
key requirement to achievable two-photon quantum interference from separated NV
centres [80], where electrical contacts on the diamond surface can be used to apply
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Figure 2.10.: Photoionisation of the NV centre under resonant excitation. (a) The NV− can
be excited by the absorption of one red photon. (b)When in the excited-state, the absorption
of an additional red photon transfers the excited electron to the conduction band, creating
NV0. The NV centre ends up in the ground-state of NV0 either directly after the ionisation or
via fast decay from the NV0 excited-state. (c) Recovery of the negative charge state requires
excitation and subsequent ionisation of NV0. A photon resonant with NV− has insufficient
energy to excite NV0. (d) A yellow photon resonantly excites NV0. When NV0 is in the
excited-state, a second yellow photon can promote an additional electron from the valence
band to the ground-state, and thus convert NV0 back to NV−. Photoionisation of NV0 is
also possible using off-resonant green light. Adapted and modified from Ref. [147, 235].

the required electric field [161, 227]. By continuously monitoring the ZPL transition
frequency, the spectral fluctuations can be compensated for by the use of a fast feed-
back loop [217, 231]. Finally, at least in principle, the spectral fluctuations induced
by the repump laser can be combated by actively stabilising the charge environment,
in a similar fashion to quantum dots [232–234].

2.2.5. Optical Spin Initialisation, Manipulation and Readout

Diamond is an excellent host for long-lived spin qubits on at least three grounds. First,
the diamond lattice is mostly composed of spinless 12C atoms (natural abundance of
∼ 98.9%) [134], thus suppressing magnetic noise. Furthermore, the concentration of
the noisy 13C (I = 1

2 ) nuclear spins can be further reduced in isotopically purified
artificial diamonds, and consequently quenching the hyperfine interaction between
the host nuclei and the electron spin [133, 134]. Second, the spin-orbit interaction is
weak in diamond [236]. Finally, the strong and short covalent carbon-carbon bonds
result in a high Debye temperature (ΘD ≃ 2200K [196, 210]). As a consequence, the
phonon population is low, even at room temperature, thus suppressing spin-lattice
relaxation (long T1) [32, 129].

As mentioned in Section 2.2.2, the NV centre ground-state forms a spin-triplet state
(S = 1), where the sublevels ms = 0 and ms = ±1 can be addressed using microwave
fields [36, 162]. Furthermore, fast driving of the electron spin using microwave fields
allows for dynamical decoupling sequences, further prolonging the spin coherence
time [204]. A detailed discussion of spin control and spin readout techniques is beyond
the scope of this thesis; the keen reader is referred to Ref. [62, 129, 162, 191, 204, 237,
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238] and references therein. Instead, this section will focus on the possibility of all-
optical spin initialisation and readout [38].

The 3A2 ground- and the 3E excited-state manifolds are connected via spin-
conserving optical transitions (Fig. 2.7 (a)) [124]. While the two ms = 0 spin-states
form excellent cyclic transitions, there is a significant probability to undergo the
inter-system crossing (ISC) into the singlet states from the ms = ±1 sublevels of 3E
(compare Section 2.2.2) [141, 191]. The lifetime of the lowest-lying singlet state (1E)
has been experimentally measured to be on the order of several hundred nanosec-
onds [197, 198]. Therefore, during off-resonant pumping, the ISC leads to shelving of
the population, resulting in spin-state dependent rate of photoluminescence [198]. If
the initial spin population is in the ms = ±1 state, the NV centre will decay into the
singlet states after a few optical cycles, and photon emission into the PSB will stop. If
however, the initial spin population is in the ms = 0 state, the cycling optical transi-
tions will persist and the photon emission into the PSB will remain constant [238]. To
that end, the contrast in photoluminescence constitute a measure on the NV centre
spin: bright photoluminescence corresponds to ms = 0 while weak photoluminescence
corresponds to ms = ±1. Furthermore, continuous off-resonant pumping polarises the
spin into the ms = 0 state [195, 239]. The spin-selective ISC depopulates the ms = ±1
states and spread the population evenly among all spin states [191, 199].

At room temperature, the spin-state of the NV centre can be read out via spin-
to-charge conversion, where the spin-state is mapped onto a charge-state distribu-
tion [240, 241]. Illuminating the NV centre with 594 nm will excite NV−, while the
neutral charge state remains untouched (compare Section 2.2.4). A second laser pulse
at 638 nm can further ionise the excited-state manifold of NV−. If the initial spin
state was ms = 0, NV− will be ionised to NV0 (by the pulse at 594 nm). How-
ever, if the initial spin state was ms = 1, the system can decay to the singlet states
via the ISC, which is protected from ionisation (by the 638 nm pulse), and the NV
centre will remain in the negative charge state. Now the spin-state is mapped onto
the charge-state, which can be determined by applying a new 594 nm laser pulse. If
photoluminescence is observed, the charge state must have been NV− and hence the
initial spin-state must have been ms = ±1. If no photoluminescence is observed, the
charge state must have been NV0 and hence the initial spin-state must have been
ms = 0.

At cryogenic temperatures, the individual Ex,y, E1,2 and A1,2 transitions can be
resolved within the ZPL (Fig. 2.7 (a)) [38, 242]. The Ex,y transitions couples the spin-
states ms = 0 with orthogonal linearly polarised light, while the E1,2 and A1,2 transi-
tions connect the ms = ±1 spin-states via circularly polarised light [41, 190]. Conse-
quently, a careful choice of polarisation allows for all-optical control of the NV centre
spin [38]. Furthermore, spin-selective resonant excitation allows for spin-initialisation
and spin-readout with higher fidelity compared to the above-mentioned off-resonant
technique [194, 242]. Resonant spin-initialisation is performed by resonantly driving
one of the spin transitions continuously. Owing to a slight spin-mixing in the exited
state, this driving pumps the spin into the other spin-state [38, 243]. Resonant spin
initialisation into the ms = 0 has been demonstrated to reduce the preparation error
to 0.3% compared to 11% for off-resonant initialisation [242]. From the ms = 0 spin
state, σ± polarised light transfers the spin into the desired ms = ±1 state as depicted
in Fig. 2.7 (a). The spin state can be read out by resonantly driving the Ex, where
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the presence or absence of photoluminescence corresponds to ms = 0 and ms = ±1,
respectively [242]. Using the resonant readout scheme, single-shot spin readout with a
fidelity of 92.3% has been experientially demonstrated. Single-shot readout requires
sufficiently large countrates to distinguish ms = 0 from the ms = ±1 spin projection,
requiring the use of solid-immersion lenses [242, 244] or optical cavities [245].
Finally, combining resonant excitation with spin-to-charge conversion allows for

high-fidelity (> 95%) spin readout [244, 246]. In this scheme, a laser resonant with,
say, the Ex transition excites the ms = 0 spin projection, while leaving the ms = ±1
projections untouched. A second laser further ionises the exited state, resulting in the
conversion to the neutral charge state. The charge state can subsequently be read out
using an orange laser (λ = 594 nm), where detected photoluminescence corresponds
to NV−, and thus ms = ±1 [240]. Alternatively, the charge state can be read out
using the resonant red laser, where spin mixing can be combated by continuously
applying a microwave field [244].

2.2.6. Optically Detected Magnetic Resonance and Magnetic Field
Sensing

The NV centre is an excellent magnetic field sensor, offering high spatial resolution
even at room temperature [153, 247]. The spin-state dependent optical transitions
highlighted in Fig. 2.6 (b) lie at the heart of magnetic field sensing using NV centres.
The presence of an external magnetic field B lifts the degeneracy of the ms = ±1
ground-states according to the Zeeman effect [153]. This energy splitting can be cal-
culated according to ∆E = 2γNVBNV, where γNV = 28GHzT−1 is the gyromagnetic
ratio of the NV centre spin and BNV is the magnetic field projected along the NV
axis [153].
Under continuous off-resonant excitation, the NV electron spin will be initialised in

the ms = 0 ground-state. From this state, the NV centre undergoes cyclic transitions
to the ms = 0 excited-state and back, resulting in a constant rate of photolumi-
nescence predominantly emitted into the PSB (compare Section 2.2.5). Applying an
external microwave field can drive the electron spin between the ms = 0 and ms = ±1
sub-levels, provided the frequency of the microwave field matches the energy splitting.
Under green illumination, the NV can be excited from the ms = ±1 ground-state to
the excited-state with the same spin projection. From the ms = ±1 excited-state,
the inter-system crossing brings the NV centre into the singlet state (compare Sec-
tion 2.2.2), causing a dip in the observed photoluminescence [198]. This technique
allows for optically detected magnetic resonance (ODMR) [248].
In the ODMR protocol, continuous green illumination initialises the NV centre spin

in the ms = 0 ground-state. Furthermore, an external microwave field with frequency
ωMW can be applied to the NV centre, while continuously recording the photolumines-
cence. Sweeping the frequency ωMW into resonance with the ms = 0 ⇌ −1 will cause
a population transfer between these two states. From the aforementioned dynamics,
this leads to a dip in the observed photoluminescence [198]. Similarly sweeping ωMW

into resonance with ms = 0 ⇌ +1 will cause another dip in observed photolumines-
cence. Analysing the frequency spacing between the dip in photoluminescence caused
by the ms = 0 ⇌ −1 and ms = 0 ⇌ +1 transitions gives a measure on the magnitude
of the magnetic field BNV projected along the NV axis.
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In addition to magnetic field sensing, ODMR can be used to resolve the hyperfine
interaction between the electron- and nuclear spins. For example, the difference in
nuclear spins between 14N (I = 1) and 15N (I = 1

2 ) results in the observation of
three and two dips in the ODMR spectra, respectively [170]. Therefore, analysing the
ODMR spectra from NV centres allows for distinguishing 14NV and 15NV [168, 171]
as well as identifying coupling to nearby 13C nuclei [67, 73, 249] or substitutional
nitrogen atoms [250].

2.3. Other Colour Centres

The NV centre has attracted attention as a possible qubit in a quantum network,
owing to its outstanding spin coherence. However, scalability to more than a few net-
work nodes is limited by the detection rate of coherent photons [43, 66]. The relatively
long radiative lifetime of ∼ 12 ns combined with a Debye-Waller factor of only ∼ 3%
limits the achievable flux of coherent photons [77]. In principle, these limitations can
be combated by coupling to an optical cavity [81, 84, 251]. However, the fabrication
of photonic structures in diamond involves invasive fabrication, prone to deteriorate
the optical coherence of the NV centres [81, 82]. As discussed in Section 2.2.4, the per-
manent electric dipole moment renders the NV centre sensitive to strain- and charge
fluctuations in the local environment [216, 217]. A fluctuating charge environment
leads to inhomogeneous broadening of the zero-phonon linewidth [188], consequently
compromising the achievable two-photon quantum interference [79, 80]. These lim-
itations have motivated the search for new colour centres [32, 219, 252–254]. The
following sections will briefly present a selected few of these emerging colour centres.
Here, the focus lies on colour centres in diamond and silicon carbide; host materials
that are compatible with the Fabry-Perot cavity presented in this thesis [77, 255].

2.3.1. Group-IV Split-Vacancies in Diamond

The diamond lattice is known to host a multitude of colour centres [61, 130, 138]. The
group-IV split-vacancies in diamond [256–258] have attracted significant attention on
the grounds of bright photoluminescence [259, 260], comparatively large Debye-Waller
factors [131, 261] and low spectral diffusion [262–264]. Fig. 2.11 shows the different
structures of (a) the NV centre and (b) the group-IV defects. Contrary to the nitrogen
in the NV centre, the group-IV atoms (Si, Ge, Sn or Pb) are too large to occupy a
carbon site [219]. Instead, the defect assumes a split-vacancy configuration along the
⟨111⟩ crystal direction, where the group-IV atom moves to an interstitial site flanked
by a vacancy on either side [265]. The resulting defect possesses D3d symmetry, where
the atom lies at the inversion point [256, 266]. The inversion symmetry of the colour
centre carries the important implication that the permanent electric dipole moment
is vanishingly small, rendering the defects insensitive to linear Stark shifts [256, 267,
268], thus protecting the ZPL transition frequency against charge fluctuations in the
local environment [269].

The electronic configuration of the group-IV split-vacancies consists of 10 electrons:
six from the dangling bonds associated with the two vacancies and four electrons
associated with the group-IV atom [256]. Similar to the NV centre, the capturing of an
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Figure 2.11.: Comparison of the structure of (a) the NV centre (C3v symmetry) and (b)
a group-IV split-vacancy defect, where the atom X is one of the group-IV atoms (Si, Ge,
Sn, Pb). The impurity atom is too large to occupy a carbon site, and therefore assumes an
interstitial position flanked by two vacancies, resulting in a D3d symmetry. (c) The resulting
energy structure consists of orbital doublet ground- and excited-states denoted by 2Eg and
2Eu, respectively. Spin-orbit interaction and Jahn-Teller effect split the orbital states by ∆GS

and ∆ES, whose magnitude depends on the atomic number of the impurity atom X. Note
that the relative spacing of the energy levels is not to scale, λZPL ≫ ∆GS,∆ES. Adapted
and modified from Ref. [272].

electron from the environment leads to the formation of the negatively charged group-
IV split-vacancies (XV−). The resulting electronic level structure is composed of an
2Eg ground- and 2Eu excited-state [256, 270], as shown schematically in Fig. 2.11 (c).
In a low-strain environment, the ground- and excited-states form orbital doublets with
degenerate spin states (S = 1

2 ) [194, 271]. A combination of spin-orbit coupling and
dynamic Jahn-Teller effect splits the orbital states by ∆GS and ∆ES for the ground-
and excited-state, respectively [61, 256, 258]. The magnitude of ∆GS plays a crucial
role for the spin-coherence times for the XV− centres, and is found to increase with
the increasing atomic number of the impurity atom [258, 261]. This dependency is
attributed to enhanced spin-orbit interaction for the heavier elements [256].

The Silicon-Vacancy Centre

The silicon-vacancy (SiV) centre is arguably the most studied of the group-IV split-
vacancies. Similarly to the NV centre, the SiV centre can be formed during CVD
growth [269, 273], by laser writing [274], or by ion implantation [257, 272, 275, 276].
The SiV− exhibits a sharp ZPL located at λZPL = 738 nm with a radiative lifetime
τ ≃ 1− 3 ns, a Debye-Waller factor ξ0 ∼ 70% and a quantum efficiency ηQ ∼ 0.1 [32,
61, 194, 259, 277, 278]. Due to the insensitivity to external fields, SiV centres with
narrow optical linewidths have been reported, even in photonic structures [114, 279].
At 4Kelvin, the spin coherence of the SiV centre is limited to ∼ 100 ns [280] by the

small ground-state splitting of ∆GS ∼ 48GHz [281, 282], caused by phonon scattering
between the two orbital branches [258]. Suppression of this phonon interaction is
possible by cooling the sample down to millikelvin temperatures using a dilution
refrigerator *, where spin coherence times of ∼ 10ms have been demonstrated [280].

*Increasing the ground-state splitting ∆GS is also possible via strain engineering [283, 284].
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For temperatures T < 100mK, the SiV is polarised into the lowest orbital ground-
state. Applying a magnetic field subsequently lifts the degeneracy of the spin-states
(ms = ± 1

2 ), allowing for coherent optical spin control [285–287]. The excellent spin-
and optical properties combined with coupling to nearby 13C memory spins [288, 289]
establishes the SiV centre as an unrivalled node-candidate in a quantum network,
although only at millikelvin temperatures [114, 286, 290, 291].
For completeness, by careful control of the defect concentration and surface ter-

mination of the diamond [270], stabilisation of the neutral charge state, SiV0, has
been demonstrated [292]. The neutral SiV possesses a spin S = 1 ground-state,
with λZPL = 946 nm, a Debye-Waller factor of ξ0 ∼ 90% [269, 293] and lifetime
τ ≃ 1.3 ns [292]. Similarly to the NV centre, the ground-state spin S = 1 results in a
3A2g ground-state [293]. Contrary to SiV−, the ground-state spin S = 1 of SiV0 does
not couple strongly to phonons, leading to long spin coherence times (T2 ∼ 100ms)
at cryogenic temperatures [32, 257, 292]. Like SiV−, the inversion symmetry ren-
ders SiV0 insensitive to charge fluctuations in the environment. The scalability of
experiments using SiV0 is limited by the careful Fermi pinning required to stabilise
the charge state [292]. For a more extensive review of SiV0, the reader is guided to
Ref. [32, 219, 256, 257, 269] and references therein.

The Germanium-Vacancy Centre in Diamond

The limited spin coherence of the SiV− motivates the investigation into heavier group-
IV vacancy centres. Like the NV and the SiV, germanium-vacancy (GeV) centres can
be created either during growth or via ion implantation and subsequent thermal treat-
ment [294, 295]. The GeV exhibits a radiative lifetime of τ ≃ 6 ns, and the PL spec-
trum shows a ZPL at λZPL = 602 nm accompanied by a phonon sideband [296, 297].
Furthermore, the GeV has a large Debye-Waller factor of ξ0 ∼ 0.6 and a quantum
efficiency of ηQ ≳ 0.4 [61, 296]. The larger mass of the germanium atom compared to
silicon results in an increased ground-state splitting, ∆GS = 150−172GHz, favouring
longer spin coherence times [295, 296].

The Tin-Vacancy Centre in Diamond

The tin-vacancy centre (SnV) can be created by ion implantation, and subsequent
thermal treatment [298]. The increasingly large size of the impurity atom leads
to more hard-to-anneal lattice damage, requiring longer annealing steps at higher
temperatures [261]. Nevertheless, SnV centres with transform-limited linewidths
(≃ 30MHz) have been reported in bulk diamond [260], nanopillars [263] and in waveg-
uides [264]. SnV centres can also be created via shallow ion implantation, and subse-
quent diamond overgrowth [299]. This latter technique allows for the creation of deep
SnV centres, without degradation of the crystalline environment caused by high-
energy ion implantation.

The SnV exhibits a radiative lifetime of τ ≃ 5− 6 ns with a ZPL located at
λZPL ≃ 620 nm [260, 261, 300]. Contrary to SiV and GeV, only the C and D transi-
tions are observable at cryogenic temperatures (see Fig. 2.11 (c)). The thermal pop-
ulation of the upper excited-state increases with temperature, consequently, the A
and B transitions can only be observed at elevated temperatures [260]. For SnV, the
ground-state splitting, ∆GS ≃ 850GHz [263], is a factor of ∼ 17 larger than for the
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SiV, potentially allowing for coherent spin control at liquid helium temperatures. The
large ground-state splitting, combined with the comparatively large Debye-Waller fac-
tor of ξ0 ≃ 0.60 [260] and a large quantum efficiency of ηQ ∼ 0.8 [261], establishes the
SnV centre as a promising node candidate in a distributed quantum network [300].

The Lead-Vacancy Centre in Diamond

Lead is the heaviest stable atom in the periodic table, and the heaviest naturally
occurring group-IV element. As for the aforementioned group-IV split-vacancies*,
the lead-vacancy (PbV) centres can be formed by ion implantation and subsequent
thermal annealing [301, 302]. The large size of the lead ion creates a large number of
vacancies, and evidence suggests that large strain is present in the crystal even after
thermal treatment [301].
The PbV exhibits an excited-state lifetime of τ ≳ 3 ns [302] with a ZPL centred

around λZPL ≃ 520 nm [301]. At the time of writing, the PbV is still in its infancy: the
Debye-Waller factor and the quantum efficiency remain to be measured [61]. Similarly
to the SnV, only the C and D transitions are observable at cryogenic temperatures.
Finally, owing to the large atomic number of lead, the PbV centre exhibits a large
ground-state splitting of ∆GS = 4.2 − 5.7THz, potentially offering ideal conditions
for long spin coherence times [301, 302]. With the prospects of long spin coherence
combined with the inversion symmetry, the PbV centre has potential as a leading
node candidate in a quantum network.

Summary and Comparison

To summarise, the group-IV split-vacancies possess mirror symmetry (Fig. 2.11 (b))
and are consequently less susceptible to spectral wandering. Furthermore, the sym-
metry results in an increased Debye-Waller factor compared to the NV centre. The
spin coherence of the group-IV split-vacancies is limited by the ground-state spin
splitting ∆GS. The spin coherence can be extended by either cooling down to mil-
likelvin temperatures in a dilution refrigerator, or by strain engineering [262, 283].
Furthermore, increasing the size of the impurity atom increases ∆GS on the ground
of a larger spin-orbit interaction [258]. Table. 2.1 summarises and compares the key
physical properties of the defect centres discussed above.

2.3.2. Defects in Silicon Carbide

Despite recent advances in synthetic growth of diamond [303–305] and up-scaling of
diamond photonics [306], wafer-scale production of artificial diamond remains a great
challenge [7, 307, 308]. The limitation in scalability motivates the search for other host
materials, exhibiting diamond-like properties such as wide bandgap, low concentration
of nuclear spins and a large Debye temperature [32, 140, 309, 310]. All these criteria
are satisfied for silicon carbide.
Silicon carbide (SiC) is the offspring of a happy marriage between silicon and di-

amond�. The SiC structure is composed of silicon and carbon atoms in a hexagonal

*First-principle calculations predicts a split-vacancy configuration for the PbV [256, 301]. How-
ever, at the time of writing, the configuration is yet to be experimentally verified [61].

�Silicon carbride.
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Table 2.1.: Summary and comparison of the key properties of the NV centre and the
group-IV split-vacancies in diamond.

Colour
Centre

λZPL
Debye-Waller

Factor
Lifetime

Quantum
Efficiency

∆GS Θ = ℏ∆GS

kB

NV− 637 nm 0.03 ≃ 12 ns 0.7 N/A N/A

SiV− 738 nm 0.7 ≃ 1− 3 ns 0.1 ∼ 48GHz 2.3K

SiV0 946 nm 0.9 ∼ 1.3 ns – N/A N/A

GeV− 602 nm 0.6 ≃ 6 ns ≳ 0.4
150−

172GHz
7.2−
8.3K

SnV− 620 nm 0.6 ≃ 5− 6 ns ≳ 0.8 ≃ 850GHz ≃ 41K

PbV− 520 nm – ≳ 3 ns –
4.2−

5.7THz
202−
274K

lattice. The different stacking of the hexagons results in numerous polytypes of SiC
with different properties and defect centres [32]. SiC, like diamond, is a wide bandgap
semiconductor (3-4 eV, depending on the polytype [216, 311]), and the spin-free lat-
tice provides ideal conditions for long-lived spin qubits [311–313]. Furthermore, SiC
also inherits important features from silicon [314]: SiC is an established material in
the semiconductor industry [39, 315]. The wide bandgap makes SiC attractive for the
use in high-power electronics, and wafer-scale growth of SiC is readily available [32].
Controlled doping of SiC allows for the creation of diode structures [311], providing a
means to combat spectral diffusion by controlling the charge environment [316].

SiC hosts a variety of optically active defect centres. For an overview, the reader is
directed to Ref. [32, 39, 311, 315, 317–319] and references therein. Like in diamond,
vacancies in SiC can be created by irradiation of electrons or ions followed by thermal
annealing [320], where annealing at different temperatures stabilises different defect
centres [316, 318]. Curiously, similarly to the NV centre (compare Section 2.2.1), laser
writing of defects in SiC has been demonstrated [321].

One prominent example of a defect centre in SiC is the neutral divacancy, VSiVC,
composed of adjacent silicon and carbon vacancies [319]. The VSiVC is a six elec-
tron complex with C3v symmetry and spin S = 1, consequently exhibiting similar
optical- and electronic properties to the NV centre (compare Section 2.2.2) [311, 322].
The VSiVC has a comparable excited-state lifetime to the NV centre [323] and a
slightly larger Debye-Waller factor of ξ0 ∼ 0.05 − 0.1 depending on the polytype of
SiC [311, 318, 319]. The key advantage of VSiVC compared to the NV centre is the
ZPL transmission at λZPL ∼ 1100 nm, significantly suppressing absorption in optical
fibres [311]. Despite the long lifetime and low Debye-Waller factor, embedding VSiVC

in an optical cavity constitutes a promising platform for an efficient spin-photon in-
terface at close-to telecom wavelengths [319, 324].
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2.3.3. Rare-Earth Ions in Crystalline Hosts

A final class of emitters to be (very briefly) discussed are rare-earth ions* in crystalline
hosts�. For these ions, the optical transitions occur between the partially filled 4f
shells, shielded from the environment by the outer shells [325–327]. As a consequence,
the rare-earth ions exhibit narrow optical transitions and high spectral stability [34]
accompanied by long spin-coherence times [328, 329]. In free-space, the 4f -4f tran-
sitions are parity forbidden. However, interactions with the crystal field allow for
weak optical transitions with a long radiative lifetime [325]. Due to the long radiative
lifetime and subsequent faint PL [330], addressing single ions have proven to be an out-
standing challenge [331]. However, with the use of nanophotonic resonators, control
and readout of single ions have been demonstrated [331–333]. An added advantage of
erbium ions is the emission in the telecom band, potentially enabling long-distance
quantum-communication without the need of frequency conversion [101, 330].

2.4. Raman Scattering

In 1928, using focused sun rays and colour filters, the Indian physicist Sir Chan-
drasekhara Venkata Raman investigated the scattering of light from various liquids
and vapours [334]. In addition to scattering of light with the same frequency as the
incident light (unmodified scattering), Raman discovered that a small portion of the
scattered light was of a different frequency (modified scattering). Contrary to photo-
luminescence, the frequency of the scattered light ν was found to be directly related to
the frequency of the incident light νi, i.e ν = νi±νR, where νR is a material-dependent
constant [335]. Raman was awarded the 1930 Nobel Prize in Physics “for his work on
the scattering of light and for the discovery of the effect named after him” [336].
More formally, Raman scattering is the inelastic scattering of light via the creation

(Stokes) or annihilation (Anti-Stokes) of an optical phonon [337]. The first-order
Raman (Stokes) scattering process can be modelled by a three-level atom-like system
(Fig. 2.12 (a)) involving a ground-state |1⟩, a virtual excited state |2⟩ and a meta-stable
state |3⟩. In a single particle picture, the ground-state population can be excited to
|2⟩ by absorbing an incoming photon with energy ℏω1. The excited-state population
can decay either directly down to |1⟩ by emitting a photon with energy ℏω1 (elastic
Rayleigh scattering, Fig. 2.12 (b)), or via |3⟩ by emitting a red-shifted photon with
energy ℏω2 accompanied by an optical phonon of fixed energy ℏΩ (Stokes scattering).
Conservation of energy requires ω1 = ω2 +Ω.

Anti-Stokes scattering is the reverse process, where the ground-state population
is excited to state |2⟩ via |3⟩ by the absorption of an optical phonon with energy
ℏΩ and an incoming photon with energy ℏω2. The population then relaxes down to
state |1⟩ by emitting a blue-shifted photon with energy ℏω1 (Fig. 2.12 (c)). However,
as anti-Stokes scattering requires the presence of phonons in the material; the anti-
Stokes scattering probability is highly temperature dependent, and decreases with
decreasing temperature [206]. Consequently, comparing the intensity of the Stokes
peak (IS) to that of the anti-Stokes peak (IAS) yields a non-contact measurement of

*The lanthanide.
�See Ref. [325] for a review.
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Figure 2.12.: (a) Schematic of Stokes scattering, where a pump photon is converted into
a red-shifted Stokes photon and a phonon of fixed frequency. (b) Schematic of the elastic
Rayleigh scattering process. (c) Schematic of the anti-Stokes process where a pump photon
is converted into a blue-shifted anti-Stokes photon via the absorption of a phonon. (d)
Idealised spectrum of the Raman process, showing the red- and blue-shifted Stokes and
anti-Stokes peaks, respectively. Both peaks are shifted by the amount ∆ν compared to the
Rayleigh peak at νP. The relative intensities are not to scale.

the sample temperature according to [338, 339]

IAS

IS
∝ exp

(
ℏΩ
kbT

)
, (2.73)

where Ω is the phonon energy and kB is the Boltzmann constant.

Another, perhaps, more intuitive picture of Raman scattering can be obtained by
considering the effect on the crystal polarisability as a function of vibrational motions
caused by the incident light [340]. To first order, the induced polarisation P⃗ in a
material is given by

P⃗ = ᾱE⃗, (2.74)

where ᾱ is the polarisability tensor and E⃗i is the electric field of the incident light. The
incident light can excite vibrational modes in the crystal, causing a time-dependent
modulation of the polarisability tensor with the vibrational frequency ων [341]. Intu-
itively, this modulation can be pictured as a change in the local position of the atoms
with time. Including the vibrational modes, the polarisability tensor can be expressed
by

ᾱ = ᾱ0 +∆ᾱ cos(ωνt), (2.75)

where ᾱ0 is the polarisability in the absence of any vibrations and ∆ᾱ describes
the modification of the polarisability due to the vibrations at frequency ων . For a
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monochromatic light source, the electric field is given by

E⃗i = E⃗0 cos(ωt) . (2.76)

Thus, inserting Eq. 2.76 and Eq. 2.75 in Eq. 2.74 gives

P⃗ =
[
ᾱ0 +∆ᾱ cos(ωνt)

]
· E⃗0 cos(ωt)

P⃗ = ᾱ0E⃗0 cos(ωt) +
∆ᾱE⃗0

2
·
[
cos
(
(ω − ων) · t

)
+ cos

(
(ω + ων) · t

)]
,

(2.77)

where the term oscillating with cos(ωt) corresponds to the Rayleigh (elastic) scatter-
ing, while the terms cos

(
(ω − ων) · t

)
and cos

(
(ω + ων) · t

)
correspond to Stokes and

anti-Stokes scattering, respectively [342]. A graphical illustration of Eq. 2.77 is shown
in Fig. 2.12 (d), where the Stokes (red) and anti-Stokes (blue) components appear as
red- and blue-shifted sideband of the Rayleigh peak (green). Note that the relative
intensities are not to scale.

2.4.1. Phonons in Diamond

The crystal structure of diamond is constructed from two interpenetrating face-
centred cubic (FCC) lattices (Fig. 2.13), where the second FCC lattice is shifted by
a
4 in all directions, and a = 3.567 Å is the lattice constant [342, 343]. Visible photons
carry only a small wave vector k and can thus only interact with optical phonons
with k ∼ 0 close to the Brillouin zone centre (Γ point). In diamond, the disper-
sion of the longitudinal and the two vibrational modes converge at a frequency of
∼ 40THz [344–346]. As a consequence, the resulting Raman spectrum consists of a
triply-degenerate vibrational mode along the ⟨111⟩ crystal axes [344, 347, 348]. This
vibration corresponds to the relative movement of the two FCC lattices in opposite
directions (see Fig. 2.13) [343, 344, 349, 350]. The Raman frequency of Ω ∼ 40THz
corresponds to a spectral shift of δν̄ = 1332 cm−1 [344].

The short carbon-carbon bonds render diamond a hard and stiff material, resulting
in the high-frequency phonon mode discussed above [32]. Furthermore, the high Debye
temperature of diamond (ΘD ≃ 2200K [196, 210]) translates to a low population of
thermal phonons, even at room temperature, making diamond an attractive platform
for quantum information processing using phonons. For example, Raman scattering
on diamond has used to demonstrate non-classical Stokes–anti-Stokes correlation [351–
355], quantum teleportation [356] and entanglement of macroscopic objects [357, 358].

2.4.2. Quantum Memory using Phonons in Diamond

In recent years, optical phonons in bulk diamond have emerged as a compelling plat-
form to store and retrieve quantum information [349, 359]. The working principle
of a phononic quantum memory is depicted schematically in Fig. 2.14. Here, single
photons can be mapped onto phonons via Raman scattering, where the detection of a
Stokes photon heralds the creation of an optical phonon, thus confirming the storage
of the photon. The quantum information associated with the single photon can subse-
quently be retrieved via anti-Stokes scattering [350, 360]. The high carrier frequency
of the optical phonon (Ω ∼ 40THz), allows for broadband storage. Furthermore, the
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Figure 2.13.: The diamond lattice is constructed from two interpenetrating FCC lattices. In
diamond, the Raman vibrational mode occurs along the ⟨111⟩ crystal axes, corresponding
to the relative motion of the two FCC lattices in opposite directions. Adapted and modified
from Ref. [344].

high Debye temperature and the wide bandgap allow for room-temperature operation
across a broad range of optical frequencies [350, 361].
In high-purity bulk diamond, the dominant decay mechanism of the phonon pop-

ulation is via the Klemens channel [362], where one optical phonon decays into two
acoustic phonons with opposite momentum [349, 361]. The lifetime of the optical
phonon is ∼ 3.6 ps [350, 351, 353] which ultimately sets a limit on the achievable
storage time [349]. While this storage time is too short for quantum communication
protocols connecting remote nodes, the storage time might be sufficient for on-chip
processing of quantum information. However, in an engineered diamond lattice con-
structed from alternating 12C and 13C, it is possible, at least in principle, to construct
a phononic bandgap to quench the Klemens channel and thus prolonging the lifetime
of the optical phonons and extend the storage times [350, 363].
The readout efficiency of the quantum memory hinges on the detection of an anti-

Stokes photon. As mention, the anti-Stokes is inherently a weak process. However,
the detection efficiency of an anti-Stokes photon can be enhanced by coupling the
diamond to waveguides or photonic resonators [355].

2.4.3. Cavity-Enhanced Raman Scattering and Raman Lasing

The intrinsically weak nature of the Raman process can be greatly enhanced by cou-
pling to photonic resonators via the Purcell effect (compare Section 2.1.4). Cavity-
enhanced Raman scattering has been demonstrated from atmospheric gasses [364, 365]
and various solid-state system [366] including, carbon nanotubes [367, 368], sili-
con [369, 370] and silica [371]. In the previous section, resonant enhancement of the
anti-Stokes process was discussed as a potential route towards efficient readout of
phononic quantum memories in diamond [355]. This section focuses on resonant en-
hancement of the Stokes transition to create low-threshold Raman lasers.
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Figure 2.14.: Schematic of a quantum memory based on optical phonons. A photon from the
write pulse is mapped onto an optical phonon via Stokes scattering. The stored phonon can
subsequently be retrieved using a read via the anti-Stokes process. Adapted and modified
from Ref. [349].

A Raman laser works by down-shifting the frequency of a pump laser νp by an
amount equal to the Raman shift δν̄: the output frequency is given by νS =

(
νp − cδν̄

)
[337, 344]. The Raman shift is material dependant. Therefore, with a suitable choice
of material and pump laser, at least in principle, lasing at any wavelength can be
achieved [348, 372]. Contrary to a more conventional laser, where light amplification
is established by stimulated emission and population inversion, the amplifier medium
of a Raman laser is the material-dependent Raman gain, proportional to the pump
intensity IP and the Raman gain coefficient gR [348].
Diamond is an attractive material platform for Raman lasers, owing to its unique

properties [373]. First, the wide bandgap of diamond (∼ 5.45 eV) renders the dia-
mond transparent from IR to UV range, allowing for pump wavelengths down to
230 nm [373]. Second, the high thermal conductivity of diamond enabling efficient
dissipation of heat, thus allowing for high-power operation [373]. Finally, diamond
exhibits a large Raman gain of ∼ 75GW · cm−1 for λ = 532 nm. The significance
of a large Raman gain is that a relatively small amount of material is required for a
low-threshold device [337, 373].
Diamond Raman lasers have been realised across a wide spectrum of wave-

lengths* [348, 374–378]. A common feature of these lasers is the high pump-powers
required. However, the use of resonant microcavities [371, 379–381] constitutes a
promising way to reduce the pump threshold drastically [382, 383]. In a microcav-
ity, where both the pump laser and the Raman transition are resonant, the required
pump threshold can be reduced on (at least) two ground. First, resonant recirculation
of the pump laser increases the Raman gain significantly. Second, the efficiency of
stimulated Raman scattering is increased by resonant coupling to the cavity mode.
Such a double resonance condition is satisfied provided the Raman shift δν̄ equals an
integer m times the free-spectral range of the resonator, i.e.

δν̄ = m ·∆νFSR . (2.78)

*See Chapter 6.
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Lasing occurs provided the round-trip gain exceeds the round-trip loss. For a micro-
cavity, the threshold power Pth for bulk Raman gain coefficient gBR can be calculated
from*

Pth =
1

η
· 2nSnpπ

2

λSλpgBR
· VR (QS +QR)

Q2
SQP

, (2.79)

where η is the incoupling efficiency, np(S) is the refractive index at the pump (Stokes)
wavelength λp,(S), Qp,(S) are the cavity Q-factor at the pump (Stokes) wavelength,
QR is the quality factor associated with the Raman gain. The Raman mode volume
VR accounts for the spatial and spectral overlap of the pump and Stokes field, and
can be calculated according to [370, 384]

VR =

∫
cav

n2p(r⃗)|E⃗p(r⃗)|2d3r ·
∫
cav

n2S(r⃗)|E⃗S(r⃗)|2d3r∫
dia
n2p(r⃗)|E⃗p(r⃗)|2 · n2S(r⃗)|E⃗S(r⃗)|2d3r

. (2.80)

*The derivation can be found in AppendixH.



CHAPTER 3

Hybrid Diamond-Air Cavity - the Coupled
Cavity Model

In the experiments performed as part of this thesis, a thin diamond membrane was
embedded into a Fabry-Perot microcavity. The presence of the diamond membrane
significantly alters the cavity mode structure, leading to the formation of hybridised
cavity modes [87]. As a consequence, the theoretical framework presented in Sec-
tion 2.1.1 is not fully sufficient to capture the full cavity mode-structure. With the aid
of one-dimensional transfer-matrix calculations, the physics of the coupled diamond-
air cavity will be described in this chapter. Although this chapter uses diamond as
an example, the concepts presented here are generic to any solid-state material [61].

3.1. The Hard-Mirror Model - Analytic Solution

Before diving into the transfer-matrix simulations, a perfect-world scenario with an
analytic solution will be presented. Consider a diamond membrane with thickness td
and refractive index nd embedded in a Fabry-Perot cavity with perfectly reflecting
(i.e hard) mirrors. Let L be the total cavity length, and thus the width of the air-gap
is given by ta = L − td. For this structure, the cavity resonances can be calculated
analytically using the transcendental equation [87, 123]

(1 + nd) sin

(
2π

λ
· [ta + tdnd]

)
= (1− nd) sin

(
2π

λ
· [ta − tdnd]

)
, (3.1)

where nd is the refractive index of diamond.
Figure 3.1 shows the resulting cavity mode-structure calculated from Eq. 3.1. In

an intuitive picture, the mode structure consists of two coupled cavities; one cavity
confined to the diamond bounded by the bottom mirror and the diamond-air interface,
and one cavity confined to the air-gap bounded by the top mirror and the diamond-air
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Figure 3.1.: Hard mirror model of the coupled diamond-air cavity. Coupling between the
modes confined to air (orange) and diamond (green) results in the emergence of avoided
crossings. The mode structure was calculated using Eq. 3.1 with (a) td = 3.00 · λ

nd
and (b)

td = 3.25 · λ
nd

, where λ = 637.7 nm.

interface. The two cavity modes couple and hybridise, resulting in the emergence of
avoided crossings [61]. The location of these avoided crossings depends exclusively on
the exact diamond thickness.

A cavity resonance is established provided the overall cavity length is equal to a
multiple of λ

2 , i.e tdnd+ ta = j · λ2 . Depending on the diamond thickness, two regimes

emerge. If td = (2j−1) · λ4 , the cavity is resonant with the diamond, giving rise to the
diamond-confined modes [85]. For these modes, a change in ta will have a relatively
small impact on the resonance λ. In a real-world experiment, the shallow slope, i.e.
dλ
dta

, renders the cavity “insensitive” to length fluctuations dta caused by acoustic

vibrations. On the other hand, for td = j · λ
2 the cavity is resonant with the air-gap,

thus creating an air-confined mode [85]. Contrary to the diamond-confined modes,
for the air-confined modes a small change in ta will have a relatively large impact on
the resonant λ, thus rendering the cavity sensitive to length fluctuations caused by
acoustic vibrations [87]. Therefore, in the presence of acoustic vibration, operating in
a diamond confined geometry offers higher mechanical stability.

3.2. Effective Cavity Length

In the hard-mirror model, perfectly reflecting mirrors were assumed. Although this
model gives a good, quantitative explanation of the hybridised mode structure, the
model fails to capture the complete picture. Up until this point, the cavity length
has been defined as the physical separation between the two end-mirrors. While this
is a good approximation for long cavities, for short microcavities the electric field
penetration into the mirror becomes an important effect [94].

Consider a lossless distributed Bragg reflector (DBR) mirror constructed from al-
ternating layers of material with high (nH) and low (nL) index of refraction. The
thickness of each layer, dH(L), is chosen such that dHnH = dLnL = λc

4 , where λc
denotes the centre of the reflective stopband [94]. An incident electromagnetic wave
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experiences a phase delay τ upon reflection from the DBR [385]. For a mirror with an
infinite amount of layers, the phase delay at the stopband centre λc can be calculated
analytically from [386]

τ =
λc
2c

· 1

nH − nL
, (3.2)

where c is the speed of light. The phase delay can be translated into an effective
length, LDBR = cτ

2 , often referred to as the mirror penetration depth: [94]

LDBR =
cτ

2
=
λc
4

· 1

nH − nL
. (3.3)

Physically, the penetration depth is the depth inside the mirror at which the optical
light seems to be reflected from [386].
The overall effective cavity length is given by the physical separation of the two

mirrors, the penetration depth and, for a cavity with curved mirrors, the contributions
associated with the Gouy-phase, i.e [85, 94]

Leff = Lcav + LGouy + 2LDBR , (3.4)

with Lcav = ta +
td
nd

. Incident light with wavelength detuned from λc will no longer

observe a perfect λ
4 layer-thickness. As a consequence, light can be reflected back

and forth between different layers inside the mirror leading to increased phase delay
τ , and thus longer penetration depth and increased mirror transmission. The black
lines in Fig. 3.2 show the mirror transmission (a) and the reflected phase delay (b)
as a function of excitation frequency*. Note that the reflective stopband appears
symmetric in frequency.
Introducing the diamond membrane alters the mirror transmission (Fig. 3.2 (a)) and

the phase delay (Fig. 3.2 (b)) differently depending on the exact diamond thickness.
If the diamond thickness equals a multiple of j · λc

nd
, constructive interference is main-

tained for λ = λc rendering the mirror transmission unaltered [85]. From Section 3.1
this corresponds to an air-confined geometry (red lines Fig. 3.2). On the other hand,
if the diamond thickness equals a multiple of (2j − 1) · λc

nd
, an increase in transmis-

sion is observed. The increased transmission can be explained by the formation of a
weak cavity bound by the bottom DBR and the diamond-air interface. Light circu-
lating inside the diamond has an increased probability to be transmitted through the
DBR mirror compared to a DBR without a diamond layer [85]. From Section 3.1 this
diamond thickness corresponds to a diamond-confined geometry (blue lines Fig. 3.2).

3.3. Air-Confined vs. Diamond-Confined Cavity Modes
– a Comparative Illustration

This chapter will culminate in a direct comparison between an air-confined and a
diamond-confined cavity geometry. All calculations presented in this section were
derived from one-dimensional transfer-matrix simulations obtained using Essential
Macleod�. Throughout this section, a consistent choice of td = 3.00 · λ

nd
= 793.49 nm

*Motivated by the experiments, high-index terminated DBR mirrors are used here.
�Essential Macleod, Thin Film Center Inc.
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(a) (b)

Figure 3.2.: (a) The black line shows the mirror transmission across the stopband for a
DBR mirror centred at λc = 637.7 nm. The presence of the diamond membrane alters the
mirror transmission differently depending on the exact diamond thickness. If the diamond
thickness equals a multiple of j · λc

nd
, the transmission remains unaltered. On the other

hand, if the thickness equals a multiple of (2j − 1) · λc
nd

, the effective mirror transmission
will increase. To illustrate, the red and blue lines show the transmission with a diamond
membrane of thickness td = 3.00 · λc

nd
and td = 3.25 · λc

nd
, respectively. (b) Reflected phase

delay across the reflective stopband. A diamond with thickness td = 3.25 · λc
nd

(blue line)
leads to the formation of a weak cavity and thus a larger phase delay at the stopband centre.
For wavelengths detuned from λc, the phase delay approaches that of the bare mirror (black
line). For the diamond with thickness td = 3.00 · λc

nd
(red line) the phase delay increases with

detuning away from the stopband centre.

and td = 3.25 · λ
nd

= 859.61 nm have been used for the air-confined and diamond-
confined geometry respectively, with λ = 637.7 nm to portray the NV zero-phonon
line.

3.3.1. The Hybridised Mode-structure

Consider a planar-concave Fabry-Perot cavity formed by two highly-reflected DBR
mirrors with asymmetric coating. For the sake of argument, the structure of the
top mirror is chosen to be (nHnL)

14nH and the bottom mirror (nHnL)
15nH starting

from the substrate, with Ta2O5 and SiO2 as as the high- and low index materials,
respectively, i.e. nH = nTa2O5 = 2.12 and nL = nSiO2 = 1.46. The thickness d of each
layer is chosen such that n · d = λc

4 , with λc = 637.7 nm.
The resulting cavity mode structure is simulated in Fig. 3.3 for an air-confined

(a) and a diamond-confined geometry (b). As expected, the mode structure looks
comparatively similar to Fig. 3.1. However, the effect of field penetration into the DBR
can be clearly observed close to the stopband edges. The orange line at λ = 637.7 nm
highlights the difference in the slope, dλ

dta
between the two geometries.

3.3.2. Vacuum Electric Field Profile

In the above sections, the terms air-confined and diamond-confined geometry have
been tossed around without a proper introduction, apart from the cavity being res-
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(a) (b)

Figure 3.3.: One-dimensional transfer-matrix simulations of the cavity mode structure for
(a) an air confined cavity (td = 3.00 · λ

nd
) and (b) a diamond confined cavity (td = 3.25 · λ

nd
).

The orange dashed line indicates λ = 637.7 nm

onant with either the air-gap or the diamond. Therefore, this section will add some
meat to the bone.
The profile of the electric field inside the cavity can be calculated using Macleod,

from which, the vacuum electric field, Evac is quantised according to [255]∫ 2π

0

dϕ

∫ ∞

0

re−
r2/2w2

I dr

∫
cav

ϵ0ϵR(z)
∣∣∣E⃗vac

∣∣∣2 dz
= 2π · 1

4
w2

0,I ·
∫
cav

ϵ0n
2(z)

∣∣∣E⃗vac

∣∣∣2 dz = ℏω
2
,

(3.5)

where ϵR = n2 and w0,I is the intensity beam waist at the diamond. Eq. 3.5 assumes
cylindrical symmetry and a constant beam waist across the length of the cavity.
By substituting Lcav = ta+

td
nd

into Eq. 2.14 and assuming a Gaussian cavity mode,

the intensity beam waist at the bottom mirror can be calculated from [123]

w0,I =

√
λ

2

(
Rcav

(
ta +

td
nd

)
−
(
ta +

td
nd

)2
) 1

4

. (3.6)

For a planar-concave cavity, the minimal air-gap achievable is determined by the depth
of the fabricated suppression (see Chapter 4). Therefore, the comparison between air-
confined and diamond-confined will be carried out at the third cavity resonance (i.e
qair = 3), where qair = 1 is defined as the first resonance in the air-gap, i.e. the
smallest possible air-gap. By concidering a realistic cavity with Rcav = 10µm *, one
find LA

cav = 1.28µm, wA
0,I = 0.82µm and LD

cav = 1.14µm, wD
0,I = 0.80µm for qair = 3.

Here, the superscript A (D) refers to the air-confined (diamond-confined) geometry.
To illustrate the cavity structure, Fig. 3.4 (a) and (b) display the refractive index
as a function of cavity length for the air-confined and diamond-confined geometry,
respectively.

*Motivated by Fig. 4.3 and Ref. [77, 255, 387].
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Figure 3.4.: Comparison between an air- and a diamond-confined geometry.(a) - (b) Refrac-
tive index profile of the cavity including a diamond membrane with thickness td = 3.00 · λ

nd

and td = 3.25 · λ
nd

, respectively. The green lines indicate the interface between the bottom
DBR and the diamond, the diamond-air interface and the interface between air and the
top DBR. (c) For an air-confined geometry, a larger fraction of the vacuum electric field
is confined to the air-gap. Furthermore, the vacuum field possesses a field node across the
diamond-air interface (inset). (d) In the diamond confined geometry, a relatively larger
fraction of the vacuum field is confined to the diamond. The vacuum electric field possesses
a field anti-node across the diamond-air interface (inset). (e) The energy density stored in
the cavity for an air confined geometry. (f) For a diamond confined geometry, the energy
density is significantly larger in the diamond compared to in the air-gap.

The profile of the electromagnetic field across the diamond-air interface, and con-
sequently the relative energy density confined to the air and the diamond, are de-
termined by the thickness of the diamond membrane [61]. At a first glance, there
are two striking differences between the air-confined geometry (Fig. 3.4 (c)) and the
diamond confined geometry (Fig. 3.4 (d)). First, the air-confined geometry possesses
a field node across the diamond-air interface, while the diamond-confined geometry
possesses a field anti-node across the said interface. The implications of this will be
discussed further in Section 3.3.3.

The second difference lies in the relative intensity of the electric field confined to
the air and diamond layer, respectively. For an air-confined cavity mode (Fig. 3.4 (c)),
the relative field intensity in the air-gap is larger by a factor nd compared to that of
diamond [61]. On the other hand, for a diamond-confined cavity mode (Fig. 3.4 (d)),
the relative field strength in the air-gap and in the diamond remains comparable.

To further emphasise the difference between the two configurations, it is helpful to
look at the relative energy density, n2E2, confined to the air and diamond. Fig. 3.4 (e)-
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(f) show a plot of n2(z)E2
vac(z) as a function of cavity length for the two geometries. As

can be seen in Fig. 3.4 (f), the energy density confined to the diamond is significantly
larger for the diamond-confined geometry. The high relative field intensity in the
diamond leads to higher coupling strengths to emitters, which will be discussed further
in Section 3.3.4.

To summarise, an air-confined cavity mode possesses a field node at the diamond-
air interface, while the diamond-confined mode possesses a field anti-node at the said
interface. In an air-confined geometry, the relative strength of the electric field is
larger in the air-gap then for the diamond, while the inverse is true for a diamond-
confined geometry.

3.3.3. Introducing Losses

Up until this point, a perfect-world scenario without any losses has been assumed.
An extensive experimental study of the Q-factor as a function of both cavity length
and wavelength in the presence of losses will be discussed in Chapter 4 and Ref. [387].
In a Fabry-Perot cavity embedded with a diamond membrane, losses are primarily
associated with the diamond surface (here lossless mirrors are assumed, motivated by
the results presented in Chapter 4). Losses, such as scattering and absorption depend
on the electric field amplitude across the diamond-air interface, and therefore, one
would expect a different behaviour between an air-confined and diamond-confined
geometry [61].

Eq. 2.25 predicts a linear increase in Q-factor with increased cavity length L. For
fixed λ, rewrite L = L0+ta, where ta = qair · λ2 . Here, the thickness of the diamond and
the field penetration depth into the mirrors are all bundled up in the term L0 [387].
In Fig. 3.5, the Q-factor is simulated as a function of air-gap thickness for (a) an air-
confined and (b) a diamond-confined geometry. For short ta, the Q-factor is larger for
the diamond-confined geometry, which can be explained by a longer effective cavity
length (Fig. 3.2 (b)). However, for large ta, the Q-factor becomes larger for the air-
confined geometry, owing to a steeper gradient (i.e. a larger finesse, F = ∆Q

∆q ). The
larger finesse is reflected by the lower mirror transmission, and thus higher reflectivity,
for the air-confined geometry compared to a diamond confined geometry (Fig. 3.2 (a)).

The link between surface roughness σq and scattering losses S is established via [104,
388]

S ≈
(
4πσq
λ

)2

. (3.7)

Losses, such as scattering and absorption, can be incorporated into the one-
dimensional transfer-matrix simulations following the method reported by Ref. [389].
In this method, scattering at the diamond-air interface can be simulated by adding an
additional layer on top of the diamond with thickness d = 2σq and complex refractive

index ñ = neff + iκ. Here, the effective refractive index neff =
√(

n2a + n2d
)
/2 and the

extinction coefficient κ is given by [389]

κ =
π (na − nd)

2
(na + nd)

4neff
· d
λ
, (3.8)



50 Hybrid Diamond-Air Cavity - the Coupled Cavity Model

= 637 .7 nm = 637 .7 nm

(a) (b)

Figure 3.5.: Q-factor as a function of air-gap thickness ta for fixed λ = 637.7 nm for (a) an
air-confined and (b) diamond-confined geometry. As expected, the initial Q-factor is larger
for the diamond-confined geometry owing to a larger effective cavity length. In the presence
of scattering (dashed lines), the Q-factor for the diamond-confined modes is significantly
reduced, owing to the field node across the diamond-air interface. The semi-transparent
lines show the Q-factor in the presence of beam clipping, with Rcav = 10µm and D = 6µm.

where λ is the free-space wavelength and na, nd are the refractive index of the air
and the diamond layer, respectively. The dashed lines in Fig. 3.5 show the Q-factor
in the presence of a scattering layer with a realistic root-mean-square (RMS) sur-
face roughness σq = 0.3 nm* [159, 387]. Surface scattering affects the air-confined
and diamond-confined cavity modes very differently. The electric field node at the
diamond-air interface for the air-confined geometry (Fig. 3.4 (c)) minimises surface
scattering, and hence the Q-factor is effectively unchanged. On the other hand, for
the diamond-confined geometry, the field anti-node maximises the surface scattering
resulting in a significant reduction in the Q-factor.
For completeness, the semi-transparent lines in Fig. 3.2 show the dependence on

the Q-factor with ta in the presence of beam clipping. Clipping losses depends on the
geometrical parameters of the curved mirror and occur when the beam waist at the
top mirror wI extends further than the spherical region D of the said mirror [104].
The beam waist wI evolves according to [123, 387]

wI =

√
λRcav

π
·

(
Rcav

ta +
td
nd

− 1

)− 1
4

, (3.9)

from which the clipping losses are given by [104, 390] �

Lclip = e
− D2

2w2
I . (3.10)

Clipping losses were experimentally verified in Chapter 4.
As previously mentioned, scattering (and absorption) losses depend on the am-

plitude of the electric field at the surface. Tuning the resonant wavelength λ al-
ters the standing wave inside the cavity, and subsequently the field intensity across

*The value of σq will be motivated in Chapter 4.
�The readers are referred to AppendixB for a derivation.
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(a) (b)

Figure 3.6.: Q-factor across the stopband for (a) an air-confined geometry and (b) a
diamond-confined geometry. The black dashed lines show the simulated Q-factor in the
presence of surface scattering with surface roughness σq = 0.3 nm. At the stopband centre
(λc = 637.7 nm), the reduction in Q-factor is significantly larger for the diamond confined
geometry owing to the field maxima across the diamond-air interface. Towards the edges of
the stopband, the cavity losses are dominated by mirror transmission, and thus the effect of
scattering becomes negligible.

the diamond-air interface. Therefore, a measurement of the Q-factor as a function
of λ may provide unprecedented insight into the cavity losses [391]. To illustrate,
Fig. 3.6 (a) and (b) show the Q-factor as a function of λ across the reflective stopband
(for short ta) for an air- and diamond-confined geometry, respectively. Here, the solid
lines represent a perfect cavity, and the dashed lines represent surface scattering. As
before, the presence of surface scattering causes a significant drop in the Q-factor at
the stopband centre for the diamond-confined geometry. For λ detuned away from the
stopband centre, the Q-factor for the diamond-confined geometry quickly converges
to the Q-factor expected of a perfect cavity. For the air-confined geometry, scattering
losses are negligible at the stopband centre, due to the field minima discussed above.
However, for small detuning away from the stopband centre, a drop in Q-factor is
observed. This drop can be explained by the now non-zero field amplitude across the
diamond-air interface. Furthermore, for a small detuning away from the stopband
centre, the mirror transmission increases as can be seen in Fig. 3.2 (a). For wave-
lengths close to the edges of the stopband, the cavity losses are dominated by mirror
transmission, and thus the effect of scattering can be neglected.

3.3.4. Purcell Enhancement

The overarching goal of the work presented in this thesis is to enhance the radiative
emission rate from single NV centres embedded in a diamond membrane. The coupling
strength g between an emitter and a single cavity mode scales with the amplitude
of the electric field according to g = 1

ℏ · µegEvac (Eq. 2.61). Therefore, as the above
analysis suggests, the coupling strength differs between an air-confined and a diamond-
confined cavity mode.
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Consider an optimally aligned NV centre (or any other type of emitter) located at
a field-maxima at position r⃗ = r⃗0. The Purcell factor is then given by *

FP = 1 +
3

4π2

Q
Veff

(
λ

n

)3

, (3.11)

where the effective mode volume, Veff, is calculated from [124, 392]

Veff =

∫
cav

ϵ0n
2(r⃗)|E⃗vac(r⃗)|2d3r

ϵ0n2(r⃗0)|E⃗vac(r⃗0)|2
=

ℏω
2

ϵ0n2(r⃗0)|E⃗vac(r⃗0)|2
. (3.12)

In Fig. 3.7 (a) and (b), the amplitude of the vacuum electric field inside the diamond
is plotted against the width of the air-gap for an air-confined and diamond-confined
geometry, respectively. Here, the amplitude of the vacuum electric field is normalised
according to Eq. 3.5. As expected, the field maxima inside the diamond are larger for
the diamond-confined geometry. The difference in field intensity is better visualised
when the effective mode volume is taken into consideration. Fig. 3.7 (c) shows the
drastic increase in Veff for an air-confined geometry compared to a diamond-confined
geometry (d).
Two considerations have to be made when selecting the desired air-gap for a cavity

coupling experiment; the increase in both the Q-factor and Veff with ta. While the Q-
factor increases linearly with ta, the non-linear increase in Veff favours short cavities,
thus maximising Q

Veff
. The solid lines in Fig. 3.7 (e) and (f) show FP as a function of

ta. As before, the semi-transparent lines indicate the behaviour of FP with ta in the
presence of beam clipping. From this, in order to achieve a large Purcell factor, it is
clearly beneficial to operate in a diamond-confined regime.
The presence of surface scattering reduces the Q-factor, and hence leads to a reduc-

tion in FP. The black dashed lines in Fig. 3.7 (e) and (f) show the dependence of FP

with ta in the presence of surface scattering with σq = 0.3 nm. As one would expect
from Fig. 3.5, the reduction in FP is significant for the diamond-confined geometry,
while no significant change is observed for the air-confined geometry. Despite the re-
duction in Q, with a realistic value of σq = 0.3 nm, FP remains marginally larger for
the diamond-confined geometry. An added benefit of working in a diamond-confined
geometry is the insensitivity of the resonant λ with fluctuations in ta as was discussed
in the very first section of this chapter.

3.3.5. Condition for Maximal Photon Collection Efficiency

Up until this point, no comments have been made on the ideal combination of top-
and bottom mirrors to maximise the detection efficiency of photons from emitters
in diamond. The cavity used for the experiments presented in the subsequent chap-
ters� works in a back-scattering geometry. Therefore, this discussion will consider a
highly reflective bottom mirror on the form (nHnL)

20nH, to ensure maximised photon
collection through the top mirror. Throughout this subsection, the air-gap for the

*Alternatively, the Purcell factor can be expressed on the form FP = 1 + 4g2

κγ
, where the

dependency on Evac perhaps becomes more apparent.
�See Fig. 4.1.
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Figure 3.7.: Comparison of the cavity performance between an air-confined and diamond-
confined geometry. (a) - (b) show that the maximum value of the vacuum electric field inside
the diamond is larger for the diamond confined geometry. (c) - (d) with increasing cavity
length, the effective mode volume Veff is significantly larger for the air-confined geometry
as the vacuum field is more strongly confined to the air-gap. (e) - (f) The Purcell factor
scales with Q

Veff
. Using the Q-factor from Fig. 3.5, the expected Purcell factor is larger for a

diamond confined geometry, even in the presence of surface scattering. The semi-transparent
lines indicate the Purcell factor in the presence of beam clipping.

air-confined case is set to ta ≃ 935.6 nm (qair = 4), and for the diamond-confined ge-
ometry ta ≃ 1105.9 nm (qair = 3). To start, Fig. 3.8 (a) and (b) show the dependency
of the Q-factor for fixed λ = 637.7 nm with increasing top-mirror pairs for the air-
and diamond-confined geometry, respectively. For few mirror pairs, there is a linear
increase in the Q-factor, where the Q-factor is larger for the diamond-confined geom-
etry (consistent with the longer effective cavity length as can be seen in Fig. 3.2 (b)).
As expected, introducing surface scattering with σq = 0.3 nm (black dashed line)
strongly affects the Q-factor for the diamond-confined geometry, while for the air-
confined regime, the Q-factor remains unaltered. Therefore, for the remainder of this
subsection, losses will be neglected for the air-confined geometry. In the diamond-
confined geometry, for fewer than 8 mirror pairs, the cavity losses are dominated by
transmission through the top mirror, and the Q-factor remains relatively unaffected
by surface scattering. On the other hand, for more than 12 mirror pairs, the surface
scattering starts to dominate. The Q-factor saturates at Qscat = 625 560, adding
more mirror pairs will not result in a larger Q-factor.

Fig. 3.8 (c) and (d) show the calculated cavity loss-rate κ as a function of top-mirror
pairs. Here, κ is calculated from κ = 2πc

λQ . For a lossless cavity, a photon can only exit
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(a) (b)

(c) (d)

Figure 3.8.: Changing the number of mirrors pairs for the top mirror alters the cavity
performance. Here, the structure of the bottom mirror was fixed at (nHnL)

20nH. (a) -
(b) Q-factor as a function of increasing top-mirror pairs for an air- and diamond-confined
geometry, respectively. The black dashed lines show the Q-factor in the presence of surface
scattering with σq = 0.3 nm. As expected, the Q-factor is unaffected by scattering for
the air-confined geometry. The diamond-confined geometry is strongly affected by surface
scattering. For less than 8 mirror pairs, transmission through the top mirror is the dominant
loss channel. For more than 12 mirror pairs, scattering is the dominant loss mechanism;
adding more mirror pairs will no longer increase the Q-factor. (c) - (d) Calculation of the
cavity loss-rate κ as a function of increasing top-mirror pairs for the two geometries.

the cavity via the two end mirrors, i.e. κ = κtop + κbot, where κtop =
Ttop

Ttop+Tbot
· κ

is the loss-rate through the top mirror (and similarly for the bottom mirror). Here,
Ttop (bot) is the transmission of the top (bottom) mirror. Surface scattering leads to a
reduction of the Q-factor (Q′), consequently increasing the cavity loss-rate by amount
κloss according to κ′ = κtop + κbot + κloss, where κ

′ = 2πc
λQ′ . From this, the scattering

loss-rate is given by κloss = κ′ − κ.

To disentangle further the desired loss-rate through the top mirror κtop to undesired
loss-rates κbot and κloss, Fig. 3.9 evaluates

κtop

κtot
,κbot

κtot
and κloss

κtot
as a function of mirror

pairs. Here, κtot is the total loss-rate amounting to the aforementioned κ (κ′) in the
absence (presence) of surface scattering. For the air-confined geometry (Fig. 3.9 (a)),
cavity losses are completely dominated by κtop independently of mirror pairs, provided
the number of pairs remains larger for the bottom mirror. On the other hand, for the
diamond-confined geometry, κtop is only dominant for less than 8 top-mirror pairs,
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(a) (b)

Figure 3.9.: The relative contribution of transmission through the top mirror,
κtop

κ
, and

scattering, κloss
κ

, to the total loss-rate κ for constant λ = 637.7 nm and fixed bottom mirror
on the form (nHnL)

20nH. (a) For the air-confined geometry the loss-rate is dominated by
mirror transmission independently of mirror pairs. (b) For the diamond-confined geometry,
the losses are only dominated by the top mirror for less than 8 top mirror pairs, after
which scattering losses start to contribute. For 12 mirror pairs, scattering losses equal
transmission losses, and for more than 12 pairs the scattering becomes the dominant loss-
channel. Transmission through the bottom mirror remains vanishingly small for all mirror
pairs considered here.

after which scattering starts to contribute. For 12 top-mirror pairs, κtop ≃ κloss, and
for more than 12 top-mirror pairs, κloss dominates.
Finally, the attention is directed towards the detection efficiency of a single photon

from an NV centre. Recall from Section. 2.1.4 that the probability of emission into the

cavity mode is given by the β-factor: β = FP−1
FP

*, where FP = 1 + 4g2

κγ as introduced
in Section 2.1.4. For an NV centre, the branching into the ZPL is given by the Debye-
Waller factor ξ0 = 2.55% (see Section 2.2.3) [77]. Following the procedure presented
in Ref. [387] (see Section 4.4.1), the fraction of ZPL photons emitted into the cavity
mode is given by

ηZPL = FP · ξ0γ0
γcav

, (3.13)

where γcav is the total decay rate in the cavity. The efficiency of transmission through
the top mirror is given by

ηtop =
κtop

κtot + γ0
, (3.14)

where γ0 = 1
τ0

and τ0 is the unperturbed lifetime of the emitter. Combining the
above, the conversion efficiency from an NV centre in the excited state to a ZPL
photon exciting the cavity through the top mirror is given by [102]

ηout = ηZPL · ηtop

= ηZPL · κtop
κtot + γ0

.
(3.15)

*Strictly speaking, this is only true for an emitter with 100% internal quantum efficiency.
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Figure 3.10.: Calculation of the detection efficiency of a ZPL photon through the top mirror.
For all panels, the dashed- and dotted lines represent the fraction of emission into the cavity
mode, βZPL, and the efficiency of transmission through the top mirror, ηtop, respectively.
The total efficiency, βZPL · ηtop, is represented by the solid line. (a) - (b) Efficiency as a
function of top mirror pairs for an air- and diamond-confined geometry, respectively. Surface
roughness, σq = 0.3 nm, reduces the optimal number of top-mirror pairs, indicated by the
black curves in panel (b). For simplicity, scattering losses are neglected for the air-confined
geometry. (c) - (d) Efficiency as a function of κ for the two geometries. The vertical
burgundy lines correspond to the ideal condition κ = 2

√
ξ0g. For panel (d), in the presence

of losses, the ideal condition is given by κopt = 2
√
ξ0g ·

√
1 + κloss

γ
, indicated by the dashed

orange line.

The optimum value for κtop can be calculated from [102]

κopt =

√(
1 +

κloss
γ0

)
· (4ξ0g2 + κlossγ0) , (3.16)

where g is the emitter-cavity coupling rate. For the condition g ≫ κloss and g ≫ γ0
*,

*For the diamond confined geometry, {g, κloss, γ0} = 2π × {1.5GHz, 720MHz, 12.6GHz}.
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Eq. 3.16 reduces to [102]

κopt = 2
√
ξ0g ·

√
1 +

κloss
γ0

, (3.17)

which, for a lossless cavity further reduces to the more familiar

κopt = 2
√
ξ0g . (3.18)

The results are presented graphically in Fig. 3.10. For the air-confined geometry
(Fig. 3.10 (a)), the maximum detection efficiency, ηAout = 0.9152, is found for 14 top-
mirror pairs. For a diamond-confined geometry (Fig. 3.10 (b)), in the absence of losses,
ηout peaks at 12 top-mirror pairs at ηDout = 0.9251. The difference in the number
of optimal mirror pairs between the air- and diamond confined geometry can be
explained by the effective reduction of the mirror reflectivity for the diamond-confined
geometry (Fig 3.2 (a)). In the presence of surface scattering, ηout decreases to η

D,scat
out =

0.6607 for 10 top-mirror pairs.
Fig. 3.10 (c) calculates ηout as a function of κ for the air-confined geometry. The

vertical burgundy line indicates the condition κ = 2
√
ξ0g (Eq. 3.18). Similarly,

Fig. 3.10 (d) show the dependency of ηout with κ for the diamond confined geome-
try. Again, the burgundy vertical line corresponds to the κ = 2

√
ξ0g, and coincides

with the maximum efficiency for the lossless cavity. The vertical orange line corre-

sponds to κopt = 2
√
ξ0g ·

√
1 + κloss

γ0
, and coincides with the maximum efficiency in

the presence of surface scattering, as expected from Eq. 3.16.

3.3.6. Dependency on Rcav

As a final curiosity, Fig. 3.11 calculates the performance of the cavity as a function of
the radius of curvature of the top mirror, Rcav. For all the sub-figures, the red lines
correspond to an air-confined geometry with ta = 954 nm (qair = 3) and td = 3.00 · λ

nd
,

while the blue lines correspond to a diamond-confined geometry with ta = 787 nm and
td = 3.25 · λ

nd
extracted from Fig. 3.4.

For increasing Rcav the values of wI and w0,I converge, as would be expected since
the cavity can be approximated as a planar-planar cavity for large Rcav. Minimising
the value of w0,I is important in order to maximise the vacuum field Evac (Eq. 3.5).
Fig. 3.11 (b) evaluates the maxima of the electric field inside the diamond. As ex-
pected, with increasing Rcav, w0,I increases, and consequently, the magnitude of the
vacuum field decreases. The mode volume Veff scales inversely with the magnitude
of the vacuum field (Eq. 3.12), and consequently increases with Rcav (Fig. 3.11 (c)).
Finally, Fig. 3.11 (d) shows the dependency on the Purcell factor with Rcav. Increas-
ing the Rcav from 10µm to 15µm leads to a 30% and 20% reduction of the Purcell
factor for the air- and diamond confined geometry, respectively.
From the above analysis, it is apparent that in a perfect world scenario minimising

Rcav is beneficial. Although it is possible to fabricate mirrors with micron-sized radii
of curvature [393], the performance of these small mirrors remains uncertain. From
a purely geometrical point of view, the small radii of curvature craters severely limit
the cavity stability criterion, Rcav > L (compare Section 2.1.1) [93]. Furthermore, the
small dimensions of the indentation may induce strain in the DBR coating during
growth. A larger radius of curvature is thus beneficial to ensure a conformal λ

4 DBR
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(a) (b)    

(c) (d)    

Figure 3.11.: Cavity performance as a function of increasing Rcav. For all sub-figures, the
red and blue lines correspond to air- and diamond-confined geometries with td = 3.00 · λ

nd

and td = td = 3.25 · λ
nd

, respectively. (a) The intensity beam waist w0,I at the diamond

(solid lines) and the beam waist wI at the top mirror calculated from Eq. 3.6 and Eq. 3.9
respectively. (b) Maximum amplitude of the vacuum field inside the diamond calculated
from Eq. 3.5. (c) Mode volume Veff calculated according to Eq. 3.12. (d) An increase in Veff

leads to a decrease of the Purcell effect.

coating. On the other hand, a large radius of curvature extends the beam waist, thus
rendering the cavity sensitive to clipping losses. Nevertheless, a Q-factor of 9 ·106 has
been experimentally demonstrated in a Fabry-Perot microcavity with Rcav = 155µm
and L ≃ 50µm [101].



CHAPTER 4

A Diamond-Confined Open Microcavity
Featuring a High Quality-Factor and a Small

Mode-Volume

The content of this chapter is partially adapted from:
Sigurd Fl̊agan, Daniel Riedel, Alisa Javadi, Tomasz Jakubczyk, Patrick Maletinsky
and Richard J. Warburton,
“High quality-factor diamond-confined open microcavity”, arXiv:2105.08736
(2021).

Abstract:
With a highly coherent, optically addressable electron spin, the nitrogen-vacancy
(NV) centre in diamond is a promising candidate for a node in a quantum network.
A resonant microcavity can boost the flux of coherent photons emerging from single
NV centres. Here, we present an open Fabry-Perot microcavity geometry containing
a single-crystal diamond membrane, which operates in a regime where the vacuum
electric field is strongly confined to the diamond membrane. There is a field anti-
node at the diamond-air interface. Despite the presence of surface losses, a finesse
of F = 11 500 was observed. The quality (Q) factor for the lowest mode number
is 120 000; the mode volume V is estimated to be 3.9λ30 where λ0 is the free-space
wavelength. We investigate the interplay between different loss mechanisms, and
the impact these loss channels have on the performance of the cavity. This analysis
suggests that the “waviness” (roughness with a spatial frequency comparable to that
of the microcavity mode) is the mechanism preventing the Q /V ratio from reaching
even higher values. Finally, we apply the extracted cavity parameters to the NV
centre and calculate a predicted Purcell factor exceeding 150.
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4.1. Introduction

The development of an efficient interface between stationary and flying qubits [39,
315] is an essential step towards the realisation of large-scale distributed quantum
networks [16, 28] and the quantum internet [15, 17]. In such a network, quantum
nodes with the ability to store and process quantum information are interconnected
via quantum channels in order to distribute quantum information and entanglement
across the network [29, 30]. To communicate between remote network nodes, optical
photons are a convenient choice owing to low absorption and decoherence [16, 48],
alongside compatibility with pre-existing classical fibre-networks [30, 49, 51]. However,
the transmission of quantum information over long distances remains a challenge
owing to photon propagation-loss in the network links [56, 394].

Quantum-repeater protocols represent a means to compensate for photon-loss [54].
In principle, entanglement can be distributed over long distances by pair-wise entan-
glement swapping of adjacent nodes, where each network link covers a sub-section
of the total distance [55, 56]. These network nodes require high-fidelity process-
ing of quantum information combined with a robust, long-lived quantum mem-
ory [30, 57, 291]. Long-lived, optically-addressable spins in the solid-state have
emerged as a promising candidate [34, 39, 315]. The development of an efficient
spin-photon interface [58] is limited by the weak cross-section between single spins
and photons [30]. Crucially, this interaction can be enhanced by embedding the solid-
state spins inside optical resonators [30, 59, 61].

Owing to its highly coherent [62, 134], optically addressable electron-spin [38, 242,
244] and the possibility of coherent couplings to nearby nuclear spins [68, 69, 72, 74,
395], the negatively charged nitrogen-vacancy (NV) centre in diamond is a promis-
ing candidate as a stationary qubit in a quantum network [63, 64]. Advances in
spin-photon [41] and spin-spin entanglement [42] have paved the way for long-distance
entanglement [43], quantum teleportation [396], entanglement distillation [73] and on-
demand entanglement delivery [397], all key steps towards the realisation of a quantum
network [66]. However, the scalability of these experiments is limited by the modest
entanglement rates, in turn limited by the small flux of coherent photons [77].

For NV centres in diamond, the generation rate of coherent photons is limited
by the long radiative lifetime (τ0 ≃ 12 ns) and the small branching ratio (∼ 3%)
of photons into the zero-phonon line (ZPL) [78]. Furthermore, the photon extraction
efficiency out of the diamond is poor owing to total internal reflection at the diamond-
air interface (nd = 2.41). In principle, these problems can be addressed by resonant
coupling of the ZPL emission to photonic resonators with a high ratio of quality
factor (Q) to mode volume V [60, 77, 214]. The cavity enhances the ZPL emission
on two grounds. First, the cavity provides a well-defined output mode, ideally a
Gaussian, leading to improved detection efficiency [39, 255]. Secondly, utilising the
Purcell effect [86], a cavity resonant with the ZPL enhances the total transition rate
and likewise the proportion of the photons emitted into the ZPL [77].

Resonant enhancement of the ZPL has been demonstrated in photonic crystal cav-
ities [82, 83, 398], hybrid- [78, 84, 217] and microring resonators [81]. While these
resonators offer a large Purcell factor, the NV centres suffer from poor optical coher-
ence, compromising the photon indistinguishability. This inhomogeneous broadening
of the ZPL is a consequence of a fluctuating charge environment presumably caused by
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Figure 4.1.: Schematic of the diamond membrane embedded into an open Fabry-Perot cavity.
In the diamond-confined regime, the vacuum electric field is strongly confined to the diamond.
Furthermore, the field profile possesses an anti-node across the diamond-air interface. In the
air-confined regime, there is a field node across the diamond-air interface, and the vacuum
electric field is strongly confined to the air-gap.

fabrication-induced surface damage [77, 214]. Increasing the quality of the crystalline
environment has proven to be beneficial [158, 171, 178].

Open Fabry-Perot microcavities offer an alternative to photonic crystal cavities.
The required fabrication is relatively modest: only micron-sized single-crystalline
membranes of the host material are required. A reasonably small mode-volume and
a high Q-factor can be achieved. Furthermore, the Fabry-Perot cavity offers full in
situ spatial and spectral tunability along with a Gaussian output mode [77, 255, 399].
As a consequence, open Fabry-Perot cavities offer an attractive platform to enhance
the emission from various single-photon emitters embedded in solid-state hosts [77,
96, 97, 100–102, 115, 214, 400, 401].

In this work, we present a diamond membrane embedded in a Fabry-Perot micro-
cavity operating in the so-called “diamond-confined” regime [87, 100]. In this regime,
there is a vacuum-field anti-node at the diamond-air interface – the design is prone
to scattering losses at this interface (Fig. 4.1). Despite this loss channel, Q-factors
of more than 105 were observed for short cavity lengths at which the mode volume
is ≃ 3.9λ30 (λ0 is the NV ZPL free-space wavelength). The high Q-factors render
the cavity very sensitive to small losses, allowing the different loss mechanisms to be
quantified. The measured Q-factor along with the low scattering-cross-section at the
diamond surface lead us to predict a Purcell factor greater than 150 for the ZPL.
Although the motivation behind this work is to enhance the flux of coherent photons
from NV centres in diamond, the theoretical Purcell factor depends solely on the cav-
ity parameters. Therefore, similar results would be expected for other defect centres
in crystalline hosts provided the surface losses are reduced sufficiently.
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4.2. Methods

At the core of this experiment is the open microcavity, depicted schematically in
Fig. 4.1. The device used in this experiment is conceptually the same as the device
used in Refs. [77, 255, 381]*, but uses a different combination of top and bottom
mirror and a different diamond membrane. The cavity mirrors are created from a
SiO2 substrate, where, for the top mirror, a CO2-laser ablation-technique was used
to create a matrix of atomically smooth craters with a radius of curvature Rcav ∼
10 . . . 30µm [393, 402]. The profile of the crater was determined using a laser-scanning
confocal-microscope image (Keyence Corporation, resolution ∼ 200 nm), as displayed
in Fig. 4.2 (a). The surface profile of the radial cross-section of the curved mirror can
be described by

z(r) = −d · exp

(
− r2

2Rcav · d

)
. (4.1)

Fitting a truncated Gaussian (Eq. 4.1) to the surface profile yields
Rcav = (19.7± 2.5)µm and a depth d = 0.64µm. By comparison, a circular
fit to the crater yields Rcav = 21µm.
After fabrication, the mirror substrates were coated with a high-reflectivity

distributed-Bragg-reflector (DBR) coating (ECI evapcoat), consisting of 14 (15) λ/4
layers of SiO2 (n = 1.46) and Ta2O5 (n = 2.11) for the top (bottom) mirror, respec-
tively, supporting a target finesse F ∼ 104. The reflective coatings were characterised
using the transmission from a white-light source, normalised to the transmission of
an uncoated SiO2 substrate (Fig. 4.2 (b)) [255]. Using a transfer-matrix-based calcu-
lation (Essential Macleod) we were able to reconstruct the reflective stopband based
on a λ

4 model (blue line Fig. 4.2 (b)). By further allowing for a 3% tolerance on each
individual layer thickness, the exact mirror structure could be reconstructed (red line
Fig. 4.2 (b)). From this calculation, we deduce a stopband centre of λc,bot = 625 nm
for the bottom mirror. Following the same approach for the top mirror yield a stop-
band centre at λc,top = 629 nm.
Following previously reported fabrication procedures, a diamond micro-membrane

with dimensions ∼ 35× 35× 0.7µm3 was fabricated from a 50µm thick commercially
available single-crystalline diamond (Element six) using electron-beam lithography
and inductively coupled plasma etching [152, 159, 305, 403]. Post fabrication, the
diamond membrane was transferred to the bottom DBR using a micro-manipulator.
The small contact area, combined with a low surface roughness, facilitates bonding of
the diamond membrane to the bottom mirror via van der Waals interactions [77, 255].
After transfer, the surface quality of the top-surface of the diamond membrane was
investigated by atomic force microscopy (AFM) (Fig. 4.3 (a)). The surface profile
(green line Fig. 4.3 (b)) is composed of large-scale (period ∼ µm) surface waviness,
which we attribute to polishing marks, superimposed by small-scale surface rough-
ness (period ∼ nm). To quantify further the diamond surface, we disentangle the
surface waviness from the surface roughness by computing the Fourier transform of
the measured surface profile. Here, we attribute surface features with spacial fre-
quency ξ ≤ 2µm−1 (spatial wavelength λ ≥ 0.5µm) to surface waviness, and features

*See Chapter 5 and Chapter 6.
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(a)

(b)

λNV = 637.7 nm λc = 625 nm

λoff-res = 532 nm

d

D

Figure 4.2.: (a) The left panel shows a laser-scanning confocal-microscopy image of the
crater used in this experiment. The geometrical parameters of the cavity were extracted by
analysing the surface profile along the axis of the crater (right panel). The radius Rcav =
(19.7 ± 2.5)µm and crater depth d = 0.64µm were extracted from a Gaussian fit (Eq. 4.1).
A circular fit yields Rcav = 21.8µm. (b) Transmission measurement of the DBR mirror
using a white-light source normalised to the transmission through an uncoated SiO2 chip.
By fitting the reflectivity spectrum using a transfer-matrix based refinement algorithm, the
stopband centre was determined to lie at λc = 625 nm.

with ξ > 2µm−1 to surface roughness. From this analysis, we deduce surface wavi-
ness with root-mean-square (RMS) amplitude Wq = 1.64 nm (pink line Fig. 4.3 (b))
and RMS surface-roughness of σq = 0.32 nm (red line Fig. 4.3 (b)). We next extend
this analysis to the entire AFM scan. Fig. 4.3 (c) shows the residual surface roughness
after removing the low-frequency components (ξ ≤ 2µm−1). The green rectangle
highlight indicates a relatively large 4.0 × 3.5µm2 clean area (i.e. free of dust and
contaminations) with Wq = 1.61 nm and σq = 0.31 nm. For comparison, the typical
cavity beam waist at the diamond w0,I amount to w0,I ≃ (1.02 . . . 1.22) µm. *

After characterisation of the DBRs and the diamond membrane, the bottom
mirror was attached to the top-surface of a three-axis piezo-electric nano-positioner
(attocube), and the entire piece was then mounted inside a homebuilt titanium cage
(Fig. 4.4). The top mirror was glued onto a titanium holder; the holder was attached
to the top of the cage with a thin layer of indium between holder and cage. The soft
indium acts as an adjustable spacer allowing the relative tilt between the two mirrors
to be minimised. The piezo-electric positioners allow the microcavity length and

*Calculated according to Eq. 4.10 for modes qair = 4 . . . 10 (Fig. 4.8 (b)).
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(a)

(b)

(c)

Figure 4.3.: (a) AFM measurement of the diamond membrane. Large-range structures
attributed to polishing marks are visible. (b) Measured surface profile (green line) along
the line-cut indicated in (a). Computing the Fourier transform of the surface profile, and
removing the high-frequency components (ξ > 2µm−1), reveals a surface waviness with
RMS amplitude Wq = 1.64 nm (pink line). The red line shows the residual short-range
(ξ > 2µm−1) surface-roughness with RMS amplitude of σq = 0.32 nm. (c) Residual surface
roughness of the image in (a) computed by removing the low-frequency components. The
green rectangle indicates a clean area (4.0× 3.5µm2) with Wq = 1.61 nm and σq = 0.31 nm.
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Figure 4.4.: Schematic of the experimental setup. The bottom DBR mirror is mounted on
top of a set of three-axis nanopositioners and placed inside a titanium cage. The top mirror
is rigidly attached to the cage, whit a thin layer of indium controlling the relative tilt angle
between the mirrors. The cavity is placed on a precision mechanical stage. The excitation
lasers are fibre coupled and injected via independent arms. An appropriate combination
of filters fluorescence from the fibres. PL and reflected light from the cavity collected in a
back-scattering geometry.

lateral position of the microcavity mode to be adjusted in situ [255, 385]. The cage
is placed on top of a high-precision mechanical translation stage (Newport, M-562-
XYZ), allowing for moving the cavity with respect to the external optics. Although all
measurements in this work were carried out at room temperature, the compact design
facilitates experiments in a 4K liquid-helium bath-cryostat [77, 99, 102, 115, 399, 404].
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4.2.1. The Cavity Mode-Structure

As a first characterisation, we aim to extract the geometrical parameters of the cavity
by using a simple model based on Gaussian optics [385]. The radius of curvature,
Rcav, of the curved mirror can be extracted by analysing the spacing between the
fundamental (q, 0, 0) and higher-order (q, n,m) modes. The cavity length, Leff, the
mode number (q, n,m) and Rcav are linked via [255, 385]

Leff(q, n,m) =

[
q +

n+m+ 1

π
cos−1

(√
g
)]

· λ0
2
, (4.2)

where g = 1 − Leff(q,n,m)
Rcav

. Here, the effective cavity length Leff is defined as the
physical separation between the two mirrors , the air-gap, plus the field penetration
depth into each mirror upon reflection [94, 255].
To put photons into the cavity mode, we rely on the diamond as an internal light

source [255]. We pump the diamond with a green continuous-wave laser (Laser Quan-
tum Ventus532, λ = 532 nm, P = 30mW) whose wavelength lies on the blue-side of
the stopband of the DBRs (Fig. 4.2 (b)). We collect the resulting photoluminescence
(PL), here background PL from the diamond, while stepwise reducing the width of
the air-gap ta by applying a positive voltage to the z-piezo (Fig. 4.5). Working in a
backscattering geometry, the PL signal is coupled into a single-mode fibre (Thorlabs
630HP) and then sent to a spectrometer (Princeton Instruments). A long-pass filter
(Semrock LP03-532RS-25) and a dichroic mirror (Semrock, FF560-FDi01) are used
to filter out the excitation laser from the PL signal [255].
The cavity mode structure exhibits two interesting features: a non-linear dispersion

(an obvious feature in Fig. 4.6) and the presence of higher-order transverse modes
(weak feature in Fig. 4.5 and Fig. 4.6). By analysing the spacing of the cavity modes
according to Eq. 4.2, we extract a radius of curvature Rcav = 21µm (Fig. 4.5), in good
agreement with the scanning confocal-microscope image shown in Fig. 4.2 (a). We note
that the detection optics were deliberately misaligned to facilitate the detection of the
higher-order modes (Fig. 4.6).
The non-linear mode dispersion can be understood conceptually with a model con-

sisting of two coupled cavities: one cavity-mode is confined to the diamond by the
bottom DBR and the diamond-air interface; the other cavity mode is confined to the
air-gap by the diamond-air interface and the top DBR. Across the diamond-air inter-
face, these two cavity modes couple and hybridise, resulting in the avoided crossings
depicted in the inset to Fig. 4.6 [87].
In this coupled diamond-air cavity model, the mode structure with changing air-

gap ta and the position of the avoided crossings depends on the exact diamond-
thickness td [77, 87, 98, 123, 255, 405]. For a cavity of length L = ta + td (Fig. 4.1),
fundamental resonances occur provided tdnd + ta = j · λ0

2 , j ∈ N. Depending on ta,d,
two regimes emerge: the so-called “diamond-confined” and “air-confined” regimes [87].
For the diamond confined modes td = (2i− 1) · λ0

4 , i ∈ N; for the air confined modes

td = i· λ0

2 , i ∈ N [85]. In the diamond confined geometry, a change in ta has a relatively
small impact on the resonant wavelength, rendering the cavity robust against acoustic
vibrations. A feature of the diamond-confined modes is that the vacuum electric-field
amplitude is higher in the diamond than in the air-gap (Fig. 4.1), leading to a relatively
high coupling strength. However, an inevitable consequence of the diamond-confined
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Linecut at 𝜆 = 631.9 nm

𝑅cav = 21.0 μm

Figure 4.5.: Centre panel: Background PL from the diamond as a function of cavity detuning
∆L under continuous-wave green illumination (λ = 532 nm, P = 30mW). The PL couple to
fundamental and higher-order cavity modes. Top panel: linecut for λ = 631.9 nm. Bottom
panel: Calculation of the cavity mode structure according to Eq. 4.2. The relative position
and spacing of the fundamental (solid lines) and higher-order modes (dotted lines) is well
reproduced using Rcav = 21µm.

modes is that the vacuum electric-field possesses an anti-node at the diamond-air
interface [100], thus exacerbating losses associated with scattering or absorption at
the diamond-air interface [255]. Conversely, in the air confined geometry, a small
change in ta has a relatively large impact on the resonant wavelength, rendering the
cavity sensitive to acoustic vibrations. A feature of the air-confined modes is that
the vacuum electric-field is higher in the air-gap than in the diamond, reducing the
coupling strength to an NV centre in the diamond [85]. In this case, there is a node in
the vacuum electric field at the diamond-air interface such that the design is relatively
insensitive to losses at the diamond-air interface [255].

Using a one-dimensional transfer-matrix simulation (Essential Macleod) we
simulate the cavity mode-structure for different diamond thicknesses. We find an
excellent agreement between the experiment (inset Fig. 4.6) and the simulation
(background Fig. 4.6) for td = 733 nm. In this experiment, the width of the air-gap
was made reduced until the two mirrors were in contact (at which point the resonant
wavelengths of the cavity no longer depend on the applied piezo voltage). By
considering the depth of the crater (d ∼ 0.64µm from Fig. 4.2 (a)), we extract a
minimal mode number qair = 3 for the mode just out of contact. Here, qair is the
mode index in air, starting at qair = 1 for the first resonance, corresponding to
ta = 129 nm for λ0 = 637.7 nm. Both qair = 1, 2 are inaccessible in this experiment
on account of the depth of the top mirror-crater. The middle and rightmost panel
in Fig. 4.6 show simulations for a diamond-confined (td = 2.75 · λ0

nd
= 727.4 nm)
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Figure 4.6.: The inset in the leftmost panel shows PL as a function of cavity length under
green excitation (λ = 532 nm, P = 30mW). The non-linearity of the mode dispersion
depends on the exact diamond-thickness. The experimental mode-structure (background)
is well reproduced using a one-dimensional transfer-matrix simulation with td = 733 nm,
corresponding to td = 2.77 · λ0

nd
with λ0 = 637.7 nm. The vertical red dashed line indicates

the depth of the crater. The horizontal orange line indicates λ0 = 637.7 nm. The middle and
rightmost panels show similar simulations for a diamond-confined (td = 2.75 · λ0

nd
= 727 nm)

and an air-confined (td = 3.00 · λ0
nd

= 794 nm) cavity, respectively. By comparison to the
simulations, the geometry used in this experiment is clearly diamond-confined at the NV
ZPL wavelength (orange dashed line, see main text for details).

and for an air-confined (td = 3.00 · λ0

nd
= 793.5 nm) geometry, respectively. Here,

λ0 = 637.7 nm corresponds to the NV ZPL and nd = 2.41 is the refractive index of
diamond. By comparing the experimental and simulated mode-structure it is clear
that at the NV ZPL wavelength, the cavity operates in a diamond-confined regime.

4.2.2. The Finesse and the Quality-Factor

The round-trip performance of the Fabry-Perot cavity is characterised by the finesse
F defined as [90, 104, 106]

F =
2π

Ltot
, (4.3)

where Ltot = Tt + Tb + Lcav is the fractional energy loss per round-trip. Here, Tt(b)
is the transmission of the top (bottom) mirror and Lcav is the cavity round-trip-
loss caused by additional loss mechanisms such as scattering or absorption. A reliable
measurement of the finesse typically requires precise knowledge of the cavity linewidth
over several free-spectral ranges (FSR). Such an experiment becomes impractical for
high F-values – it requires a high dynamic-range. Conversely, a measurement of the
Q-factor, Q = ν

δν , requires knowledge of the linewidth δν for one cavity-mode only, a
simpler experiment. For a cavity with perfect mirrors, the Q-factor is linked to the



4.2. Methods 69

finesse via

Q =
2Lcav

λ
· F . (4.4)

In the experiment, we tune the thickness of the air-gap ta; td remains constant. For
fixed λ, provided the field penetrations into the mirrors remain constant, we write
Lcav = ta + L0, where ta = qair · λ2 . Here, td and the field penetration into the mirrors
are included in L0. Thus, Eq. 4.4 reduces to [406]

Q = qair · F +Q0 . (4.5)

In other words, a measurement of the Q-factor for subsequent modes (qair and qair+1)
determines the cavity finesse.

4.2.3. Extracting the Cavity Linewidth

To determine the cavity linewidth δν, and thus the Q-factor, we couple the output of
a tunable diode-laser (Toptica DL Pro 635, λ = 630 ... 640 nm and δν ≲ 500 kHz,
P = 800µW) into the cavity. Keeping the excitation frequency νlaser fixed, we
tune the cavity length across the cavity resonance while monitoring the reflected
signal using a photodiode and a fast oscilloscope (LeCroy WaveRunner 606Zi). To
calibrate the displacement of the piezo, and thus extract the cavity linewidth, we
use an electro-optic modulator (EOM, Jenoptik PM635) to create laser side-bands
at νlaser ± 5GHz [405]. Here, we assume a linear behaviour of cavity length with
piezo-voltage across the 10GHz bandwidth (corresponding to a change in air-gap,
∆ta = 0.056 nm). To extract reliably the cavity linewidth, the cavity is scanned
across the resonance 500 times, each scan fitted independently with the sum of three
Lorentzians. The Q-factor is defined as the average value of all 500 scans. Fig. 4.7 (a)
shows the spread of the individually extracted Q-factors for mode number qair = 8.
Using a bin-size of 200 for the values of Q, the data follow a Gaussian centred around
Q = 166 900 with standard deviation σ = 870. The blue line in Fig. 4.7 (b) shows the
average reflectivity data of all the 500 scans. Fitting a triple Lorentzian (orange line)
yields an averaged cavity linewidth of δνavg = 2.86GHz, which gives Qavg = 165 650,
in good agreement with the average of the individual scans.
We present some details of the experiment – a schematic of the experimental setup

is shown in Fig. 4.4. The linearly polarised red excitation-laser was passed through
a λ/2-plate (B. Halle) before entering the cavity. A pellicle beam-splitter (Thorlabs
BP145B1) was used to separate the reflected signal from the incident laser-beam.
A linear polariser was used to isolate one of the two orthogonally-polarised cavity-
modes in the reflected signal. (The mode-splitting arises either from a geometrical
asymmetry of the curved mirror [407, 408] or from birefringence in the material com-
prising the cavity [409, 410]). The cavity was scanned at a typical speed of 8.7µm/s
(1.56GHz/s). In the bare cavity, i.e. in a cavity without diamond membrane, for
slow scanning speeds (≲ 3GHz/s) evidence of photothermal bistability [104, 411] was
observed. The origin of this effect is likely the weak absorption in the mirror coating
on the order of 100 ppb [412]. However, as these losses are negligible compared to the
losses introduced by the diamond, the bistability was not investigated further. We
note that photothermal bistability was not observed once the diamond membrane was
included in the cavity.
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Figure 4.7.: (a) Spread of 500 individual Q-factor measurements on the diamond for mode
qair = 8. The data follow a Gaussian distribution centred at Q = 166 900 with a standard
deviation σ = 870. (b) Reflection of the cavity as a function of cavity detuning for λ =
631.9 nm. The blue data-points are the average of all the 500 scans displayed in panel (a).
The red line shows a triple Lorentzian-fit, where the side-peaks at νlaser ± 5GHz results
from a frequency modulation which is employed as a frequency ruler. The black line is the
reflected signal without any frequency modulation.

4.3. Results on Q-Factor

4.3.1. Bare Cavity

In order to test our understanding of the mirrors themselves, we characterise initially
the Q-factor of the bare cavity, i.e. a cavity without a diamond membrane. Fig. 4.8 (a)
shows the behaviour of the Q-factor as a function of increasing mode number qair for
fixed λ = 631.9 nm. We observe a linear increase in Q-factor for qair ≤ 7 as predicted
by Eq. 4.5. We attribute the drop in Q-factor for qair > 8 to clipping losses at
the top mirror [104]. Performing a linear fit for qair < 8 yields a bare-cavity finesse
Fexp

bare = 42 500 ± 4 200. The simulations predict F sim
bare = 44 410, in agreement with

the experimental result to within the measurement uncertainty.

Next, we attempt to describe the dependence of the Q-factor of the bare cavity on
mode number qair. Upon changing the cavity length L, the intensity beam waist at
the curved mirror wI evolves according to [93]

wI =

√
λRcav

π
·
(
Rcav

L
− 1

)− 1
4

. (4.6)

Clipping losses occur when this beam waist becomes larger than the spherical extent
of the curved top-mirror [104, 105, 123]. In principle, a small tilt-angle θ between the
two mirrors will exacerbate clipping [413]. From a Gaussian optics approach [390], we
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(a)

(b)

λ = 631.9 nm

λ = 631.9 nm

Figure 4.8.: (a) In black, the behaviour of the Q-factor with increasing mode number qair
for the bare cavity. The Q-factor increases linearly for qair ≤ 8, after which clipping starts
to occur. The orange line is the calculated Q-factor using a 1D transfer-matrix model. (b)
Introducing the diamond into the cavity reduces the Q-factor (black data-points). Calcu-
lating the theoretical Q-factor using a lossless model (orange) and scattering with surface
roughness σq = 0.3 nm (blue) fail to reproduce the experimental values. The red line repre-
sents Qsim −∆Q0 with ∆Q0 = 114 000, and describes the experiment well. For both panels,
the black shaded regions account for the uncertainty in the fit parameters, while for the
simulations, the shaded regions account for the uncertainty in the extracted tilt angle. For
details see main text.

derive a model to estimate the clipping losses*

L̃clip = e
− D2

2w2
I ·

1 +(aD
w2

I

)2
 , (4.7)

where a = Rcavθ and D is the diameter of the spherical extent of the mirror. In this
model, the first term accounts for clipping [104, 123, 390] while the second term is a

*The full derivation can be found in AppendixB.
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(a) (b)   

Figure 4.9.: (a) Extracting the relative tilt angle θbare = 0.27 from a minimum mean-
square (MMSE) analysis using Eq. 4.7 for the bare cavity. The red line indicates the 95%
confidence interval, and gives a maximum tilt-angle of 0.33◦. (b) A similar MMSE analysis

on the diamond yields θd =
(
0.37+0.15

−0.26

)◦
, where the upper and lower limits are calculated

from the 95% confidence interval.

correction factor accounting for the tilt by angle θ. In this model, the tilt results in
a small lateral displacement of the cavity mode thereby increasing the clipping loss.
Using the exact mirror-design obtained from Fig. 4.2 (b), we simulate the behaviour
of the cavity using a lossless 1D transfer-matrix simulation (Essential Macleod). The
clipping losses are incorporated into the model according to*

Qsim =
4πLcav

λ
·

(
1

Lsim + Lclip

)
. (4.8)

To quantify the clipping losses, we perform a minimum mean-square error (MMSE)
analysis, and find an excellent agreement using D = 5.9µm and θbare = 0 . . . 0.27◦

(Fig. 4.9 (a)). Including a 95% confidence interval yields a maximum tilt-angle of
0.33◦. The value of D is in good accordance with the scanning confocal-image dis-
played in Fig.4.2 (a). The agreement between experiment and simulation indicates
that intrinsic losses in the mirrors are negligibly small compared to losses introduced
by the diamond, as discussed below.

4.3.2. Diamond Membrane in the Cavity

Having established the intrinsic losses in the mirrors themselves, we introduce next
the diamond membrane into the cavity by moving the bottom DBR in a lateral
direction. Compared to the bare cavity, we observe a reduction in both Q-factor and
finesse (smaller ∆Q

∆qair
) with respect to the simulation, (Fig. 4.8 (b)). Conceptually, the

diamond effectively reduces the reflectivity of the bottom DBR, thus leading to a drop
in the finesse (Eq. 4.3). Performing a linear fit for qair < 8 yields Fexp

diamond = 11 500±
1 100. As before, we observe clipping for qair > 8. To quantify the clipping loss, we
replace L in Eq. 4.10 by Ld

cav = ta + td
nd

[123] and apply Eq. 4.7 with D = 5.9µm.

*This is derived in AppendixC.
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From a MMSE analysis, we calculate θd =
(
0.37+0.15

−0.26

)◦
, where the high- and low

limits are calculated from the 95% confidence interval. The larger tilt angle might
suggest a small thickness-gradient in the diamond membrane [381].
Contrary to the bare-cavity case, a simulation using a lossless model (orange curve

Fig. 4.8 (b)) fails to reproduce the experimental Q-factors: the diamond membrane
introduces additional loss mechanisms. Both the simulated Q-factor and the finesse
(F sim

perfect = 17 450) are larger than observed experimentally. We therefore need to
introduce additional losses into our model. Working in a diamond-confined regime,
we expect these losses to occur at the diamond-air interface.
We investigate the role of scattering at the diamond-air interface. To this end,

we introduce a roughness of σq = 0.3 nm at the diamond-air interface into the sim-
ulation [389]. The choice of σq is motivated by the AFM measurement displayed in
Fig. 4.3 and from previously reported measurements [77, 159, 255, 403]. The blue
line in Fig. 4.8 (b) shows that scattering reduces both the Q-factor and the finesse
(F sim

scat = 10 690). Interestingly, we now observe that the simulated finesse, F sim
scat is

in good accordance with the experimentally determined finesse Fexp (equal ∆Q
∆qair

in

Fig. 4.8 (b)), while the simulated Q-factor is larger than the experimentally deter-
mined value. We rewrite Eq. 4.5

Qexp = Qsim −∆Q0 . (4.9)

This pragmatic approach gives an accurate representation of the experiment (red line
in Fig. 4.8 (b)) with ∆Q0 = 114 000.
We now aim to understand the origin of the losses introduced by the diamond, in

particular the origin of the rigid reduction in Q-factor described by the ∆Q0-term.
By measuring successive cavity modes for fixed λ and assuming a Gaussian cavity
mode, the beam waist at the bottom mirror evolves according to [123]

w0,I =

√
λ

π
·
(
LRcav − L2

)1/4
, (4.10)

where L = ta + td
nd

, thus probing a slightly larger surface area of the diamond [93].
However, the standing-wave pattern at the diamond-air interface remains unaltered.
Alternatively, changing the resonant λ changes the standing wave inside the cavity.
As scattering and absorption depend on the amplitude of the electric field, tuning
the field maxima across the diamond-air interface may reveal the source of surface
loss [391].
To this end, we measure the dependence of the Q-factor on excitation wavelength

λ for mode qair = 4 (Fig. 4.10 (a)). We observe a drop in Q-factor for wavelengths
away from the stopband centre (λc = 625 nm, Fig. 4.2 (b)). As before, a lossless
model (Fig. 4.10 (b)) fails to reproduce the absolute value of the Q-factor as well as
the dependence on λ.

We consider enhanced diamond-related losses, surface scattering and absorption
in the diamond itself, as the origin of ∆Q0. In Fig. 4.10 (d) we increase the surface
roughness to σq = 0.47 nm. Next, in Fig. 4.10 (e) we include absorption in the diamond
by varying the value of the extinction coefficient κ [389]. Finally, in Fig. 4.10 (f) we
combine surface scattering (σq = 0.3 nm) with absorption (κ = 5.6 · 10−6). All three
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(a) (b) (c)   

(d) (e) (f)   

Figure 4.10.: (a) The measured Q-factor as a function of wavelength for qair = 4. The
Q-factor drops for excitation wavelengths away from the stopband centre. The red line is
a guide to the eye. (b) A calculation of the wavelength dependence of the Q-factor for a
lossless cavity. (c) Introducing scattering with surface roughness σq = 0.3 nm reproduces the
general behaviour of the experiment, but not the absolute numbers. (d)-(f) Calculations of
the Q-factor with increased surface scattering (σq) and absorption (κ).

simulations accurately account for the Q-factor at short λ. However, the simulations
fail to reproduce the behaviour with increasing λ. The simulations predict a minimum
Q-factor for λ ∼ 636 nm beyond which an increase in Q-factor is predicted, a feature
not observed experimentally where the Q-factor monotonically decreases for longer
wavelengths. It would appear therefore that a combination of surface roughness and
absorption cannot be responsible for ∆Q0. Furthermore, significant absorption in the
diamond is unlikely – it results in a weak dependence of the Q-factor on wavelength,
yet in the experiments there is a strong wavelength dependence.

Another factor to consider are diffraction losses. Up until this point, only one-
dimensional transfer-matrix simulations were performed; these simulations do not
consider any diffraction loss at the top DBR. In addition, for tightly confined modes,
the angular spread in k-space increases, leading to an increased loss in the DBR mirror
and thus a reduction in Q-factor [102]. To investigate this, we perform numerical
simulations (COMSOL Multiphysics) of the Q-factor as a function of Rcav and λ
(Fig. 4.11 (a)). For fixed λ (Fig. 4.11 (b)), we observe a strong dependence of Q-factor
with radius for Rcav ≲ 5−7µm. For larger radii, this dependence is weak, and the Q-
factor saturates at Q = 360 000 in good agreement with the one-dimensional transfer-
matrix simulations. We therefore conclude that diffraction losses at the top mirror are
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(a) (b)

Figure 4.11.: (a) Calculated Q-factor as a function of wavelength and radius of curvature
Rcav for td = 733 nm and qair = 4. (b) The blue and black lines show the Q-factor at the
stopband centre (λc = 625 nm) and for λ = 631.9 nm, respectively. The significant drop in
Q-factor for Rcav ≲ 5− 7µm is attributed to clipping losses at the top mirror.

negligible, that the one-dimensional simulations provide reliable predictions even of
the behaviour of the three-dimensional cavity, and that diffraction is not responsible
for ∆Q0.

Based on this understanding, we simulate the cavity Q-factor by including a scat-
tering layer at the diamond-air interface with σq = 0.3 nm (Fig. 4.10 (c)), taking the
absorption in the diamond and likewise any diffraction losses to be negligibly small.
This approach reproduces the experimentally observed decrease of the Q-factor with
λ.
This analysis suggests that close to the stopband centre, scattering at the diamond-

air interface reduces the Q-factor from an ideal value of 375 540 to 229 330. An addi-
tional loss mechanism, which results in the ∆Q0-term, reduces the Q-factor further to
a value of 141 100. We note that if we assume that the experimental finesse matches
the simulated finesse at all wavelengths then ∆Q0 has a small wavelength dependence,
increasing monotonically by about 15% from λ = 630 nm to λ = 640 nm (Fig. 4.12).

The microscopic origin of the ∆Q0-term is not known precisely. We speculate that it
arises as a consequence of the waviness in the profile of the diamond surface (Fig. 4.3).
The spatial frequency of the waviness is comparable to that of the cavity mode – the
waviness does not scatter in the same way as the surface roughness. Compatible
with this hypothesis is the observation that the Q-factor is position-dependent: the
measured Q-factor was rather low at certain locations of the diamond membrane. In
a perturbation picture [88, 90] the waviness mixes the fundamental mode with modes
at higher frequencies. The waviness has a small spatial frequency such that it may
tend to ad mix lossy higher lateral modes*. It is an open question how the waviness
might result in a rigid reduction of the Q-factor according to Eq. 4.9.

*A toy model describing this mode mixing is presented in AppendixD.
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(a) (b) (c)   

Figure 4.12.: (a) Simulated finesse F as a function wavelength λ for td = 733 nm with σq =
0.3 nm. The electric field anti-node across the diamond-air interface minimises the finesse
for λ ≃ 635 nm. For λ away from 635 nm, the vacuum electric field amplitude decreases,
leading to less scattering and a larger finesse. (b) Simulated Q0 as a function of λ. (c) By
assuming F sim

scat ≃ Fexp for all λ leads to a 15% monotonic increase in ∆Q0.

4.4. Prediction on the Purcell Factor

Improvements in the optical properties of an NV centre in a resonant microcavity
depend on the Purcell factor [86]. Based on the experimental results, we investigate
the potential Purcell factors in a cavity of this type. To do this, we make the assump-
tions that better fabrication can eliminate the losses implied in the ∆Q0-term; that
the surface roughness of σq = 0.3 nm is already excellent – some surface scattering is
therefore inevitable; and that the absorption losses in the diamond are negligible; and
that we work with the mirrors from the experiment with their slight imperfections.
We need to consider the vacuum-field standing wave inside the cavity. Fig-

ure 4.13 (a) shows the profile of the vacuum electric-field for a diamond-confined
(td = 2.75 · λ0

nd
) and air-confined (td = 3.00 · λ0

nd
) cavity, respectively. Here,

λ0 = 637.7 nm. For the diamond-confined geometry, there is a field maximum at
the diamond-air interface. Surface scattering depends on the amplitude of the elec-
tric field, thus, for λ = 637.7 nm scattering is maximised resulting in a minimum
Q-factor. For λ away from 637 nm, the field amplitude goes down, thus the losses
are reduced and the Q-factor goes up. Fig. 4.13 (b) and (c) show the calculated
behaviour of the Q-factor over a large range of λ for a diamond- and air-confined ge-
ometry, respectively. Introducing scattering reduces the Q-factor significantly for the
diamond-confined geometry, while for the air-confined geometry, the Q-factor remains
relatively unaltered.
We calculate the expected Purcell factor [86] for our device. To start, we simulate

the vacuum electric-field distribution for a one-dimensional cavity using the same
transfer-matrix algorithm used to simulate the Q-factor (Essential Macleod). For a
Gaussian cavity-mode, the vacuum electric-field is quantised according to [255]∫

cav

ϵ0ϵR(z)|E⃗vac(z)|2dz
∫ 2π

0

dϕ

∫ ∞

0

re−r2/2w2
I dr

= 2π · 1
4
w2

I

∫
cav

ϵ0n
2(z)|E⃗vac(z)|2dz =

ℏω
2
.

(4.11)
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Air Confined

Diamond Confined Air Confinedλ0 = 637.7 nm λ0 = 637.7 nm

(a)

(b) (c)

Diamond Confined

Figure 4.13.: (a) The vacuum electric-field distribution for a diamond-confined (top, td =
2.75 · λ0

nd
= 727 nm) and air-confined (bottom, td = 3.00 · λ0

nd
= 794 nm) geometry obtained

from a one-dimensional transfer-matrix simulation using the mirror design extracted from
Fig. 4.2 (b). The diamond-confined case exhibits a field anti-node at the diamond-air in-
terface, while the air-confined geometry exhibits a field node at the diamond-air interface.
(b)-(c) Simulation of the Q-factor as a function of wavelength for diamond-confined (b)
and air-confined (c) geometries. Introducing surface scattering with σq = 0.3 nm reduces
the Q-factor in the diamond-confined case, while for the air-confined geometry, the Q-factor
remains relatively unaltered.

Here, we take ϵR = n2d and assume a constant beam waist w0,d ≃ 1.0µm (qair = 4)
along the length of the cavity, calculated from Eq. 4.10. Inside the diamond, we obtain
a maximum |E⃗vac| = 54.73 kVm−1. For an emitter located at r⃗ = r⃗0, the effective
mode-volume is calculated according to [124, 414]

Veff =

∫
cav

ϵ0ϵR(r⃗)|E⃗vac(r⃗)|2d3r
ϵ0ϵR(r⃗0)|E⃗vac(r⃗0)|2

=
ℏω/2

ϵ0ϵR(r⃗0)|E⃗vac(r⃗0)|2
.

(4.12)
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Numerically, we obtain Veff = 54.17 ·
(

λ0

nd

)3
. For the experimental geometry,

Qsim
σq=0.3 nm = 221 000 for λ0 = 637.7 nm, from which we deduce

FP = 1 +
3

4π2
·
Qsim

σq=0.3 nm

Veff
·
(
λ0
nd

)3

= 309 . (4.13)

The probability of emission into the cavity mode for an emitter with 100% quantum
efficiency is given by the β-factor:

β =
FP − 1

FP
= 0.9968 . (4.14)

We note that the Purcell factor is independent of any emitter properties: the calcu-
lation is based solely on the experimental cavity parameters [61].

4.4.1. Applying the Purcell Factor on an NV Centre

Next, we apply the calculated Purcell factor to an NV centre: we are interested in
calculating the emission rate into the ZPL. We assume that the NV centre’s optical
dipole is aligned along the polarisation-axis of the cavity mode. In the absence of the
cavity, the excited-state decay-rate is γ0, consisting of radiative decay into the ZPL
(rate ξ0γ0 where ξ0 is the Debye-Waller factor) and all other decay processes (rate
(1− ξ0)γ0). Tuning the cavity on resonance with the ZPL enhances the ZPL emission
by FP while the emission into the phonon-sideband remains unaltered. Therefore, in
the presence of the cavity, the decay rate becomes

γcav = FPξ0γ0 + (1− ξ0)γ0 , (4.15)

where FP is defined according to Eq. 4.13 [214]. Taking the ratio of the decay rate in
the cavity to that of free space yields

γcav
γfree

=
τ0
τcav

= 1 + ξ0 (FP − 1) , (4.16)

where τcav is the radiative lifetime in the cavity. Taking the unperturbed lifetime
τ0 = 12.6 ns and ξ0 = 2.55% [77] along with FP = 309, Eq. 4.16 predicts a reduction
in lifetime to τcav = 1.42 ns. The reduction in lifetime results in a broadening of the
homogeneous linewidth from ∆νfree =

1
2π · γ0 = 12.6MHz to

∆νZPL
cav =

1

2π
·
[
1 + ξ0 (FP − 1)

]
· γ0 = 112MHz , (4.17)

rendering the NV less sensitive to spectral wandering. We next calculate the efficiency,
ηZPL, of emitting a photon into the ZPL [214];

ηZPL = FP · ξ0γ0
γcav

=
ξ0FP

ξ0 (FP − 1) + 1
= 89.0% . (4.18)

Finally, we estimate the cooperativity of the ZPL, CZPL, for our system. Using the
definition [214]

FP = 1 +
CZPL

ξ0
(4.19)
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yields CZPL = 7.8. This cooperativity is larger than those achieved so far using an
open microcavity. Neglecting inhomogeneous broadening, CZPL = 0.90 (D. Riedel et
al [77]) and CZPL = 0.08 (M. Ruf et al [214]). We note that in practise inhomogeneous
broadening (rate γ∗) reduces the value in the experiment (γ0 → γ0 + γ∗ [58, 113]) to
CZPL = 0.011 (γ∗ = 2π × 1GHz [77]) and CZPL = 0.0067 (γ∗ = 2π × 190MHz [214]),
respectively.
Alternatively, the NV-cavity coupling can be described with the Jaynes–Cummings

Hamiltonian* in terms of {gZPL, κ, γ0}: where gZPL = dNVEvac is the NV-cavity
coupling rate, κ is the cavity decay rate and γ0 is, as before, the spontaneous emission
rate [30, 125]. Using dNV/e =

√
ξ00.108 nm [77], we deduce

gZPL = 2π × 228MHz

κ = 2π × 2.13GHz

γ0 = 2π × 12.63MHz ,

(4.20)

firmly placing the system in the weak-coupling regime of cavity QED. The condition
(κ > g > γ) is favourable for photon collection [214]. This approach results in

ηZPL =
4g2ZPL/(κγ0)

4g2ZPL/(κγ0) + 1
= 88.6% , (4.21)

and [61]

CZPL =
4g2ZPL

κγ0
= 7.7 , (4.22)

and gives the same numerical value as above (Eq. 4.18 and Eq. 4.19).

4.4.2. Purcell Factor for Air- and Diamond-Confined Cavity Modes

We now compare the potential Purcell factors for diamond-confined and air-confined
cavities (compare Section 3.3). There is a trade-off: the diamond-confined cavity has
a larger Evac at the location of an optimally-positioned NV centre but is more sensi-
tive to scattering at the diamond-air surface with respect to the air-confined cavity.
Fig. 4.14 shows a comparison between the Purcell factor for a diamond-confined and
air-confined cavity (td = 2.75·λ0 and td = 3.00·λ0, respectively). In the absence of any
surface losses, the Purcell factor is significantly larger for the diamond-confined geom-
etry compared to an air-confined geometry owing to two factors: the larger effective-
length yields a higher Q-factor, and the stronger confinement of the vacuum field
to the diamond yields a lower effective mode volume. However, introducing surface
scattering (σq = 0.3 nm as before) reduces the Purcell factor for the diamond-confined
geometry, while for the air-confined geometry the Purcell factor remains roughly the
same. Despite the higher losses associated with a surface roughness of σq = 0.3 nm,
the calculations suggest that it is beneficial to work in a diamond-confined geometry
on account of the higher Purcell factor (at e.g. qair = 4, Fig. 4.14) – this will result
in a higher flux of coherent photons. An additional benefit of practical importance is
that for the diamond-confined geometry dλ

dta
= 0.11 compared to dλ

dta
= 0.27 for the

air-confined geometry with the same mode-number qair (Fig. 4.6), thus rendering the
cavity less susceptible to acoustic vibration [255].

*See Section 2.1.2 to Section 2.1.4.
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Figure 4.14.: Expected Purcell factor as a function of mode number qair for an air- and
diamond-confined geometry. The solid (dashed) lines correspond to the presence (absence)
surface scattering with roughness σq = 0.3 nm. Even in the presence of scattering, operating
in a diamond-confined geometry is beneficial on the account of the higher Purcell factor.

4.4.3. Estimating the Cavity Outcoupling Efficiency

Following Section 3.3.5, the total cavity loss-rate κ is given by

κ =
2πc

λQ
. (4.23)

For a lossless cavity, a photon can only exit the cavity via the end mirrors, i.e.
κ = κtop + κbot, where κtop (bot) is the loss-rate through the top (bottom) mirror.
For the current design mirror:

κtop =
Ttop

Ttop + Tbot
· κ = 2π × 330MHz

κbot =
Tbot

Ttop + Tbot
· κ = 2π × 1.02GHz ,

(4.24)

where Ttop (bot) is the transmission through the top (bottom) mirror. Here the dia-
mond is included as part of the bottom mirror. Surface scattering increased the cavity
loss-rate by amount κloss – the total loss-rate is now given by κ′ = κtop +κbot +κloss.
From the blue line Fig. 4.8 (b), we find κ′ = 2π × 2.13GHz (Q = 221 000 for qair = 4,
see Eq. 4.20), from which we calculate the scattering loss-rate:

κloss = κ′ − κ = 2π × 777MHz . (4.25)

Finally, the probability of a ZPL photon exciting the cavity through the top mirror
ηtot is given by

ηtot = ηZPL · κtop
κ′ + γ0

= 0.13 . (4.26)

The ultimate aim is to maximise the outcoupling efficiency, i.e. the probability of
creating a photon on the outside of the top mirror following NV decay into the ZPL.
The cavity should be made asymmetric, such that the loss-rate through the top mirror
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is larger than the loss-rate through the bottom mirror, κtop ≫ κbot. Given the high
quality of the dielectric DBRs (see Fig. 4.8 (a)) this is easy to achieve. Ideally, κtop
is also much larger than the unwanted scattering losses, κloss. For a given gZPL, γ0
and κloss, and assuming κtop ≫ κloss, the outcoupling efficiency η can be maximised
by choosing κtop = κopttop, where [102]

κopttop =

√(
1 +

κloss
γ0

)
·
(
4g2ZPL + κlossγ0

)
. (4.27)

For {gZPL, κloss, γ0} = 2π × {228MHz, 777MHz, 12.6MHz}, the values determined
here, we find

κopttop = 2π × 3.69GHz . (4.28)

Reassuringly, κopttop is larger than κloss. This results in a high ηopttot . With κtop = κopttop

we find

κopttot = κopttop + κbot + κloss = 2π × 5.49GHz , (4.29)

which leads to Qopt = 85 650 (Eq. 4.23), F opt
P = 120 (Eq. 4.13), Copt

ZPL = 3.04 (Eq. 4.19)
and

ηopttot =
4g2ZPL/(κ

opt
tot γ0)

4g2ZPL/(κ
opt
tot γ0) + 1

·
κopttop

κopttot + γ0
= 50.9% . (4.30)

In words, by a careful choice of top mirror, the probability of a ZPL photon exciting
the top mirror can be increased from 13% (Eq. 4.26) for the current design to more
than 50%. The state-of-the-art entanglement protocols of remote NV centres relies
on the detection of two ZPL photons, where the detection of the second photons
confirms a successful entanglement event [42, 43]. The success rate of this heralded
entanglement scheme scales with η2tot. Therefore, the increased detection efficiency
provided by the cavity will drastically improve the achievable entanglement rates.

4.5. Conclusions and Outlook

In this work, we have demonstrated the possibility of achieving high Q-factors in a
Fabry-Perot resonator in which the vacuum field is strongly confined to a diamond
membrane. A Q-factor of 121 700 was achieved for λ ≃ 637 nm for the minimum
mode number, qair = 4 of which Veff ≃ 3.9λ30. The Q-factor is lower than the Q-factor
expected from the geometry alone. The main source of loss in this experiment is at-
tributed to roughness and waviness at the diamond surface. The waviness, attributed
as polishing marks, can potentially be mitigated by optimised plasma etching [159]
and/or by atomic-layer deposition of a material with refractive index less than dia-
mond [123]. Deposition of SiO2 (n = 1.47) or Al2O3 (n = 1.77) will also reduce the
losses due to scattering (Fig. 4.15). We note that surface passivation has previously
been demonstrated to increase the Q-factor for GaAs resonators [99, 391, 415] albeit
via a different mechanism.
Despite the presence of surface-related losses, a Purcell factor FP = 170 is predicted

for the current design. If the waviness can be eliminated leaving the surface roughness
the same, the current design is capable of reaching FP = 309. Without the surface
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(a) (b)    

(c)

Diamond Diamond

Air Air

Figure 4.15.: (a) - (b) Coating the diamond with 5 nm SiO2 and Al2O3. The presence of
the oxide layer reduces the contrast in refractive index between the diamond and the air,
thus reducing scattering. (c) Calculation of the Purcell factor with effective mode number
qair. The reduction in scattering loss at the diamond surface is manifested by the increase
in the Purcell factor.

waviness but with the existing surface roughness, the Purcell factor is predicted to be
higher for a diamond-confined cavity compared to an air-confined cavity.
The motivation behind this work is to enhance the flux of coherent photons from

single NV centres in diamond [77], a step towards the realisation of an efficient spin-
photon interface [34]. We note that the Purcell factor presented here is universal: FP

depends solely on the cavity parameters, not on the properties of the emitter. The
versatile design of the cavity allows a wide-range of solid-state single-photon emitters
to be embedded [216], for instance, other colour centres in diamond [130, 145, 257,
258, 261, 292, 300, 301], defects in SiC [316, 319, 322, 323, 416], rare-earth ions in a
crystalline host [325, 332, 333, 417, 418] or emitters in 2D materials [419, 420].



CHAPTER 5

Cavity-Enhanced Raman Scattering for in Situ
Alignment and Characterisation of Solid-State

Microcavities

The content of this chapter is partially adapted from:
Daniel Riedel, Sigurd Fl̊agan, Patrick Maletinsky and Richard J. Warburton,
“Cavity-Enhanced Raman Scattering for in Situ Alignment and
Characterization of Solid-State Microcavities”, Physical Review Applied 13,
014036 (2020).

Abstract:
We report cavity-enhanced Raman scattering from a single-crystal diamond mem-

brane embedded in a highly miniaturised fully-tunable Fabry-Perot cavity. The Ra-
man intensity is enhanced 58.8-fold compared to the corresponding confocal mea-
surement. The strong signal amplification results from the Purcell effect. We show
that the cavity-enhanced Raman scattering can be harnessed as a narrowband, high-
intensity, internal light-source. The Raman process can be triggered in a simple way
by using an optical excitation frequency outside the cavity stopband and is inde-
pendent of the lateral positioning of the cavity mode with respect to the diamond
membrane. The strong Raman signal emerging from the cavity output facilitates
in situ mode-matching of the cavity mode to single-mode collection optics; it also
represents a simple way of measuring the dispersion and spatial intensity-profile of
the cavity modes. The optimisation of the cavity performance via the strong Raman
process is extremely helpful in achieving efficient cavity-outcoupling of the relatively
weak emission of single colour-centres such as the nitrogen-vacancy centre in diamond
or rare-earth ions in crystalline hosts with low emitter density.
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5.1. Introduction

The development of a quantum internet crucially relies on the scalable long-distance
interconnection of quantum nodes [15]. These nodes need to combine a robust storage
of quantum states and high-fidelity processing of quantum information with an effi-
cient interface to photons mediating the network links via entanglement swapping [17].
In order to achieve high entanglement rates these photons need to exhibit transform-
limited spectral linewidths, a high degree of single-photon purity and a large creation
probability per laser excitation pulse. The nitrogen-vacancy (NV) centre in diamond
constitutes a promising candidate for the stationary qubit due to its highly coher-
ent, optically addressable electron spin along with coupling to multi-qubit nuclear
spins in the immediate environment [72]. In seminal proof-of-principle experiments,
long-distance entanglement [43] and on-demand entanglement delivery [397] between
spatially separated NV centres were demonstrated. However, the entanglement rates
are limited to tens of Hertz due to the small fraction (∼ 3%) of coherent photons
emitted into the zero-phonon line (ZPL) [77]. A promising strategy to overcome this
limitation is to enhance the ZPL photon flux of NV centres via coupling to a resonant
microcavity [77, 81, 82, 214, 421].

In recent years, tunable Fabry-Perot microcavities have been widely used to enhance
the photon emission rate of various single emitters [77, 96–98, 100–102, 115, 126, 399–
401, 422–425]. The tunability of their resonance frequency in combination with a
precise lateral positioning capability allows the emitter-cavity coupling to be max-
imised in situ. A further advantage of this system is that micrometer-scale single-
crystalline host materials can be integrated into the cavity while maintaining a high
quality-factor to mode volume ratio (Q/V ) [77, 87]. For emitters which are highly
sensitive to fluctuations of the charge environment, increasing the dimensions of a
defect-free crystalline environment is clearly beneficial [158, 171]. An example of such
an emitter is the NV centre in diamond. NV centres coupled to monolithic nanopho-
tonic structures suffer from spectral fluctuations [82]; optical performance is better in
a Fabry-Perot microcavity [77].

To maximise their performance, tunable Fabry-Perot microcavities require precise
in situ mode-matching of the cavity mode to external fields. This is in principle simple
for a well-constructed fibre mirror for which a concave mirror is fabricated at the exact
centre of an optical fibre [402, 426]. However, this approach works well only when the
mode-field diameter of the cavity is matched to that of the optical fibre. Furthermore,
the mode-matching efficiency is inevitably limited by the different wavefront curva-
tures of the cavity mode and the fibre. Both mismatches are exacerbated for small
cavity-mode volumes which require small mirror radii and mode-field diameters. In-
stead, the “top” mirror can be fabricated into a silica substrate [77, 99, 115, 385, 399],
and mode-matching between the cavity and a single-mode fibre can be achieved with
a pair of lenses. In practice, this is a non-trivial task. Mode-matching is particularly
difficult if two wavelengths are involved, for instance excitation at 532 nm and NV
ZPL emission at 637 nm, on account of chromatic aberrations. In these experiments,
it is also desirable to measure the dispersion of the cavity modes (dependence of the
resonance frequency on mirror separation) and the electric field distribution of each
mode. These are laborious tasks if a single emitter is used.

We propose here that Raman scattering from the solid-state host is a valuable
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resource in aligning and optimising tunable Fabry-Perot microcavities and in char-
acterising the cavity modes. The Raman scattering is enhanced by the cavity and
gives large signals, facilitating quick optimisation, and subsequently a simple way to
determine the mode’s dispersion and lateral intensity-profile. The Raman scattering
depends at most weakly on the lateral position unlike a single emitter which benefits
from cavity enhancement only once the emitter is located at the cavity antinode.

We report here experiments on diamond from which Raman scattering is well known
and has been exploited for both quantum and photonic applications. In this case,
the Raman process involves the inelastic scattering of a single photon and a sin-
gle phonon. The creation (Stokes) or annihilation (anti-Stokes) of a phonon causes
a red- or blue-shift of the wavelength of the incoming radiation [334, 427]. Cor-
related Stokes-anti-Stokes scattering in diamond [351] led to the development of a
macroscopic phonon-based quantum memory [350, 353, 360, 361], the remote entan-
glement of macroscopic diamonds [357] and the development of a Raman laser in the
visible wavelength regime [337, 428]. On account of the large Raman shift of di-
amond (1 332 cm−1 [138]) and the high Raman gain coefficient (∼ 75GW · cm−1 at
532 nm) [344], Stokes scattering provides an excellent narrow-linewidth, high-intensity
internal light-source. We show that cavity-enhanced Raman scattering enables fast
in situ alignment of the diamond cavity-mode with respect to external optics, a fast
way of determining the dispersion of the cavity modes, and single-shot imaging of
the modes’ lateral profile. Additionally, a comparison of the signal with cavity-
enhancement to the signal without the cavity is also an indicator of the single-emitter
Purcell factor [369]. These attributes, demonstrated here on diamond, should be
generic to single-crystal solid-state hosts.

5.2. Methodology

We create thin diamond membranes out of high-purity, single-crystal diamond
(Element 6) following previously reported fabrication techniques [152, 159]. Us-
ing inductively-coupled plasma-etching and electron-beam lithography, we fabricate
square-shaped membranes with a typical thickness of 1µm and side lengths of
10 ... 50µm (Fig. 5.1 (a)) [77, 403]. The membranes are bonded to a planar SiO2 sub-
strate coated with a highly reflective distributed Bragg-reflector (DBR, 15 layers
SiO2/Ta2O5, ECI evapcoat) using a micromanipulator. The extremely smooth sur-
faces of the diamond membrane (surface roughness ≲ 0.3 nm) and the DBR surface
promote strong adherence due to van der Waals forces. The strong bonding is demon-
strated by the possibility of bending the micromanipulator needles on attempting to
displace the membrane laterally (Fig. 5.1 (a)). The bonded membranes contain NV
centres which were introduced prior to nano-fabrication by nitrogen-ion implantation
and subsequent annealing [77].

As a first step, we characterize the diamond membrane with a room-temperature
confocal microscope (i.e. without a cavity) using an objective of high numerical aper-
ture (Olympus, MPLFLN100x, NA = 0.9). A confocal scan under continuous-wave
green excitation (λ = 532 nm, P = 580µW) exhibits well-isolated bright features
which we associate with individual NV centers (Fig. 5.1 (b)) [37]. Fig. 5.2 displays a
photoluminescence (PL) spectrum for a strong excitation power (532 nm, 3.1mW)
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(a)(a) (b)
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Figure 5.1.: (a) Fabrication and transfer of diamond membranes. Left: Patterning of the
diamond using electron-beam lithography and inductively-coupled plasma-etching. Right:
Transfer of a membrane using a micromanipulator. (b)Confocal scan of a diamond mem-
brane under green excitation (Laser Quantum Ventus532, λ = 532 nm, P = 580µW) at
room temperature. The emission from single NV centres can be observed.

and long integration-time (600 s) recorded at one of these bright spots. The spectrum
shows a temperature-broadened NV ZPL at ∼ 637 nm and a broad phonon-sideband
whose spectral shape is slightly altered in our experiment due to the varying DBR re-
flectivity with wavelength and thin-film interference in the membrane. Crucially, the
spectrum contains clear Raman features: the first- and second-order Stokes features
at 572.67 nm and 600 . . . 620 nm, respectively [138]. In addition, we find a Raman
signature of carbon sp2 bonds (Raman shift ∼ 1 560 cm−1) [429], indicating either a
slight graphitic surface-contamination (which could have been created during high-
temperature annealing) or the presence of organic residue.

Here, we focus on the first-order Stokes-scattering, modelled by a three-level atom-
like system (inset Fig. 5.2) involving a ground state (|1⟩) a virtual excited-state (|2⟩)
and a metastable state (|3⟩) [337]. When the ground-state population is excited to
state |2⟩, it can de-excite via state |3⟩ by emitting a red-shifted photon and an optical
phonon of fixed energy. In our experiment, we determine a spectral shift of ∆E =
hc · 1 335 cm−1 between the pump laser and the Stokes emission: this corresponds to
the optical phonon energy in diamond.

5.2.1. The Fabry-Perot Microcavity

A schematic of our tunable microcavity is shown in Fig. 5.3 (a). A planar DBR
supporting a diamond membrane (∼ 20 × 20 × 0.8µm3) forms a cavity with a
curved DBR. We fabricate an array of atomically-smooth curved microtemplates on
a SiO2 chip via CO2-laser ablation yielding small radii of curvature (R ∼ 10µm,
Fig. 5.3 (b)) [393, 402]. Subsequently, the templates are coated with a highly reflec-
tive 14-layer Ta2O5 / SiO2 DBR. The spacing between the two mirrors can be adjusted
by applying a voltage to the z-nanopositioner beneath the bottom mirror; the lateral
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Figure 5.2.: Photoluminescence (PL) spectrum of a single NV centre at room temperature.
In addition to PL, Raman features are observed: signatures of disordered carbon and first-
and second-order Raman lines of the diamond lattice (P = 3.1mW, integration time 600 s,
for more details see text). Inset: Schematic of the Stokes process. A pump photon is
converted into a red-shifted Stokes photon and a phonon of a fixed frequency.

location of the cavity’s antinode can be adjusted by applying a voltage to the x- and
y-nanopositioners [77, 99, 115, 385, 399].
To characterise the mirrors, we measure the transmission spectrum of the planar

mirror with a white-light source and quantise the data using the transmission spec-
trum of an uncoated quartz substrate (Fig. 5.3 (c)). With a transfer-matrix calcula-
tion, we are able to reproduce the oscillations of the reflectivity over a large frequency
range. A transfer matrix-based refinement algorithm allows the reflection spectrum
to be reconstructed on setting an individual layer-thickness tolerance of 3% (Essential
Macleod). For our calculation, we set a stopband centre of λcentre = 625 nm and use
15 λ/4 layer pairs of SiO2 and Ta2O5 with a refractive index of nSiO2

= 1.46 and of
nTa2O5

= 2.11, respectively. For the top mirror we obtain similar results, reproducing
the transmission spectrum with λcenter = 629 nm and 14 layer pairs.
To cavity-enhance the Raman process, we pump the diamond with a green laser and

tune the cavity into resonance with the Stokes line. The pump laser can be coupled
into the cavity independently of the mirror separation since its wavelength (532 nm)
lies outside the reflection stopband of the mirror coating (Fig. 5.3 (c)). Conversely,
due to the large Raman shift of diamond, the cavity supports a resonance with a
finesse of ∼ 1 000 at the Stokes wavelength ∼ 573 nm.

5.2.2. Experimental Setup

The experimental setup used in this experiment is shown schematically in Fig. 5.4,
some details are as follows. An infrared light-emitting-diode (LED*, λLED = 850 nm

*Thorlabs, M850D2.



88 Cavity-Enhanced Raman Scattering for in Situ Characterisation of Microcavities

(b)

1

2 3

Dielectric
reflective
coating

CO2
laser

1 µm

SiO2

SiO2

DBR

DBR

diamond

xyz nanopositioner

(a)

ta =0 -5 µm

td = 0.8 µm

λ/4 DBR model
3% tolerance

10 µm

λcenter

625 nm

λRaman

572.7 nm

λpump

532 nm

λLED

850 nm

(c)

Figure 5.3.: (a) Schematic of a diamond membrane embedded in a tunable Fabry-Perot
microcavity. Nanopositioners enable in situ control of both the resonance frequency and the
antinode location of the microcavity mode. (b) Process flow of the curved micro-template
fabrication. A focused CO2 laser pulse creates a microindentation in a SiO2 substrate via
ablation. Subsequently, the template is coated with a dielectric Bragg-reflector (DBR).
(c) Normalised white-light transmission spectrum of the DBR coating revealing the mirror
stopband. The experiment is well reproduced by a model calculation. Inset: an image of
the square-shaped membrane inside the cavity with the microindentation located on top.
The bright feature in the centre stems from the reflection of laser excitation at wavelength
∼ 635 nm.

for which the DBR is transparent) is used to locate the membrane inside the cavity
(inset Fig. 5.3 (c)). This visual feedback allows us to adjust the location of the diamond
with respect to the top mirror. The pump laser is spectrally filtered (Semrock, LL01-
532-25 and FF01-650/SP-25) and coupled into the cavity via a slightly overfilled
objective of moderate numerical aperture (Microthek, 20x/0.4). The Stokes signal
is collected via the same objective and coupled into a single-mode fibre (Thorlabs
630-HP); the output of this fibre is coupled into a spectrometer. A combination of
a dichroic mirror (Semrock, FF560-FDi01) and long-pass/band-pass filters (Semrock,
LP03-532RS-25 and FF01-572/15-25) is employed to prevent laser light from entering
the collection optics. This is important to avoid exciting fluorescence and Raman
scattering from the detection fibre. Using a precision mechanical-stage we can move
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Figure 5.4.: The homebuilt fibre-based microscope used in this experiment (a generalised
version of Fig. 4.4). A series of appropriate shortpass filters are used to filter fibre fluorescence
caused by the green excitation laser. The PL is collected in a back-scattering geometry,
and coupled into a fibre. A series of appropriate longpass filters are used to prevent laser
light entering the detection fibre. For the imaging experiment in Fig. 5.6, a 50:50 pellicle
beamsplitter on a flip mount was used to guide the PL to the camera.

the entire microcavity with respect to the external optics allowing the cavity output
to be aligned with respect to the optical axis of the microscope.

5.3. Cavity-Enhanced Raman Scattering

Figure 5.5 (a) shows a spectrally resolved measurement of the cavity-enhanced Stokes
emission at λs = 572.67 nm pumped at 532 nm with P = 20mW. Attaining the
maximal signal strength requires careful alignment. This process is massively aided by
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Figure 5.5.: (a) Typical optical spectrum of the Stokes signal in resonance with the cavity
(tint = 1 s). (b) Typical optical spectrum of the Stokes signal for out-of-cavity detection
using an objective with NA=0.4 (tint = 120 s), and (c) NA=0.9 (tint = 30 s). (d)Typical
optical spectrum of the Stokes signal pumped with a narrow-band laser at λ = 636 nm
(P = 5mW) without the top mirror using an objective of NA=0.9 (tint = 180 s). (e) Power
dependence of the integrated Stokes signal for out-of-cavity detection with an objective of
NA=0.4 (black), NA=0.9 (blue) along with the integrated cavity-enhanced Stokes signal
(red). (a), (b) and (c): The pump wavelength is λ = 532 nm, the pump power P = 20mW.
The Stokes lineshape slightly deviates from a Lorentzian due to the spectral profile of the
pump laser; all data were recorded at room temperature.

exploiting the Raman process on account of at least three factors. First, the signal is
very large. When the cavity is tuned into resonance with the Stokes photons, we detect
up to 2 × 106 photon counts/s (cps) on a standard silicon single-photon avalanche-
photodiode. Secondly, the signal does not depend on the (x, y)-alignment of the
cavity: it represents a ubiquitous internal light-source. Thirdly, the Raman process
couples to all the cavity modes. From the mode dispersion and the signal strengths,
this allows the transverse electromagnetic (TEM) cavity mode indices (q,n,m) to be
determined. In particular, the (q,0,0) modes can be identified: it is these modes whose
output couples best to the single-mode fibre detection-channel.

The photon flux of the cavity-enhanced Stokes scattering is strongly enhanced with
respect to the Stokes signal collected from the bare diamond membrane under equiva-
lent experimental conditions (Fig. 5.5 (a)). Integrating over wavelength in both cases
(with cavity, without cavity Fig. 5.5 (a)-(b), respectively), we find an enhancement
factor of F = 58.8. This enhancement results from the Purcell effect [430]. At a given
power, the cavity increases the Stokes photon generation rate by the Purcell factor,
FP. Additionally, the Stokes photons are emitted preferentially into the cavity mode –
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this enhances the detection efficiency by a factor Fcav. Overall, F = FP ·Fcav = 58.8.
The Stokes signal increases linearly with pump power (Fig. 5.5(e)): at these pump
powers, there is no super-linear dependence presaging Raman lasing.
To put the cavity-enhancement into perspective we also measure the Stokes scatter-

ing intensity using a high-NA objective (NA=0.9) and find that the signal is a factor
of 3.1 larger compared to the NA=0.4 objective (Fig. 5.5(c)), which corresponds to a
reduction of the enhancement factor to 18.7. The signal obtained with the NA=0.9 ob-
jective is comparatively large for two reasons. First, the wide acceptance angle of the
objective allows for collecting a large fraction of the generated Stokes light. Second,
the tighter focusing of the pump laser increases the power density per interaction
length, thus increasing the scattering probability owing to the intensity-dependent
Raman gain gRaman = 75GWcm−1 · Ipump [337].
We next investigate the power dependence of the Stokes signal in more detail. Using

a single-photon avalanche-photodiode (SPAD), we measure the power dependence of
the cavity-coupled Stokes signal and compare it to the signal collected from the bare
diamond membrane with NA=0.9 and NA=0.4 objectives. For all three cases, we
find a linear increase of the signal strength with power. For the cavity-coupled signal,
we fit a linear power dependence with slope mcav = 59.4 kcps

mW . For the bare diamond

membrane, we find mNA0.9 = 3.9 kcps
mW and mNA0.4 = 1.4 kcps

mW for the NA=0.9 and
the NA=0.4 objectives, corresponding to relative enhancement factors of 15 and 42,
respectively. The discrepancy in the enhancement factors can be explained by the
fact that the cavity acts as a strong spectral filter. For the APD measurements on
the other hand we use a narrow bandpass ((575± 8) nm, Semrock FF01-575/15-25).
Integrating the background PL in this spectral window and comparing it to the signal
obtained from the Stokes peak we find that the background PL accounts for 24.5%
(15.3%) for the NA=0.4 (0.9) objective. The background-corrected enhancement
factors of 55.6 and 18.0 for the NA=0.4 and NA=0.9 objectives respectively are in
very good agreement with what we find for the spectrally resolved measurements
(Fig. 5.5 (b)).

5.3.1. Probing the Cavity Mode Structure

We now exploit the Raman process as a convenient way to analyze the cavity modes.
To do this, we gradually increase the cavity length, monitoring the cavity emission
at the Stokes wavelength. Fig. 5.6 (a) displays the spectrally resolved measurement
of the cavity emission (Fig. 5.6 (b)) for different cavity length detunings ∆L recorded
by adjusting the width of the air-gap ta. A series of cavity modes is observed. In
this experiment, the linewidth of the fundamental mode δta is a measure of the cavity

finesse F = (λ/2)
δta

= 350 (Fig. 5.6 (a) top panel) [385]. Clearly, the Raman process
couples to the various higher-order Gaussian modes whenever a spectral resonance
with the Stokes photons is established. The collection efficiency of the higher-order
modes is much lower than that of the fundamental modes due to the signal collection
through a single-mode fibre but nevertheless, a number of higher-order modes are
observed.
The exact locations of the cavity modes depend on the cavity geometry: an analysis

of the spacings of the different modes allows the geometric parameters of the cavity to
be determined. We extract the radius of curvature of the top mirror, Rcav, from the
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Figure 5.6.: Center panel: PL spectra for different relative cavity lengths ∆L about L =
4.07µm under green illumination (λ = 532 nm, P = 20mW) detected with a single-mode
fibre. Top panel: Linecut at λ = 572.67 nm. The Stokes light couples to the Gaussian
cavity-modes (q, n,m) of different mode families. Well isolated (q, 0, 0), (q, 1, 0) and (q, 0, 1)
modes can be directly imaged on a CCD camera. Bottom panel: Calculation of the mode
dispersion using an analytic model based on Gaussian optics. The spacing of the different
modes allows the geometric parameters of the cavity to be extracted (for details see text).

spacings between the fundamental mode (q, 0, 0) and its associated higher harmonics
(q, n,m). Quantitatively, we make this link with a Gaussian optics model [385]. The
effective cavity length Leff, Rcav and the (q, n,m) parameters are connected by

Leff(q, n,m) =

[
q +

n+m+ 1

π
· cos−1 (

√
g)

]
· λ
2
, (5.1)

where g = 1− Leff(q,n,m)
Rcav

is the confocal parameter. Leff is a measure of the separation
of the two mirrors accounting for the penetration depth into the mirrors upon reflec-
tion [94]. From this model, we find that the modes in Fig. 5.6 (a) are well described
with Rcav = 10µm (Fig. 5.6 (a) lower panel).

The signals in these experiments are sufficiently large that the spatial intensity-
distribution of the emerging cavity modes can be recorded in a single-shot imaging
experiment. We directly image the modal shape of the fundamental (q, 0, 0) and the
first two higher-order modes (q, 1, 0) and (q, 0, 1) on a charge-coupled-device camera
(Fig. 5.6 (a)). Using the diamond membrane (edge length 20µm) as a ruler, we can
calibrate the lateral dimensions of the images. A Gaussian fit of a linecut through
the fundamental mode yields a beam waist of wI = 0.88µm (Fig. 5.6 (a), inset).

We now try to reproduce the beam waist using Gaussian optics. The intensity
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beam waist of a Gaussian beam is given by [93]

wI(z) = w0,I ·

[
1 +

(
z

zR

)2
] 1

2

, (5.2)

where zR is the Rayleigh length. The radius of curvature for a Gaussian beam is
calculated from [93]

R(z) = z ·

[
1 +

(
zR
z

)2
]
. (5.3)

At the top mirror (z = 4.07µm), the radius of curvature of the Gaussian beam
equals that of the cavity, i.e. R(4.07µm) = Rcav = 10µm, from which we extract the
experimental Rayleigh length zR = 4.916µm. Using this value for zR, we calculate the
beam waist at the top mirror from Eq. 5.2: wI(z = 4.07µm, R(z) = 10µm) = 0.87µm,
in good agreement with the measured value of wI = 0.88µm.
The separation of the fundamental (q, 0, 0) resonances, specifically the change in

resonance wavelength per change in air-gap width m = ∆λcav

∆ta
, allows the effective

cavity mode number q to be inferred. For the two (q, 0, 0) resonances in Fig. 5.6 (a)
we measure m1 = 87 · pm

nm and m2 = 83 · pm
nm corresponding to q1 = 2

m1
= 23 and

q2 = 2
m2

= 24. To interpret these numbers, the full cavity mode-structure must be
modelled including the interferences induced by the diamond membrane [399]. The
Gaussian optics model of an empty cavity (Eq. 5.1) does not include these additional
interferences and this underestimates the actual cavity length.
Conceptually, the cavity modes can be described using a coupled-cavity approach

(compare Chapter 3) [61, 77, 87, 123]. In this picture, there are two cavity modes, one
defined by the air-gap bounded by the top DBR and the diamond-air interface; the
other is defined by the diamond-air interface and the bottom DBR layer (Fig. 5.9).
The two modes couple via the non-zero reflectivity of the diamond-air interface and
hybridise. This hybridisation influences the dispersion, dλcav

dta
, and results in deviations

from the Gaussian model of an empty cavity.
We simulate the cavity modes with the aid of the same software we used to recon-

struct the stopband of the DBR mirrors (Fig. 5.3 (c)). The exact mirror structure is
included and the refractive index of diamond is assumed to be constant, nd = 2.41.
m1 tells us that the lowest fundamental mode is the 8th resonance (5th resonance
away from contact; curved mirror depth > 3 · λ

2 ). The gradients mi =
dλcav

dta
of the

(q, 0, 0) modes depend on the exact diamond thickness td and the exact air-gap thick-
ness ta. By adjusting td and ta in the simulation, we match the experimental results
for m1 and m2 with td = 0.77µm and ta = 2.60µm (Fig. 5.7). The diamond thickness
is in agreement with the value we found in our previous NV coupling experiment [77]
which used the exact same membrane.
We present some details on how to extract the diamond thickness from the cavity

mode-structure. To start, we calibrate the travel range of the piezo using the mode
dispersion and Eq. 5.1. In the experiment, we apply a positive voltage to elongate
the z-piezo, thus reducing the width of the air-gap, i.e. a larger voltage translates
to a shorter cavity. To convert from voltage to travel range, we equate the free-
spectral (FSR) range in voltage to FSR ≃ λ

2 . Due to the low signal-to-noise ratio
and the limited spectral width of the measurement, the piezo was calibrated by linear
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(a) (b) (c) 

Figure 5.7.: The diamond thickness is extracted by overlapping the measured and simulated
mode structure. (a) A diamond thickness td = 762 nm overestimates the cavity length; the
simulated mode (red) occurs at a longer cavity length compared to the measured mode. (b)
A diamond thickness td = 772 nm reproduces both the spacing and the curvature of the
measured mode structure. We attribute the ∼ 7 nm discrepancy between the measured and
simulated mode to errors in calibrating the piezo. For details, see text. (c) A diamond
thickness td = 782 nm underestimates the cavity length; the simulated mode (red) occurs at
a shorter cavity length compared to the measured mode.

interpolation for λ = λs. Next, we simulate the cavity mode structure for the same
spectral range while step-wise changing td. In Fig. 5.7, we overlap the simulated- and
measured mode structure for td = 0.762µm, td = 0.772µm and td = 0.782µm. From
the line-cuts, it is apparent that td = 0.762µm overestimates the cavity length: the
simulated cavity mode occurs at a too long cavity length compared to the measure
mode. We find the best agreement for td = 0.772µm. From the overlap, it is apparent
that the simulation overestimates the cavity length by ∼ 7 nm. We attribute this
discrepancy to errors and uncertainties in extracting the exact peak position when
calibrating the piezo. Considering both the absolute spacing and the dispersion of
the modes, we find the best concordance for td = 0.772µm. Further increasing the
diamond thickness to td = 0.782µm underestimates the cavity length: the simulated
cavity mode now occurs at a too short cavity length compared to the measured mode.

We now turn to analyse the (q, n,m) = (24, 0, 0) mode in more detail. This par-
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Figure 5.8.: An enlargement of the spectra in Fig. 5.6 (a) featuring linecuts at different ∆L
(for mode (q + 1, 0, 0)). The data can be very well fitted by fitting using two multiplied
Lorentzians (Eq. 5.4). The fit allows to extract the linewidths of the Stokes and cavity,
δλs = 71pm and δλcav = 70pm respectively.

ticular mode is well-isolated and not perturbed by coupling to higher-order modes of
other mode families (Fig. 5.8 (b)). Coupling between transverse modes of the cavity
can be induced by a non-ideal shape of the curved mirror [88, 90] and the fact that the
diamond-air interface does not conform with the curved wavefront of the Gaussian
mode [87]. In particular, we focus on the spectral properties as the cavity is tuned into
resonance with the Stokes process. Without the top mirror (i.e. no cavity), we find
that the Stokes resonance has a Lorentzian lineshape with a full width at half max-
imum (FWHM) of δλs,532 = 71pm, corresponding to Qs = 8066 (Fig. 5.5 (b)). This
linewidth, 64.9GHz, is determined by a convolution of the laser linewidth, ∼ 15GHz,
with the linewidth of the Stokes scattering process, δνs ∼ 50GHz. We measure
δνs independently by pumping the Stokes process with a narrow-bandwidth laser at
λ = 636 nm and find δλs,636 = 77pm corresponding to δνs = 47.8GHz (Fig. 5.5 (d)).
In the absence of inhomogeneous strain fields, the Raman linewidth is a measure of
the phonon lifetime. The measured Raman linewidth corresponds well with previously
reported values, 3.6 ... 3.9 ps (40.8 ... 44.2GHz) [350, 353], indicating low strain in our
diamond membrane. Here, the main decay channel of the optical phonon involves
the creation of two acoustic phonons each with lower energy [362, 431]. With the top
mirror, we tune the cavity through the Stokes resonance, recording spectra at each
detuning (Fig. 5.8 (b)). The experimental spectra are well fitted by the product of two
Lorentzians describing the cavity and the Stokes process, Lcav(λcav, δλcav)·Ls(λs, δλs):

Lcav · Ls = A · 1

(λ− λcav)2 + ( δλcav

2 )2
· 1

(λ− λs)2 + ( δλs

2 )2
. (5.4)

During the experiment, we tune the resonance frequency of the cavity λcav while
λs = 572.67 nm and δλs,532 = 71pm are fixed. From our fit, we extract that the
linewidth of the cavity δλcav decreases from 80 pm (73 GHz) to 60 pm (55 GHz) on
detuning from wavelength 572 nm to 573.4 nm (corresponding to Q-factors of 7 200
and 9 600, respectively) due to the change in mirror reflectivity (Fig. 5.3). We note
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that in this experiment, the bare Stokes resonance has a similar spectral width as the
cavity resonance. On resonance λcav = λs, δλcav = 70pm and Qcav,res = 8200. The
slight deviation of the Stokes lineshape from a Lorentzian (see Fig. 5.5) results in a
∼ 10% error of the extracted linewidth.

The spectral information leads to an interpretation of the microscopic nature of the
cavity-enhanced Raman process. The spectra do not mimic the behaviour of a coher-
ent single emitter coupled to a single cavity-mode. Instead, they mimic the behaviour
of an independent array of emitters (described by Ls) coupled to a single cavity mode
(described by Lcav). The Lorentzian cavity mode Lcav acts as a spectrally-selective
booster for the Raman processes which are resonant with it.

5.3.2. Quantitative Analysis of the Enhancement Factor

We attempt to understand the enhancement factor F quantitatively [368]. The first
step is to calculate the Purcell factor. One way to describe the signal enhancement
promoted by the cavity is to consider an increase of the effective Stokes scattering
length. The cavity finesse is a measure of the number of times a photon bounces
between the mirrors and corresponds to the factor by which the scattering length
is increased. This description is formally equivalent to the Purcell formula for a
cavity formed by two mirrors [30]. In our experiment, however, the cavity is more
complex than a generic Fabry-Perot device. We calculate the vacuum electric-field
distribution with the same software we used for the previous calculations of the mirror
reflectivity and the slope of the mode dispersion (Essential Macleod). To that end, we
calculate the electric field distribution of a one-dimensional cavity using the geometric
parameters extracted from Fig. 5.6 (a). We then quantise the field amplitude of the
Gaussian cavity mode according to (Fig. 5.9):∫

cav

ϵ0ϵR(z)|E⃗vac(z)|2dz
∫ 2π

0

dϕ

∫ ∞

0

re−r2/2w2
I dr

= 2π · 1
4
w2

I

∫
cav

ϵ0n
2(z)|E⃗vac(z)|2dz = ℏω/2 .

(5.5)

We take ϵR = n2; we assume a constant beam-waist wI over the cavity length. Taking
a representative value, wI = 0.77µm (an average of the beam-waist at the top mirror

and the minimum beam-waist), we find a maximum |E⃗vac(z)| = 54.4 kV
m inside the

diamond from which we can calculate the effective mode volume of a cubic resonator

made from diamond to be Veff = 84.9 ·
(

λ
n

)3
. With the cavity Q-factor on resonance

Qcav(λcav) = 8 200, we calculate the Purcell factor to be

FP(λcav) = 1 +
3

4π2
· Qcav

Veff
·
(
λ

n

)3

· 1
2
= 4.7 . (5.6)

Here, the factor 1
2 takes into account averaging of the enhancement over the field

profile inside the diamond. The second step is to calculate the coupling efficiencies
(the derivation of this model can be found in AppendixF). Without the top mirror,
we estimate the coupling efficiency ηo simply as twice the solid-angle defined by the
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Figure 5.9.: One-dimensional transfer matrix simulation of the electric vacuum field for
ta = 2596 nm and td = 772 nm. The electric-field profile possesses a field anti-node at the
diamond-air interface.

objective lens:

η0 ≃ 1−

√
1−

(
NA

nd

)2

, (5.7)

where the factor of two accounts for reflection from the bottom DBR. From the
NA = 0.4 objective, we deduce η0 = 1.4%. With the cavity, the coupling efficiency is
given by

ηcav =
κtop

κtop + κbot + κtot
· β , (5.8)

where κtop (κbot) is the loss-rate through the top (bottom) mirror, κtot is the round-
trip cavity loss-rate and

β =
FP

(FP + 1)
(5.9)

is the probability of emission into the cavity mode. From FP = 4.7, we have β =
82.46%. We determine the κtop = 1.656 · 1011 s−1 and κbot = 9.525 · 1010 s−1 from

the transfer-matrix simulations of the bare mirrors and κloss =
2πc
λ ·
(

1
Qexp

− 1
Qexp

)
=

1.429 · 1011 s−1 (Compare AppendixF). Combining the above give ηcav = 32.5%,
and consequently ηcav

η0
= 23.2. Assuming an identical pump rate, likewise identical

diamond material parameters and collection optics, the ratio of the Stokes signal with
cavity enhancement to the Stokes signal without the cavity (i.e. no top mirror) is

Scav

S0
= FP · ηcav

ηo
. (5.10)
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A final factor is that the Stokes (Qs = 8066) and cavity linewidths (Qcav = 8200)
are similar [369]: the final result is

Scav

So
≃ FP · Qs

Qs +Qcav
· ηcav
ηo

. (5.11)

Quantitatively, this result predicts that Scac

So
= 56.8, in good agreement with the

experiment. (We note that the error in the experimental measurement of Scav

So
is

dominated by a systematic error of 10% arising on ensuring that the optical alignment
is preserved on removing the top mirror; the error in the calculated Scav

So
is dominated

by the uncertainties of ∼ 10% in the beam-waist and Q-factor of the cavity.) It
is interesting to note that Scav

So
is much simpler to measure than the Purcell factor

of a single emitter: a measurement of Scav

So
is an indicator of the performance of a

single-emitter in the same cavity structure.

5.4. Outlook and Conclusion

The mode-structure calculation in Fig. 5.9 shows that the cavity is in a “diamond-like”
configuration at the Stokes wavelength λs (Compare Chapter 3) [87]. An advantage
of this configuration is that the electric vacuum field is more strongly confined in the
diamond layer than in the air-gap which leads to higher coupling strengths. A further
advantage is that the dispersion of the mode wavelength with air-gap thickness is
relatively small. This renders the cavity less susceptible to acoustic noise. However,
a diamond-like cavity exhibits a vacuum field antinode at the diamond-air interface
which exacerbates losses (over a configuration with a field node at the diamond-
air interface) caused by scattering at this interface or absorption of the surface. In
some materials, GaAs for instance, these losses can be mitigated by passivating the
surface [99, 391, 415].
The results presented so far were all recorded at room temperature. For single

emitters, operation at low temperature is necessary in order to eliminate phonon-
related broadening of the ZPL. We therefore demonstrate that the cavity-enhanced
Raman scattering works well also at cryogenic temperature. The compact cavity
design facilitates low-temperature experiments in a liquid-helium bath cryostat [77,
99, 102, 115]. Fig. 5.10 shows a spectrally resolved cavity measurement where the
cavity length is tuned over one free spectral range for an excitation at wavelength
532 nm. The weak background PL of the diamond allows the main cavity modes to
be observed at all cavity lengths. In Fig. 5.10, the nonlinear dependence of the cavity
wavelength on air-gap thickness is visible. The first-order Raman peak and the ZPLs
of the two different charge states of the NV are enhanced by the cavity and are very
strong features in Fig. 5.10. The weak emission of the ZPLs is only detected efficiently
once the external optical excitation and collection are properly aligned. The strong
Raman signal was used to achieve the alignment: the advantage secured at room
temperature therefore translates directly to operation at a cryogenic temperature.
To conclude, we show that Raman scattering provides a valuable resource in op-

timising and quantifying the performance of tunable microcavities. We apply this
method specifically to the NV centre in diamond. More generally, the generic nature
of Raman scattering renders our approach immediately applicable for improving the



5.4. Outlook and Conclusion 99

T = 4K

Raman

NV0 ZPL

NV- ZPL

Figure 5.10.: Mode structure of the cavity recorded at a temperature of 4K, under
continuous-wave excitation at 532 nm with a power of 30mW. In addition to the Raman
transition, the ZPL of the NV0 and NV− couples to the cavity.

spin-photon interface efficiencies of a wide range of solid-state qubits. This will be
particularly valuable for emitters with a weak oscillator strength: by harnessing the
Stokes process as a strong, narrowband, internal light-source, the cavity performance
can be optimised, facilitating the detection of signals from weak single-emitters. The
modular platform improves greatly the versatility of cavity experiments and allows for
creating an optimized CQED system: The different parts, bottom mirror, top mirror
and optically active layer can be processed and designed individually. The possibility
to combine a comparatively large pristine solid state environment (∼ µm3) with high
Q/V ratios is poised to facilitate combining cavity enhancement with narrow optical
linewidths without the use of electric gates [99]. Examples of qubits with long spin
coherence times but small optical dipole-moments include colour centres in silicon
carbide [323, 416] and rare earth ions [330, 331, 417].





CHAPTER 6

Widely-tunable, Doubly-Resonant Raman
Scattering on Diamond in an Open

Microcavity

The content of this chapter is partially adapted from:
Sigurd Fl̊agan, Patrick Maletinsky, Richard J. Warburton and Daniel Riedel
“Widely-tunable, doubly-resonant Raman scattering on diamond in an
open microcavity”, arXiv:2110.06242 (2021).

Abstract:
Raman lasers based on bulk diamond are a valuable resource for generating co-

herent light in wavelength regimes where no common laser diodes are available. Nev-
ertheless, the widespread use of such lasers is limited by their high threshold power
requirements on the order of several Watts. Using on-chip microresonators, a sig-
nificant reduction of the lasing threshold by more than two orders of magnitude has
been shown. However, these resonators lack a continuous tuning mechanism and,
mainly due to fabrication limitations, their implementation in the visible remains elu-
sive. Here, we propose a platform for a diamond Raman laser in the visible. The
device is based on a miniaturised, open-access Fabry-Perot cavity. Our microcav-
ity provides widely-tunable doubly-resonant enhancement of Raman scattering from
high-quality single-crystalline diamond. We demonstrate a >THz continuous tuning
range of doubly-resonant Raman scattering, a range limited only by the reflective
stopband of the mirrors. Based on the experimentally determined quality factors ex-
ceeding 300 000, our theoretical analysis suggests that, with realistic improvements,
∼ mW threshold is readily within reach. Our findings pave the way to the creation of a
universal low-power frequency shifter, a potentially valuable addition to the nonlinear
optics toolbox.
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6.1. Introduction

The development of new laser architectures to create coherent radiation at arbitrary
wavelengths is a continuous endeavour. Solid-state based lasers have emerged as the
leading platform due to their compact design, reliability, highly stable output and
beam quality [432]. Several wavelength regimes, however, are not directly accessible
with semiconductor lasers and require wavelength conversion in a nonlinear medium.

A promising technique relies on Raman scattering where, upon the creation of a
phonon, photons are red-shifted by the fixed phonon energy. This energy shift and
the efficiency of the process, quantified by the Raman gain parameter, depend on the
material and in particular on the phonons involved [334]. The main advantage of this
approach is that in principle any laser wavelength can be achieved if a suitable pump
laser is available [372]. This gain mechanism differs from stimulated emission from
excited dopants which exhibit a fixed gain frequency bandwidth [348].

Diamond is particularly well suited to the creation of a Raman-based laser due
to its exceptional properties [344], notably a large Raman gain (∼75GW·cm−1 at
532 nm) [344] and a large Raman shift (∼1 332 cm−1) [138]. This large Raman shift
enables wavelengths to be accessed for which no ideal solution exists in terms of
cost, convenience and output power. Other advantages in this context are the wide
bandgap of diamond, which prevents free carrier absorption minimising optical losses
in the visible and the ultraviolet wavelength regimes, and diamond’s high thermal
conductivity, which facilitates efficient heat management [373].

Diamond Raman lasers have enabled the creation of coherent radiation in exotic
wavelength regimes, e.g. the yellow band [337, 376, 428, 433, 434], where no com-
mon laser diodes are available. High-power diamond Raman lasers have been im-
plemented across a large range of wavelengths, from the ultraviolet [374] across the
visible [375, 376] and infrared [377, 378, 435–441], all the way to the mid-infrared [378].
However, current implementations are limited by their high threshold pump power
requirements, typically several Watts.

Micro- and nanophotonic engineering offers the potential of reducing the threshold
for lasing. Through resonant recirculation of the pump beam in a cavity with a small
mode cross-section, the intensity-dependent Raman gain is significantly enhanced. In
addition, simultaneous coupling of the Raman field to a second cavity mode boosts
the efficiency of stimulated emission. Based on this doubly-resonant configuration,
low-threshold Raman lasers in the infrared wavelength regime were demonstrated in
silica microspheres [371]. Chip-integration has been implemented using silica micro-
toroids [380], silicon waveguides [442, 443] and racetrack resonators [444]. Combining
high quality (Q) factors with a small mode volumes (V ), silicon photonic crystals have
enabled ultra-low threshold Raman lasing in the nanowatts regime [445]. Recently,
molecules adsorbed to silica microtoroids emerged as a promising gain medium [446].
Advances in diamond nanofabrication enabled the demonstration of integrated dia-
mond Raman lasers using ring resonators at infrared [382] and near-visible [383] wave-
lengths. Largely on account of nanofabrication constraints, diamond Raman micro-
lasers at visible frequencies, however, remain elusive.

We propose to resolve this conundrum by using a different platform for the im-
plementation of a low-threshold diamond Raman laser, namely a highly miniaturised
Fabry-Perot cavity (Fig. 6.1 (a)) [255]. Such microcavities, sometimes referred to as
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Figure 6.1.: (a) Schematic of the plano-concave Fabry-Perot microcavity. The cavity is
formed by two fused silica (SiO2) substrates coated with a distributed Bragg reflector (DBR).
One of the substrates exhibits spherical microindentations resulting in a Gaussian resonator
mode with a small beam waist (∼ 1µm). Piezoelectric nanopositioners allow for spatial and
spectral tunability of the cavity mode. The wedged diamond membrane enables the diamond
thickness within the cavity mode to be changed by lateral positioning. The thickness gradient
of the diamond is exaggerated for enhanced visibility. (b) One-dimensional transfer-matrix
calculation of the cavity mode-structure for a diamond thickness of td = 756 nm. The
presence of the diamond membrane leads to a nonlinear mode dispersion. At a mirror
separation of ∼ 4.18µm, the frequency spacing between modes qeff = 17 and qeff = 19 equals
the frequency of the optical phonon in diamond (∼ 40THz, purple arrow).

open microcavities, offer high Q/V ratios and thereby promote strong light-matter
interactions [97, 99, 103]. Chapter 4 demonstrated that high Q-factors at visible wave-
lengths can be achieved when embedding a high-quality diamond membrane into the
cavity [387]. In comparison to ring resonators, there are no limitations due to bending
losses and surface roughness is less detrimental.

6.2. Open Microcavity as a Platform for Nonlinear
Optics

Our plano-concave microcavity design supports a Gaussian fundamental mode
(Fig. 6.1 (a)), [104, 368, 385, 399, 447]. The microcavity is formed by two mirror-
coated fused silica substrates, one of which contains an array of spherical micromir-
rors fabricated via laser ablation [402] enabling efficient coupling to a single free-space
mode [77, 102]. The radii of curvature of these micromirrors are ∼ 10µm resulting
in a beam waist of ∼ 1µm. We integrate high-quality single-crystalline diamond mi-
cromembranes (∼ 20×20×0.8µm3) into the cavity using a micromanipulator [77, 403]
(see Section 6.7).
For conventional Fabry-Perot resonators, the resonance wavelength changes linearly

with the mirror separation ta. However, the presence of a diamond membrane with
thickness td significantly alters this linear mode structure. The hybridisation of modes
confined in the air and diamond layers of the resonator manifests in avoided crossings
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(Fig. 6.1 (b)) [77, 87, 98, 100, 214, 405]. The cavity resonance frequencies depend
on both the separation of the two mirrors and the thickness of the diamond at the
location of the cavity mode (see Section 6.4.1).

One of the main advantages of our cavity platform is the in situ tuning capability.
Both the separation of the mirrors and the lateral position of the cavity mode with
respect to the diamond membrane can be controlled via a stack of piezoelectric nano-
positioners (attocube ANPx/z51, ANPz51). The cavity resonance frequencies depend
on both the separation of the two mirrors and the thickness of the diamond at the
location of the cavity mode. By including a slight thickness gradient into the diamond
membrane, we are able to tune the exact diamond thickness of the membrane in the
cavity by adjusting the relative lateral position of the mirrors. The in situ tuning
capability allows us to control both the absolute frequency as well as the relative
splitting of the resonator modes.

Excitation of the first-order Stokes process in diamond can be modelled as a three-
level atom-like system (inset Fig. 6.2) involving a ground state |1⟩, a virtual state |2⟩
and a meta-stable state |3⟩. A pump laser excites the ground-state population from
|1⟩ to |2⟩. The system decays via state |3⟩ emitting a red-shifted photon (|2⟩ → |3⟩)
followed by an optical phonon of fixed frequency (∼ 40THz, |3⟩ → |1⟩).
By coupling both the pump and the Stokes photons to a cavity mode, the Stokes

process can be strongly enhanced [364]. It should be noted that no population inver-
sion is required for stimulated Raman scattering and hence the creation of a Raman
laser [448]. Importantly, the gain of the Raman process is maximised by strong con-
finement of and coupling between the pump and Raman modes, which suggests the
use of fundamental resonator modes. Careful tuning of the mirror separation ta and
the diamond thickness td allows the double-resonance condition to be established for
a wide range of pump wavelengths in the visible wavelength regime. When chang-
ing the pump wavelength td and ta need to be adjusted such that the cavity both
remains resonant with the pump laser while another mode is red-detuned exactly by
the Raman shift (see Section 6.3.2).

Importantly, the frequency of the Raman output is completely determined by the
frequency of the pump laser and the fixed Raman shift. In our experiment, we fo-
cus on the visible wavelength regime. We use a continuous-wave (cw) narrow-band
tunable red diode laser (Toptica DL Pro 635, λ = (635 ± 5) nm) as a pump source.
The operation wavelength range of the cavity is given by the reflective stopband of
the DBR, which we determine using a white-light transmission measurement [255].
Fig. 6.2 displays the stopband of the planar bottom mirror which is centred around
λc,bot = 625 nm; the reflectivity is more than 99% over a bandwidth of ∼ 100THz.
The top mirror has similar properties but with a stopband centre at λc,top = 629 nm.

6.2.1. Establishing the Double-Resonance Condition

To characterise the mode structure of the cavity, we couple a cw green laser (λnon-res =
532 nm) into the cavity through the curved top mirror. We tune the mirror separation
by applying a voltage to the piezo using a highly-stable voltage source (Basel Precision
Instruments SP 927). Background photoluminescence (PL) from the diamond acts
as an internal light source and couples to the different resonator modes [255]. Fig. 6.2
displays a PL spectrum collected through the top mirror. We set the mirror separation
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Figure 6.2.: In red: measurement of the reflectivity of the planar DBR revealing a stopband
centred at 625 nm with a bandwidth of ∼ 100THz. In blue: experimental cavity spectrum
for a fixed cavity length under 532 nm illumination. The diamond thickness and mirror
separation can be inferred by comparing the spectrum with the simulated mode structure in
Fig. 6.1 (b). Inset: Raman process, depicted as a three-level system. A photon is converted
to a red-shifted photon and an optical phonon of fixed frequency.

such that the splitting between the modes with effective mode numbers qeff = 17 and
qeff = 19 corresponds to the Raman shift in diamond (∆νR ∼ 40THz). We define the
effective mode number by the number of half wavelengths between the two mirrors,
i.e. within the air-gap and the diamond layer, qeff · λ

2 ≈ ta + ndtd. A small deviation
from integer values of qeff is caused by field penetration into the DBR mirrors [94, 406].
Using a one-dimensional transfer-matrix calculation we infer the mirror separation and
diamond layer thickness to be ta = 4.18µm and td = 756 nm, respectively (Fig. 6.1 (b)
and Section 6.4.1).

Next, we verify that we are able to establish the double resonance condition by
coupling an additional laser resonant with mode qeff = 17 at λpump = 632.99 nm into
the cavity. The resulting Raman scattered light is at a wavelength of

λR =

(
1

λpump
− ∆νR

c

)−1

= 692.25 nm , (6.1)

where c is the speed of light. We then tune the mirror separation and record spectra
from the cavity (Fig. 6.3 (a)). As expected, the cavity modes with effective mode
numbers qeff = 16...18 and wavelengths in the range of λ = 670...700 nm redshift with
increasing mirror separation. When the pump laser at λpump = 632.99 nm is resonant
with the qeff = 18...20 modes for relative mirror separations of −316.5 nm, 0 nm and
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Figure 6.3.: Demonstration of cavity-enhanced doubly-resonant Raman scattering. (a) Top
panel: Optical spectra as a function of relative cavity length reveal the cavity mode structure.
Here, a laser at 532 nm excites background PL in the diamond and a narrowband diode laser
at λpump = 632.99 nm drives Raman scattering. For qeff = 19 and qeff = 17, the pump and
Raman scattered light are resonant simultaneously, i.e. the double resonance condition is
met. Bottom panel: Linecut at λ = 691.19 nm highlighting the strong signal enhancement
of doubly-resonant Raman scattering. (b) Cavity transmission (top) and cavity emission
at wavelengths > 644nm measured with a single photon counter (bottom) as a function of
cavity length for λpump = 632.99 nm. A cavity signal is only observed when the double
resonance condition is satisfied. The piezo voltage is changed at a rate of 2mV

ms
.
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+316.5 nm, narrow peaks appear in the spectrum at CCD pixels corresponding to
λ = 691.19 nm and λ = 691.32 nm, as highlighted in the insets of Fig. 6.3 (a).

The linecut at λ = 691.19 nm clearly shows that the cavity resonances for
qeff = 16 and qeff = 18 appear at smaller (−345.5 nm) and larger mirror separa-
tions (+345.5 nm) than the Raman peaks, respectively. Only for a mirror separation
of ta = 4.18µm λpump and λR are, within the spectrometer resolution, simultaneously
resonant with the cavity for qeff = 19 and qeff = 17. For this double resonance condi-
tion, the signal intensity is increased by over three orders of magnitude compared to
the other peaks.

In the following we denote the wavelength of the cavity mode with qeff = 17 close
in wavelength to that of the pump (λpump) as λ

cav
p ; and the wavelength of the cavity

mode with qeff = 19 close in wavelength to that of the Raman photon (λR) as λcavS .
An analogous notation is adapted for the corresponding frequencies ν.

A faster way to confirm that the double resonance condition is satisfied is displayed
in Fig. 6.3 (b). Here, we only couple the diode laser at λpump into the cavity and
record the cavity transmission using a photodiode located beneath the bottom mir-
ror. The transmission spectrum reveals several peaks at mirror separations where the
pump laser is resonant with the cavity. These peaks are associated with fundamental
and higher-order cavity modes. Simultaneously, we measure the cavity emission at
wavelengths > 644nm using a single-photon counting module. A strong signal is ob-
served only when λpump is resonant with mode qeff = 19, while at the same time λR is
resonant with qeff = 17. The correlation between a peak in transmission (signifying a
resonant pump laser) and a strong peak in cavity emission at longer wavelengths (sig-
nifying a resonant Raman process) is a clear demonstration that the double resonance
condition is satisfied.

6.2.2. The Q-Factor

Next, we determine the quality factor of the pump mode of the cavity, Qp, following
the method described in Chapter 4 [387]. To extract the cavity linewidth, we keep the
laser frequency νpump fixed while scanning the cavity length, monitoring the reflected
light on a photodiode. An electro-optic modulator (EOM, Jenoptik PM635) is used
to create laser side-bands at νpump ± 3.9GHz, thereby providing a frequency ruler to
extract the cavity linewidth. Fig.6.4 (a) shows the reflected signal averaged over 200
scans for νpump = 473.233THz. Assuming a linear response of the piezo across the
resonance, we extract a cavity mode full width at half maximum (FWHM) linewidth
of δνcavp = (1.593±0.004)GHz corresponding to a quality factor ofQp = 297 000±800.
Fig. 6.4 (b) shows the dependence of Qp on the cavity resonance frequency νcavp .

6.3. Doubly-Resonant Raman Scattering

We characterise in more detail the exact detuning dependence of the double resonance
condition by tuning the pump laser. We exploit the fact that Raman signal in the
cavity is only generated when a cavity-mode is resonant with the pump laser, νpump =
νcavp . In this event, two signals will appear in the spectra: Raman scattering of the
pump laser in the cavity at νR = νpump + ∆νR, and the cavity mode nearest in
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Figure 6.4.: (a) Q-factor measurement for νcav
p = c

λcav
p

= 473.233THz. Sidebands created

by an EOM at νpump ± 3.9GHz act as a frequency ruler to extract the cavity linewidth. (b)
Q-factor as a function of cavity resonance frequency.

frequency to this Raman signal, νcavS , which is fed by PL light that is non-resonantly
generated by the pump laser. Using this technique it is not necessary to keep the
cavity at one particular resonance – this circumvents any problems caused either by
drift or acoustic and thermal noise.
We modulate the cavity length continuously and record the resulting cavity spectra

(Fig. 6.5 (a)) varying νpump = νcavp (λpump = λcavp ) from 468.475THz (639.932 nm) to
474.471THz (631.845 nm). We find that for the pump frequency

νpump,dres = 472.434THz (6.2)

the double resonance condition is fulfilled,

νR = νcavS = νR,dres = 432.508THz . (6.3)

These values are different from those in Fig. 6.3 (a) due to a slightly different lateral
position of the cavity mode corresponding to a different diamond thickness. We
determine a Raman shift of

∆ν̃R =
νpump,dres

c
− νR,dres

c
= 1331.8 cm−1

∆νR = c∆ν̃R = 39.927THz ,
(6.4)

in good agreement with the previously reported value, ∼ 1 332 cm−1 [339, 344, 429].
We plot the peak Raman counts for different detunings of the pump laser from the
double resonance condition, νpump − νpump,dres (projected blue points in Fig. 6.5 (a)).
We find that these peak counts follow a Lorentzian with FWHM linewidth of
519.8GHz [364]. The corresponding projected Raman amplitude is fitted well by a
Lorentzian with FWHM linewidth of 502.9GHz (projected red points in Fig. 6.5 (a)).
We fit the individual spectra for different detunings of the pump laser (with re-

spect to the double-resonance frequency νpump,dres) to the product of two Lorentzians
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Figure 6.5.: (a) Series of cavity spectra for different detunings of the pump laser from the
double resonance condition νpump − νpump,dres. We ensure that the pump laser is resonant
with the cavity for every spectrum by continuously modulating the cavity length. The
cavity spectra comprise the Raman signal at νR and the closest cavity mode at νcav

S . We fit
the amplitude of the Raman signal for every value of νpump − νpump,dres with a Lorentzian
(projected blue points) with linewidth of 519.8GHz. The centre frequency of the fit indicates
that the double resonance condition is satisfied when νR,dres = 432.508THz for νpump,dres =
472.434THz. (b) The individual cavity spectra can be fitted well using a model based on
two multiplied Lorentzians centred at the Stokes frequency νR−νR,dres and the frequency of
the adjacent cavity mode νcav

S −νR,dres. The inset in each panel indicates the pump frequency
νpump − νpump,dres.
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Figure 6.6.: (a) Peak position of the cavity (νcav
S ) and Raman scattered light (νR) as a

function of pump frequency νpump relative to the double resonance condition at νpump,dres

and νR,dres. (b) Linewidth of the cavity (δνcav
S ) and the Raman gain (δνR) versus pump

frequency νpump − νpump,dres.

describing the cavity mode at νcavS (FWHM δνcavS ) and the gain bandwidth of the Ra-
man scattering process at νR (FWHM δνR). These fits allow the peak positions and
linewidths to be extracted (Fig. 6.5 (b)) [255]. Figures 6.6 (a,b) display the results of
these fits. Over the tuning range of the pump laser, the detuning between νcavS and νR
varies from −319.7GHz to 526.7GHz. The linewidth of the Raman gain for the dif-
ferent fits is δνR = (48.3± 1.6)GHz corresponding to QR = 8960± 290. This Raman
linewidth agrees well with previously reported values (40.8...47.8GHz) [255, 350, 353],
indicating low strain in the diamond membrane. The linewidth of the cavity mode
closest to νR at νcavS decreases from δνcavS = (167.3 ± 0.8)GHz to (47.0 ± 0.4)GHz
for increasing νpump = νcavp , which is expected from the increase in reflectivity on
approaching the stopband centre of the DBR mirror coatings. The corresponding
Q-factor increases from QS = 2570 ± 90 to 9 250 ± 90. At the double-resonance
condition, the Q-factor of the Stokes cavity mode is QS,dres = 6650± 50.

6.3.1. Estimating the Lasing Threshold

Next, we perform double-resonance measurements for different pump powers Ppump

(as measured before the sample objective) (Fig. 6.7 (a,b)). Up to the largest available
pump power in the experiment, the intensity increases linearly: there is no superlinear
dependence presaging Raman lasing.
To estimate the threshold power required to establish Raman lasing, we analyse

the performance of the cavity. Raman scattering in a microcavity can be described
using classical coupled mode equations [369, 384]. Lasing occurs when the round-trip
gain equals the round-trip loss. Assuming that both the pump laser and the Raman
light are resonant with the cavity, λpump = λcavp and λR = λcavS , the lasing threshold
Pth can be calculated via (see AppendixH):

Pth =
1

η
· 2nSnpπ

2

λcavS λcavp gBR
· VR(QS +QR)

Q2
SQp

. (6.5)
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Figure 6.7.: (a) Spectrally resolved cavity signal with increased pump power at the double-
resonance condition. (b) Integrated peak intensity of peaks in (a) as a function of pump
power. The linear behaviour suggests that no lasing occurs.

Here, λcavp(S), np(S) and Qp(S) are the wavelengths, refractive indices and Q-factors for
the cavity modes resonant with the pump laser and the Raman light, respectively. QR

is the quality factor corresponding to the bandwidth of the Raman gain. The bulk
Raman gain coefficient in the employed pump wavelength range is gBR ∼ 40 cm

GW [449].
The power incoupling efficiency η can be extracted from the cavity reflection measure-
ment displayed in Fig. 6.4 (a) [93, 450]. From the dip in reflection, we infer a power
incoupling efficiency of η = 1− PR

P0
= 0.45.

Modelling the cavity using a one-dimensional transfer-matrix model along with
Gaussian optics, we estimate a Raman mode volume of VR = 108.25µm3 (see Sec-
tion 6.4.3). Taking np(S) = ndia = 2.4, we find Pth = 189.32mW. This relatively low
threshold power constitutes a reduction in threshold power by more than an order of
magnitude with respect to a bulk Raman laser in the visible [376, 428, 451]. With
realistic improvements, we predict that our device platform could feature threshold
powers in the ∼ mW range (see Section 6.5).

6.3.2. Tuning the Double-Resonance Condition

Next, we demonstrate the possibility to tune the double resonance condition by chang-
ing the thickness of the diamond layer within the cavity mode in situ (Fig. 6.8 (a)).
To this end, we laterally displace the cavity mode with respect to the diamond mem-
brane, exploiting a small thickness gradient (Fig. 6.1 (a)). Over the lateral fine-tuning
range of the nanopositioner (travel range ∼ 4µm), the double resonance condition
can be tuned from νpump,dres = 471.44THz to 472.29THz (νR,dres = 431.51THz to
432.36THz), a continuous tuning range of 0.85THz. Considering that the width of
the double resonance gain profile is > 500GHz, this would enable a >THz continuous
tuning range of the lasing frequency.
To extract the exact diamond thickness, we perform one-dimensional transfer-

matrix-based simulations of the cavity mode structure (see Section 6.4.1). For these
simulations, we use the exact mirror structure obtained from fitting the mirror stop-
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Figure 6.8.: (a) Demonstration of the tunability of the double resonance condition. Owing to
the thickness gradient, shifting the diamond laterally changes the diamond thickness in the
cavity and subsequently the condition for double resonance. (b) The diamond thickness and
the width of the air-gap are extracted from one-dimensional transfer-matrix simulations. The
double resonance is condition is satisfied when the pump mode (blue) and the Stokes mode
(red) cross. For λcav

p = 634.57 nm and λcav
S = 693.15 nm, we extract td = 755.31 nm and ta =

4183.70 nm. (c) Lateral displacement of the cavity mode plotted against diamond thickness
td. Here, the relative position of the cavity mode is calculated with respect to the corners of
the diamond. Extracting the diamond thickness from the double-resonance measurements in
(a) gives a thickness gradient of 0.16 nm

µm
. (d) Linear shift of the double-resonance condition

with the diamond thickness resulting in a red-shift of the Stokes wavelength.
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band (Fig. 6.2 and Ref. [255, 387]), and sweep the width of the air-gap ta and the
diamond thickness td for fixed wavelengths λcavp and λcavS . The double resonance
condition is met whenever the modes for λcavp cross the modes for λcavS . Fig. 6.8 (b)
shows a transfer-matrix simulation for λcavp = 634.57 nm and λcavS = 693.15 nm (ex-
tracted from Fig. 6.6 (a)). Here, the two cavity modes overlap for ta = 4183.70 nm
and td = 755.31 nm.

We extract td for all measurements displayed in Fig. 6.8 (a) and plot td versus lateral
displacement of the cavity mode (Fig. 6.8 (c)). To calibrate the lateral displacement,
we use the edges of the diamond (∼ 18µm) measured with a laser scanning confo-
cal microscope (Keyence Corporation) as a reference. We find a thickness gradient
|∆td
∆x | = (0.16± 0.2) nm

µm . As shown in Fig. 6.8 (d), we observe a linear shift of λcavS

with td. From our simulations, we find that for the right combination of td and ta, the
double resonance condition can be tuned continuously across the whole mirror stop-
band corresponding to a continuous tuning range of tens of THz (see Section 6.4.2).

6.4. Discussions

6.4.1. Cavity Mode Structure

For conventional Fabry-Perot resonators, the resonance wavelength changes linearly
with the mirror separation ta. However, the presence of the diamond membrane
significantly alters this linear mode structure [61, 87]. Conceptually, the cavity mode
can be described using a coupled two-cavity model: one cavity is confined to the

Figure 6.9.: One-dimensional transfer-matrix calculation of the cavity mode structure, i. e.
resonance frequencies for different mirror separations ta, for different diamond thicknesses
td. The non-linear mode dispersion arises as a consequence of hybridisation of cavity modes
resonant with the air-gap (indicated by the dashed burgundy line) and the diamond (dashed
green line), respectively. The hybridisation leads to avoided crossings whose position de-
pends on the exact diamond thickness. The central panel shows the mode-structure for the
extracted diamond thickness (td ≃ 755 nm) from Fig. 6.8 (b). The orange circles indicate a
pair of cavity modes whose frequencies are separated by the Raman shift of ∆νR ∼ 40THz
(black arrow).
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diamond bound by the bottom DBR and the diamond-air interface; the other cavity
is confined to the air bounded by the diamond-air interface and the top DBR (compare
Chapter 3) [61, 255, 387]. The finite contrast in refractive index across the diamond-air
interface couple the two cavities, resulting in a hybridised mode structure, manifested
by the emergence of avoided crossings [77, 87, 98, 405]. The resonance frequencies
depends on both ta and td at the position of the cavity mode. Figure 6.9 displays
a one-dimensional transfer-matrix calculation of the cavity mode structure, using
the mirror structure extracted from Fig. 6.2. These calculations confirm that the
locations of the avoided crossings in the mode structure depend on the choice of
diamond thickness td. We find that for ta = 4173.98 nm and td = 754.58 nm, the
spectrum observed in Fig. 6.2 is reproduced well.

6.4.2. Tuning of the Double Resonance Condition

Open-access microcavities offer a convenient tuning mechanism of their resonance
frequency simply by changing the separation of the two mirrors (ta) using a piezo-
electric nanopositioner. Importantly, such cavities offer another tuning mechanism
where, rather than the width of the air-gap, the thickness of the material layer is
changed in situ. Here, a small thickness gradient in the diamond membrane converts
a lateral displacement of the cavity mode into a change of the membrane thickness
(td). Tuning both ta and td allows both the absolute wavelength and the spacing of
the cavity modes to be controlled. As a consequence, a gradient in the diamond thick-
ness |∆td

∆x | enables the double resonance condition to be satisfied for different pairs
of wavelengths. In Fig. 6.8 (a) we demonstrate experimentally a continuous tuning
range of the double resonance condition by 0.85THz. This is achieved by changing
the diamond thickness by ∼ 0.9 nm, from 755.4 nm to 756.3 nm.

To explore this tuning mechanism in more detail, we perform one-dimensional
transfer-matrix calculations (Essential Macleod). We calculate the combinations of
air-gap width ta and diamond thickness td at which specific wavelengths are reso-
nant. We perform pairwise calculations for the pump cavity mode λcavp (solid lines
Fig. 6.10 (a)) and the corresponding wavelengths red-shifted by the Raman shift at

λcavS =
(

1
λcav
p

− ∆νR

c

)−1

(dashed lines Fig. 6.10 (a)) for the range of ta and td accessi-

ble with the device presented in this work. At pairs of ta and td where the solid and
dashed line cross, the double-resonance condition is satisfied.

We find that, in principle, the double resonance condition can be tuned con-
tinuously from λpump,dres = 625.00 nm (λR,dres = 681.75 nm) to λpump,dres =
649.00 nm (λR,dres = 710.41 nm) (17.3THz) by changing the diamond thickness from
751.4 nm to 763.8 nm (green points in Fig. 6.10 (a)). The experimentally demonstrated
tuning range is indicated by the purple points in Fig. 6.10 (a).

By optimizing the choice of ta,d, we find a configuration which in principle allows
the double-resonance condition to be tuned in a mode-hope free fashion harnessing
the whole stopband of the mirror (72.2THz, λpump,dres = 565 · · · 645 nm, λR,dres =
610.98 · · · 705.62 nm, see Fig. 6.10 (b)).
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(a) (b)    

Figure 6.10.: One-dimensional transfer-matrix calculations of the cavity resonances as a
function of ta,d for different combinations of λcav

p (solid line) and λcav
S =(1/λcav

p −∆νR/c)
−1

(dashed line) at specific wavelengths. The double resonance condition is satisfied when the
corresponding solid and dashed lines cross (indicated by the same colour). By changing
the diamond thickness, the condition for the double-resonance can be tuned continuously,
as indicated by the green circles. (a) Calculations for pairs of ta,d in a range accessible
with the device presented in the main text. The calculations suggest a continuous tuning
range of 17.3THz. The experimentally verified tuning is indicated by the purple circles. (b)
Optimising the choice of ta,d enables continuous tuning across the entire reflective stopband,
amounting to 72.2THz. For simplicity, only cavity modes for which continuous tuning is
possible are included in (b).

6.4.3. Calculation of the Effective Raman Mode Volume

Consider a doubly-resonant system (ωp = ωpump = ωcav
p and ωS = ωR = ωcav

S ). In
the following, the ”cav” superscripts will be omitted for concise notation and clarity.
The effective Raman mode volume accounts for the spatial overlap of the pump (p)
and Stokes (S) cavity modes and can be determined via [370, 384]

VR =

∫
cav

n2p(r⃗)|E⃗p(r⃗)|2d3r ×
∫
cav

n2S(r⃗)|E⃗S(r⃗)|2d3r∫
dia
n2p(r⃗)|E⃗p(r⃗)|2 × n2S(r⃗)|E⃗S(r⃗)|2d3r

, (6.6)

where E⃗p(S)(r⃗) is the pump (Stokes) electric field at position r⃗. Here, the integral
in the numerator (subscript “cav”) is evaluated across the entire cavity, while the
integral in the denominator (subscript “dia”) is evaluated across the diamond only.
The integrals over the electric field can be calculated following the approach described
in Section 5.3.2 [255]. We approximated the beam waist to be constant w0,I and solve
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Figure 6.11.: One-dimensional transfer-matrix simulation of the cavity for ta = 4183.70 nm
and td = 755.31 nm extracted from Fig. 6.8 (b). The top panel shows the refractive index
profile as a function of cavity length. The middle panel shows the profile of the pump (blue)
and Stokes (red) electric field. The bottom panel shows the overlapped energy density
calculated according to the denominator in the fraction in Eq. 6.6.

the integral in cylindrical coordinates:∫
cav

n2(r⃗)|E⃗(r⃗)|2d3r

=

∫
cav

n2(z)|E⃗(z)|2dz
∫ 2π

0

dϕ

∫ ∞

0

re−r2/2w2
0,Idr

=2π
1

4
w2

0,I

∫
cav

ϵ0n
2(z)|E⃗(z)|2dz ,

(6.7)

where ϵR = n2 and w0,I is the intensity beam-waist given by [123, 387]

w0,I =

√
λ

π
·

[(
ta +

td
nd

)
·Rcav −

(
ta +

td
nd

)2
] 1

4

. (6.8)
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Calculating the respective field profiles according to Eq. 6.7 reduces Eq. 6.6 to

VR = 2π
1

4

(
w2

p + w2
S

)
·
∫
cav

n2p(z)|Ep(z)|2dz ×
∫
cav

n2S(z)|ES(z)|2dz∫
dia
n2p(z)|Ep(z)|2 × n2S(z)|ES(z)|2dz

. (6.9)

To calculate the Raman mode volume, we approximate the axial vacuum electric-
field distribution with a one-dimensional cavity using a transfer-matrix calculation
(Essential Macleod). We use the exact mirror structure obtained from fitting the
mirror stopband (Fig. 6.2) and the combination of ta,d extracted from Fig. 6.8 (b).
Fig. 6.11 shows the result of our calculations. We determine the electric field profile
for the pump and Stokes fields and then their product by numerical integration. Using
Rcav = 11µm and np ≃ nS = 2.4, we calculate the beam waists according to Eq. 6.8,
and find wp = 1.05µm and wS = 1.09µm taking the λcavS,p combination extracted from

Fig. 6.6 (a). Finally, we arrive at VR = 108.25µm3, as quoted in Section 6.3.1.

6.5. Future Directions

We now turn to discuss some limiting factors and further possible improvements to
this experiment. The double resonance condition is satisfied for the combination
of ta and td for which both pump and Stokes modes are resonant simultaneously.
With the current top mirror design (depth of crater, d = 1.65µm) and diamond
thickness td = 755.31 nm, a relatively large air-gap of ta = 4183.70 nm is required
to meet this condition for the range of λpump available (indicated by the green circle
in Fig. 6.12 (a)). The large air-gap results in a large VR, and consequently a large
lasing threshold. Establishing the double resonance condition for a shorter air-gap
will reduce VR and consequently Pth.

An additional benefit of reducing ta becomes apparent on simulating the behaviour
of the Q-factor with increased cavity length (Fig. 6.12 (b)). The Q-factor and the
cavity round-trip loss Lcav are linked via Q = 4πLcav

λLcav
, where Lcav = ta + L0. Here

the term L0 describes the diamond thickness and the field penetration into the DBR
mirror coatings [94, 387]. For short cavity lengths, the Q-factor increases linearly with
ta. However, for large cavity lengths, the extent of the intensity mode waist at the top
mirror, wI, becomes larger than the spherical extent of the mirror, leading to beam
clipping and a subsequent drop in the Q-factor [90, 104, 387]. For a spherical mirror

with diameter D, the clipping losses are calculated according to Lclip = e−D2/2w2
I ,

where the beam waist wI evolves according to [387]

wI =

√
λRcav

π
·

(
Rcav

(ta +
td
nd

)
− 1

)− 1
4

. (6.10)

In Fig. 6.12 (b), a drop in Q-factor is expected for ta ≳ 3.5µm, a consequence of
clipping losses. Therefore, a shorter ta will have the added benefit of preserving a
high Q-factor. Here, the value of Rcav = 11µm and D = 6µm are extracted from a
scanning confocal microscope (Keyence Corporation)
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(a)

(b)

Figure 6.12.: (a) Simulated cavity mode structure for λcav
p = 634.57 nm (blue) and λcav

S =
693.15 nm (red) as a function of ta and ta. The double resonance condition is satisfied
for the pair of ta,d where the two respective modes cross. The green circle highlights the
combination ta = 4183.70 nm and td = 755.31 nm used in this experiment. The black dashed
line represents the depth of the crater (d = 1.65µm), setting the lower limit on the possible
ta for the current cavity geometry. The pair td = 723.03 nm and ta = 1795.07 nm is indicated
by the black circle. (b) Simulated dependence of the Q-factor with air-gap thickness for fixed
λcav
p = 634.57 nm (blue) and λcav

S = 693.15 nm (red). The solid lines represent the Q-factor
in the absence of any losses, while the dashed lines represent the Q-factor in the presence
of surface scattering with surface roughness σq = 0.3 nm. The drop in Q-factors at large
air-gap thicknesses is attributed to clipping losses at the top mirror. The experimentally
measured Q-factors are indicated by the stars.

6.5.1. Minimising VR

As discussed above, establishing the double-resonance condition for smaller air-gap
reduces VR and consequently Pth. To this end, we simulate the cavity for a wide range
of ta and td using λcavp = 634.57 nm and λcavS = 693.15 nm as before (Fig. 6.12 (a)).
Reducing the diamond thickness to td = 723.03 nm satisfies the double-resonance
condition for ta = 1795.07 nm (black circle, Fig. 6.12 (a)). For this air-gap, we calcu-
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Figure 6.13.: One-dimensional transfer-matrix simulation of a double-resonance condi-
tion satisfied for ta = 1795.07 nm and td = 723.03 nm (indicated by the black circle in
Fig. 6.12 (a)). The top panel shows the refractive index profile as a function of cavity length.
The middle panel shows the profile of the pump (blue) and Stokes (red) electric field. The
bottom panel shows the overlapped energy density calculated according to the denominator
in the fraction in Eq. 6.6.

late VR = 20.66µm3 (Fig. 6.13), and find a theoretical Qp = 401 300, QS = 11 600,
η = 0.81 and consequently Pth = 6.32mW.

As discussed at length in Chapter 4, the diamond surface introduces scattering losses
which should be taken into account. Surface scattering can be incorporated in the
transfer-matrix simulations according to Ref. [389]. Motivated by typical roughness
measurements reported by Ref. [159, 387] (Fig. 4.3), including a scattering layer with
surface roughness σq = 0.3 nm, reduces the Q-factor to Qscat

p = 258 070 and Qscat
S =

11 540. Consequently, the additional loss-channel reduces ηscat = 0.60. The reduction
in the Q-factor increases the lasing threshold to P scat

th = 13.41mW.

Finally, increasing the thickness of the diamond membrane constitutes a way to
reduce further the lasing threshold on the account of larger Q-factors offered by the
longer effective cavity length. Furthermore, the larger diamond thickness leads to a
larger overlap of the pump and Stokes field inside the diamond, thus minimising VR
(Eq. 6.6). To quantify this, we simulate the cavity for an increasingly wide range of
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Figure 6.14.: Simulated cavity mode structure for λp = 634.57 nm (blue) and λS = 693.15 nm
(red) as a function of ta and td. As before, the double-resonance condition is satisfied for
the pair of ta,d where the two respective modes cross. The depth of the crater is represented
by the dashed black line. The green circle highlights the combination ta = 1732 nm and
td = 3366 nm evaluated in Fig. 6.15.

td, with λp = 634.57 nm and λS = 693.15 nm as before. As can be seen in Fig. 6.14,
the double-resonance condition can be satisfied for various different combinations of
ta,d, forming an almost hypnotic pattern.
By applying the same method as discussed above, we find that the double-resonance

condition can be established for td = 3367 nm and ta = 1732 nm (indicated by the
green circle in Fig. 6.14). Fig. 6.15 shows overlap of the pump and Stokes field for this
combination of ta and td. The overlapped energy density displays periodic beating,
as one would expect as the two fields go in and out of phase. Evaluating the overlap
integral according to Eq. 6.9 yield VR = 21.54µm3, which in a loss-less cavity corre-
sponds to Pth = 1.00mW*. Including surface scattering increases the threshold to
Pth = 2.37mW�.

*Using Qp = 1173 270, QS = 22 720 and η = 0.73.
�Using Qscat

p = 721 610, Qscat
S = 22 660 and ηscat = 0.50.
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Figure 6.15.: One-dimensional transfer-matrix simulation of a double-resonance condition
satisfied for ta = 1732 nm and td = 3367 nm, indicated by the green circle in Fig. 6.14. The
top panel shows the refractive index profile as a function of cavity length. The middle panel
shows the profile of the pump (blue) and Stokes (red) electric field. The bottom panel
shows the overlapped energy density calculated according to the denominator in the fraction
in Eq. 6.6. The increased diamond thickness results in periodic of the overlapped energy
density, as one would expect from the two fields drifting in and out of phase.

6.6. Conclusion

In conclusion, we demonstrate a platform for the widely-tunable doubly-resonant
enhancement of Raman scattering from diamond based on a tunable open-access mi-
crocavity. The in situ tuning capability of our device provides a convenient way to
establish a double resonance condition in which both pump and Raman wavelengths
are resonant with a cavity mode. Exploiting a slight thickness gradient of the incor-
porated diamond membrane enables the doubly-resonant configuration to be achieved
over a wide tuning range of more than 1THz. These results, together with the high
quality factors of the cavity in the visible wavelength range, suggest that Raman
lasing can be achieved with the present system. We predict a lasing threshold of
189mW, a reduction by more than an order of magnitude compared to bulk Raman
lasers [348]. We anticipate that with realistic improvements of our platform, ∼ mW
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Raman lasing thresholds can be achieved. Importantly, we predict that there are con-
figurations where mode-hop-free tuning of the double resonance condition over tens of
THz is possible, in principle limited only by the spectral width of the reflective stop-
band of the mirrors. These advancements pave the way to a universal, low-power,
frequency-shifter. Finally, we note that due to the generic design of our platform,
other wide-bandgap Raman laser materials such as aluminium nitride [452] can read-
ily be incorporated into our device. A wider point is that the integration of materials
exhibiting a strong χ(2) nonlinearity such as silicon carbide [319, 453], lithium nio-
bate [454] or gallium phosphide [455, 456] could enable low-threshold frequency con-
version using other nonlinear processes, for instance second-harmonic generation or
sum- and difference-frequency mixing.

6.7. Appendix - Extended Methods

The core of this experiment is the tunable, planar-concave Fabry-Perot microcav-
ity [385, 399] with an embedded diamond micromembrane, depicted schematically in
Fig. 6.1 (a). The microcavity comprises two fused silica substrates exhibiting highly
reflective dielectric mirror coatings (ECI evapcoat). Prior to applying the coating, we
fabricate an array of spherical micro-indentations via CO2 laser ablation [402] in one of
the substrates. The micro-indentations feature small radii of curvature Rcav ∼ 11µm
and depths d ∼ 1.65µm. We employ 14 (15) λc/4 layers of a SiO2/Ta2O5 distributed
Bragg reflector for the curved top (planar bottom) mirrors. From a white-light trans-
mission measurement [255, 387, 391], the centre of the stopband of the top mirror is
determined to be λc = 625 nm (Fig. 6.2). Using a transfer-matrix-based refinement
algorithm (Essential Macleod) we can reconstruct the reflection spectrum utilising
an individual layer-thickness tolerance of 3% with nSiO2

= 1.46 and nTa2O5
= 2.11.

Using the same approach we find λc = 629 nm for the top mirror.

Starting with commercially available high-purity, ⟨100⟩-cut single crystal diamond
(Element Six), we fabricate membranes via inductively-coupled reactive-ion etching
and electron-beam lithography [152, 159, 403]. We then transfer membranes with
typical dimensions ∼ 20× 20× 0.8µm3 to the planar mirror using a micromanipula-
tor [77, 403]. The diamond membranes exhibit a slight thickness gradient introduced
during the thinning of the diamond [305].

The bottom mirror is mounted on a stack of xyz-piezoelectric nanopositioners (at-
tocube, 2×ANPx51 and ANPz51) and placed inside a homebuilt titanium “cage”; the
top mirror is rigidly attached to the top of the cage [387]. By applying a voltage to
the nanopositioners, the bottom mirror can be moved in all three dimensions with
respect to the top mirror, offering both spatial and spectral tunability [77]. Finally,
the titanium cage is mounted on top of a high-precision mechanical stage (Newport,
M-562-XYZ) to enable the cavity output to be coupled to external detection optics
(see Fig. 5.4) [255].

We use a narrow-band tunable red diode-laser as pump laser (Toptica DL Pro
635, λpump = 630 · · · 640 nm, δν ≤ 500 kHz). This pump laser is spectrally filtered
(Semrock, FF01-637/7-25 and FF01-650/SP-25) and then coupled into the cavity
using an objective of moderate numerical aperture (Microthek, 20×, NA=0.4) [255].
The Stokes signal is collected via the same objective in a back-scattering geometry
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(Fig. 6.1 (a)). A combination of a dichroic mirror (cutoff 644 nm, AHF F48-644) and
a long-pass filter (Semrock, BLP02-635R-25) is used to filter the excitation laser
from the signal. The Stokes signal is then coupled into a single-mode detection fibre
(Thorlabs, 630-HP) and recorded with a spectrometer.





CHAPTER 7

Photoluminescence Excitation Spectroscopy of
NV centres in Microstructured Diamond

The content of this chapter is partially adapted from:
M. Kasperczyk, J. A. Zuber, A. Barfuss, J. Kölbl, V. Yurgens, S. Fl̊agan, T.
Jakubczyk, B. Shields, R. J. Warburton, and P. Maletinsky,
“Statistically modeling optical linewidths of nitrogen vacancy centers in
microstructures”, Physical Review B 102, 075312 (2020).

The NV centre has established itself as a promising building block in a large scale
quantum network [61, 66, 194]. Two-photon quantum interference of single photons
from spatially separated NV centres [79, 80] paved the way for spin-spin entanglement
between remote NV centres [42, 43, 73, 396, 397]. Nevertheless, scalability beyond a
few qubit nodes is limited by the modest entanglement rates, in turn, limited by the
small flux of coherent photons. The NV centre possesses a long radiative lifetime of
∼ 12 ns in combination with a low branching ratio of only ∼ 3% into the zero-phonon
line (ZPL), thereby limiting the generation rate of coherent photons. Furthermore,
local variations in strain and electric field give rise to inhomogeneous linewidth broad-
ening [188, 216] and spectral instability [82, 230], degrading the optical coherence of
the emitters [217], and consequently compromising the observable two-photon inter-
ference [213, 457]. While the generation rate of single photons can be greatly enhanced
by resonant coupling to a high-quality photonic resonator via the Purcell effect [86]
(compare Section 2.1.4), mitigating spectral diffusion has proven to be a harder nut
to crack.

To date, all experiments employing coherent photons from NV centres have been
performed with NV centres formed in the bulk crystal during growth [168]. These
“native” NV centres are located in a close to perfect, crystalline environment, free of
fabrication induced damage, and hence possess stable optical transitions. A typical
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high-purity CVD grown diamond crystal exhibits nitrogen concentration below one
part per billion (ppb) [458], with little to no control of the spatial location of the
NV centres. However, enhancement of the emission rate of coherent photons via
the Purcell effect requires careful positioning of the NV centre with respect to the
cavity mode [77]. To that end, implantation of nitrogen ions [156, 167], followed by
high-temperature annealing (compare Section 2.2.1) is a commonly used technique to
create single NV centres at the desired location [157]. Despite irradiation with high-
energy ions, NV centres with linewidths as low as 27MHz have been reported in ion
implanted samples [220].
Resonant enhancement of the NV ZPL has been demonstrated using photonic crys-

tal cavities [82, 83, 165, 398], nanobeam waveguides [421, 459, 460], hybrid- [78, 84] and
microring resonators [81]. While these resonators can achieve extremely small mode
volumes, and hence offer a large Purcell factor, the invasive nano-fabrication deteri-
orates the optical coherence of the NV centres. The inhomogeneous broadening of
the ZPL linewidth likely arises as a consequence of a fluctuating charge environment
associated with the diamond surface [217, 461]. On the contrary, open Fabry-Perot
microcavities [77, 214] facilitate the incorporation of larger, less aggressively processed
diamond membranes, while still maintaining a sufficiently large Q

V -ratio. Increasing
the defect-free crystalline environment around the NV centre have proven to be ben-
eficial in order to maintain optical coherence [158, 168, 171].

7.1. Measurement Methodology

The overarching goal of this work is to achieve optically coherent NV centres in
thin (∼ µm) diamond micro-membranes. In an NV-cavity coupling experiment, thin
samples are a necessity to maximise the Purcell factor. However, as mentioned above,
invasive fabrication has a catastrophic impact on the NV centres’ optical coherence.
Therefore, a compromise between the Purcell factor and optical linewidth will have
to be made. This further motivates the use of micron-sized membranes.
In this work, characterisation of the optical linewidth was performed on three dif-

ferent samples with different fabrication procedures and properties. For each sample,
the preparation, characterisation and results will be presented in their own subsec-
tion. However, the experimental setup and the experimental procedure were the same
for all the samples, and will therefore be outlined here.
The optical linewidth of the NV centre can be determined by performing photolu-

minescence excitation (PLE) measurements at a temperature of T ≲ 10K [221]. In
the PLE measurement, the NV centre is resonantly excited by sweeping the frequency
of the excitation laser ν across the ZPL, while recording the photons emitted into the
phonon sideband (PSB) using a single-photon avalanche diode (SPAD) as shown in
Fig 7.1.
The PLE measurements were performed in a liquid helium bath cryostat*. For

improved handling, the diamond sample was glued to a silicon chip (using Crystal-
bond 509, SPI supplies). The silicon chip was further glued to a home-built titanium
sample holder and mounted on top of two-axis piezoelectric scanning nano-positioners

*In fact, most of the measurements were performed in a large liquid helium transport dewar with
low helium consumption allowing for an uninterrupted measurement time of approximately 4 weeks.
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Figure 7.1.: Low-temperature PL spectrum of an NV centre. In the PLE measurements,
the NV centre is resonantly excited by sweeping the laser frequency resonantly across the
ZPL, while collecting the photons emitted into the PSB. The inset shows the PLE pulsing
sequence used in the experiment. A short green pulse was applied to initialise the NV centre
in the negative charge state, after which the resonant red laser was applied. The resonant
laser was delayed by a short time to allow for the decay of fast florescence excited by the
green re-pump pulse.

(attocube, ANSxy100lr). To achieve a greater travel range, the piezoelectric scanner
was further mounted on top of a set of three-axis piezoelectric nano-positioners (at-
tocube, ANPx101 and ANPz101), and placed inside a home-built titanium housing.
To allow for excitation and detection of PL, a low-temperature compatible high-NA
objective was attached to the top of the titanium cage*. Next, the titanium cage
was fixed to a long non-magnetic steel skeleton and inserted into a steel tube (Inset
Fig. 7.2). Before immersion into liquid helium, the tube was pumped to a pressure of
∼ 10−6 mbar, and subsequently filled with ∼ 30mbar helium exchange gas. The top
of the steel tube was sealed with a laser window (Thorlabs, WL11050-C13, thickness
5mm), allowing for optical access while acting as a barrier between the outside world
and the cryogenic world.
The dynamics associated with resonant excitation were outlined in Section 2.2.4.

Under resonant excitation, two-photon absorption leads to undesirable ionisation from
NV− to NV0 [222]. Therefore, a green re-pump pulse was used to restore the NV centre
in the desired negative charge state. The PLE pulse sequence (inset Fig 7.1) consists
of an alternating sequence of red- and green laser pulses, with duration τpump ∼ 6µs
and τre-pump ∼ 2µs, respectively. In principle, the green re-pump pulse can excite
photoluminescence (PL) in the diamond. Therefore, to minimise background, the
red pump pulse and the green re-pump pulse were offset by a short time (τoff ∼
500 ns) to allow for the decay of fast PL. The laser pulses were created by acousto-
optic modulators (Crystal Technology, 3200-146), synchronised by a dual-channel
arbitrary waveform generator (Keysight, 33600A). To collect only the PL excited by
the resonant laser, the gating of the single-photon avalanche diode (SPAD, Excelitas,
SPCM-AQRH-15-FC) was synchronised to the resonant laser.

*Two different objectives were used: Partec, 50x0.82 and Microthek, 60x0.85 with comparable
results.
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Figure 7.2.: The homebuilt confocal microscope head used for the PLE measurements. The
red and green excitation lasers were injected from individual arms and combined on a 560LP
dichroic mirror. A combination of shortpass filters was used to filter out florescence from the
fibres. The combined laser beam was directed to the sample by two individually adjustable
mirrors. The resulting PL was collected in a back-scattering geometry where the signal was
filtered from the (red) excitation by a non-polarising 90:10 beam splitter followed by a set of
appropriate longpass filters. A second 90:10 beam splitting cube and a CCD camera allowed
for imaging of the sample. The microscope head was mounted on top of a liquid helium bath
cryostat (inset). Adapted and modified from Ref. [85].

The excitation and detection of PL/PLE signal from the NV centre required careful
overlap and alignment between the green (off-resonant excitation) and red (resonant
excitation) lasers. To that end, a home-built fibre-based confocal microscope was as-
sembled *. The microscope is displayed schematically in Fig. 7.2. The two excitation
laser beams were injected via independent arms and combined on a 560 nm long-

*The microscope head used in the PLE measurements is a modified version of a microscope
inherited from Ref. [85].



7.1. Measurement Methodology 129

pass (LP) dichroic mirror (cutoff 560 nm, Semrock, FF560-FDi01). For the detection
arm, a combination of shortpass filters was used to prevent parasitic signal arising
from fluorescence and Raman processes in the fibre (for the green arm: Semrock
LL01-532-25, Semrock FF01-650/SP-25 and Semrock, BLP02-561R-25 and for the
red arm: Semrock FF01-650/SP-25 and 2x Semrock FF01-637/7-25). All the filters
were mounted in quick-release mounts (Thorlabs, QRC05A) making it easy to flip
filters in and out of the beam path depending on the desired measurement. Each mi-
croscope arm contained two independent mirrors mounted in adjustable right-angled
kinematic mounts to facilitate the overlap of the two beams. After the dichroic mirror,
two more adjustable mirrors allowed for full angular- and lateral positioning of the
combined beam, before injection through the laser window and down to the objective
lens inside the cryostat.

The resulting PL was collected via the same objective in a back-scattering geom-
etry. The signal was separated from the excitation laser by a non-polarising 90:10
beamsplitter (Thorlabs, BS025) followed by a combination of longpass filters (532LP,
Semrock LP03-532RU-25, 2x635LP, Semrock BLP01-635R-25 and 594LP, Semrock,
BLP01-594-R-25). To ease navigation on the sample, a red LED (λ ∼ 660 nm, Osa-
Opto, OCL-440-MUR-STAR) was inserted in the detection path, where a second
90:10 beamsplitter allowed for imaging of the reflected light from the sample on a
charge-coupled-device (CCD) camera (Allied Vision, Guppy Pro F-503).

The PLE measurement process flow is shown schematically in Fig. 7.3 (the NV
centre used in this example was located in bulk diamond, see Section 7.3.2). To start,
a confocal PL map of the sample was recorded by exciting the NV centre with a green
off-resonant laser (Laser Quantum, VENTUS, λ = 532 nm, P = 0.5 · · · 1µW), while
collecting the resulting PL using a SPAD. An example of a PL map is displayed in
Fig. 7.3 (a), showing spatially resolved NV centres. Once a well isolated NV was found,
the output of the detection fibre was fed into a spectrometer (Princeton Instruments,
Acton, SP2500) allowing for the acquisition of a PL spectrum (Fig. 7.3 (b)). A good
indication of the ZPL transition frequency could be obtained using a high-resolution
grating (2160 grooves/mm). To find the correct scanning range of the resonant laser,
it was helpful to overlap the laser with the ZPL frequency on the spectrometer. To
this end, the two 635LP filters in the detection arm were replaced by a 633LP filter
(Semrock, LP02-633RU-25). The partial transmission of the 633LP filter allowed the
laser frequency to be spectrally resolved without saturating the CCD camera provided
the laser was operated at low power. The laser was tuned to the correct frequency by
applying a voltage to the laser piezo. The laser frequency was continuously monitored
using a high-precision wavelength meter (High Finesse-ANGSTROM,WS/U-30U). To
locate the exact ZPL transition frequency, the laser was scanned across the full tuning
range (∼ 50GHz) (Fig. 7.3 (c)) at high power, typically in the range P = 5 · · · 30µW.
For these high powers, severe power broadening would be expected, leading to a strong
PLE signal [462]. Fig. 7.3 (d) shows a typical PLE measurement, where two distinct
peaks can be spectrally resolved. Once the ZPL transition frequency was located, both
the scanning range and the laser power were reduced to minimise power broadening
and thus to extract the true ZPL linewidths. A high-resolution PLE scan across the
two peaks in Fig. 7.3 (d) revealed a ZPL linewidth of 34± 6MHz and 59± 1MHz for
Peak 1 (Fig. 7.3 (e)) and Peak 2 (Fig. 7.3 (f)), respectively.

Initially, the resonant excitation was performed using a tunable, narrow-linewidth
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Figure 7.3.: PLE measurement procedure. All the measurements displayed here were per-
formed in bulk. (a) Low-temperature confocal scan of NV centres excited by a green laser
(λ = 532 nm). The low density of NV centres allows for the characterisation of single,
well-isolated centres as indicated by the orange circle. (b) A high-resolution PL spectrum
of the highlighted NV centre in (a). The sharp ZPL gives a good indication of the exact
transition frequency. (c) Demonstration of the ∼ 50GHz mode-hop free tuning range of
the red Velocity laser utilised in this experiment. (d) The PLE measurement over the full
50GHz scanning range revealed two peaks separated by 6.7GHz. (e) - (f) High-resolution,
low-power PLE scan reveals a ZPL linewidth of 34± 6MHz and 59± 1MHz for Peak 1 and
Peak 2, respectively.

(δν ≲ 500 kHz) laser from Toptica (DL Pro 635, λ = 630 ... 640 nm). However, the
limited mode-hop free tuning range (∼ 8 − 10GHz) made the experiment very time
consuming and ever so slightly frustrating, as careful control and adjustment of the
laser frequency and the diode current were needed for measurements on different
NV centres. To that end, the Toptica laser was later replaced by a Velocity laser
(New Focus, Velocity TLB 6704, λ = 635 ... 638 nm, δν ≲ 200 kHz) with a mode-
hop free tuning range of ∼ 50GHz (Fig. 7.3 (c)). Although the Velocity laser had a
better performance in terms of the achievable mode-hop free tuning range, the laser
frequency was found to drift with time, attributed to creep in the laser piezo. For
the first set of measurements (Section. 7.3), the laser drift was compensated for by
increasing the scanning range, thus always capturing the ZPL. However, as this results
in increased acquisition time, for the second set of measurements (Section 7.4), the
laser frequency was stabilised using an in-built PID control provided by the wavelength
meter. Consequently, stepwise changing the setpoint of the PID control allowed for
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Figure 7.4.: Sample fabrication and linewidth measurements adapted from Ref. [77, 85]. (a)
The sample was fabricated by first etching the diamond down to a thickness of ∼ 1µm.
(b) After the initial etching step, e-beam lithography followed by an additional etching step
was performed to fabricate the microplatelets. (c) PLE scans of near-surface NV centres
in unprocessed diamond (blue) and microstructured (red) diamond. During fabrication, the
averaged ZPL linewidth increased from ∼ 100MHz to ∼ 1GHz.

tuning the laser frequency across the ZPL.

7.2. The effect of Microfabrication on the Optical
Linewidth

In the seminal proof-of-principle cavity coupling experiment performed in Ref. [77, 85],
an increase in the NV centre optical linewidth was observed after sample fabrication.
In this experiment, diamond microplatelets were fabricated by first thinning down
the diamond to a thickness of ∼ 1µm using inductively coupled reactive ion etch-
ing (Fig 7.4 (a)). After this initial deep-etching step, the thinned-down region was
microstructured using electron beam (e-beam) lithography (Fig 7.4 (b)). A final etch
step was performed to relieve the microplatelets. All the etching steps were per-
formed with an alternating sequence of Ar/Cl2 and O2 plasmas. For more details on
the sample fabrication, see Ref [77, 85] and references therein.

Fig 7.4 (c) shows photoluminescence excitation (PLE) measurements performed on
near-surface NV centres (depth ∼ 70 nm), located in both the processed and the
unprocessed part of the diamond. In the unprocessed region, NV centres with an
averaged ZPL linewidth of ∼ 100MHz were observed. However, in the processed
regions the average linewidth increased to ∼ 1GHz. In this experiment, the green
re-pump laser was applied several times for each step of the resonant laser (same
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protocol as in the inset of Fig. 7.1), hence randomising the local charge environment
for each pixel. The large spectral diffusion induced by the re-pump laser indicates
the presence of charge traps in close proximity to the NV centre, possibly generated
during the fabrication [230].

7.3. Reversed Fabrication Order

In the aforementioned experiment (Ref. [77, 85]), the diamond material surrounding
the NV centre was still relatively thick (∼ 1µm), and hence the fabricated surface
was still several hundred nanometres away from the NV centres. Yet, the effect of
fabrication significantly deteriorated the spectral stability of the NV centre. Although
the linewidth broadening presumably stems from a fluctuating charge environment
caused by fabrication induced surface damage, the exact mechanism causing this
surface damage remains unclear. In an attempt to understand the origin of the large
spectral diffusion, the optical linewidths were characterised after each fabrication step,
starting with a pre-characterisation in bulk. Contrary to Ref. [77, 85], the fabrication
procedure was reversed: microstructuring was performed before the deep-etching.

7.3.1. Sample Preparation

A commercially available, high-purity ([N] < 5 ppb, [B] < 1 ppb) single-crystal dia-
mond grown via chemical vapour deposition (Element Six, (100)-oriented, “electronic
grade”, 4× 4× 0.5mm3) was used as starting material. The diamond was laser cut *

(Almax Easy Lab) and polished down to a thickness of ∼ 50µm. Residuals from
the polishing were removed by performing a fuming tri-acid bath (nitric, sulphuric
and perchloric acid, mixed 1:1:1) [463], followed by a solvent clean (deionised water,
acetone, ethanol and isopropanol).
The polishing process is known to strain and damage the diamond surface. The

induced stress was relieved by etching a few micrometres using inductively coupled
reactive ion etching (ICP-RIE, Sentech SI 500)). The etching was performed with an
alternating sequence of ArCl2 and O2 plasmas. Here, the ArCl2 removes the damaged
diamond while preserving a smooth diamond surface [152, 159, 464]. However, the
ArCl2 might leave Cl2 residuals on the diamond surface [465, 466]. The O2 plasma
removes the Cl2 contamination, resulting in an oxygen termination of the diamond
surface [467]. For a more detailed description of the sample preparation, the reader is
guided to Ref. [85, 152, 159, 305, 403] and references therein.
To aid the formation of NV centres, nitrogen ions were introduced to the top

side of the sample via ion beam implantation (Ion Beam Services, 14N, 55 keV, 5 ·
108 ions/cm2). Based on SRIM� simulations, the implantation energy corresponds to
a target depth of 75 ± 16 nm, which is equal to λZPL

4 [85]. After ion implantation, a
multi-step thermal annealing process under vacuum leads to the formation of stable
NV centres (compare Section 2.2.1). A tri-acid clean and a subsequent solvent clean
were performed to remove any graphite formed during the annealing, thus minimising
surface fluorescence [458].

*The starting diamond had in-house number 10010. This diamond was cut into three pieces,
where the piece labelled 00012B was used in this experiment.

�Stopping and Range of Ions in Matter.
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7.3.2. Pre-Characterisation of NV Centres in Bulk Diamond

Basic room temperature characterisation was performed to verify the creation of NV
centres. Fig. 7.5 (a) shows a ∼ 50 × 50µm2 confocal scan obtained using a high-
NA objective (Olympus, MPLFLN100x, NA=0.9). In this measurement, the NV
centres were excited using a pulsed supercontinuum laser (NKT Photonics, SuperK
Extreme EXW-12) operating at a repetition rate of 78MHz with λ = 530±25 nm and
P ∼ 1mW. The excitation laser was filtered from the PL signal using a 633 nm long-
pass filter. The confocal scan shows that the NV centres were distributed uniformly
throughout the diamond. The inset highlights the possibility of spatially resolving
single NV centres. The detection fibre was connected to a TTL controlled fibre switch,
allowing the PL signal to be either directed to the spectrometer or to the SPAD. The
PL spectrum displayed in Fig. 7.5 (b) shows the characteristic phonon-sideband as-
sociated with the NV centre. Unfortunately, the ZPL was spectrally filtered by the
longpass filter.
Next, time-resolved PL measurements were performed to extract the radiative life-

time of the NV centres (Fig. 7.5 (c)). Fitting the data for time delay longer than 2 ns
with a single exponential decay yields a lifetime of τ = 12.4 ± 2 ns. Here, the signal
for the first two nanoseconds corresponds to the instrument response function (IRF)
probed by fast decaying background florescence. A more accurate measure of the life-
time could be achieved by fitting the data with a single exponential decay convoluted
with the IRF [77], with the IRF probed by the laser directly [300]. Nevertheless, the
extracted lifetime is consistent with values reported in literature [37, 132, 194, 216].
A handful of NV centres from various regions of the diamond were characterised

at room temperature, before proceeding to the low-temperature measurements. In
the PLE measurement shown in Fig. 7.3 (d), two spectrally resolved lines separated
by 6.7GHz were observed. To mitigate power broadening, low-power, high-resolution
PLE scans were performed across each peak independently. Fitting each peak with
a single Lorentzian yield a linewidth of ∆ν = 34 ± 6MHz and ∆ν = 50 ± 1MHz
(Fig. 7.3 (e) and (f), respectively). Due to the close spectral proximity combined
with the similarity in linewidth, the two lines were attributed to the Ex and
Ey transitions from the same NV centre (compare Section. 2.2.2). In total, 16
different NV centres were investigated in the bulk, with linewidths ranging from
∆ν = 34MHz to ∆ν = 5GHz, with a mean linewidth ∆ν̄ = 592.4MHz, median
linewidth ∆ν̃ = 105.4MHz and standard deviation σν = 1387MHz. Ignoring NV
centres with ∆ν > 1GHz yields ∆ν̄ = 104MHz, ∆ν̃ = 99.9MHz and σν = 56.7MHz.

7.3.3. Microstructuring

Having characterised the NV centres in bulk, attention was turned towards mi-
crostructuring of the diamond. The goal was to create micro-membranes with typical
dimensions ranging from 10×10µm2 to 50×50µm2. The small surface area facilitates
bonding to the bottom mirrors used for cavity coupling experiments [77].
The diamond was microstructured following the method outlined in Ref. [85, 152,

159, 305, 403]. To start, the diamond was spin-coated with a hydrogen silsesquiox-
ane (HSQ) negative electron beam resist (FOX-16, Dow Corning), and subsequently
baked on a hotplate at 100◦C for 10 minutes. To prevent charging during the electron
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Figure 7.5.: Room temperature pre-characterisation of NV centres in bulk diamond. For all
measurements, the excitation was performed using a supercontinuum laser (λ = 530±25 nm,
P ∼ 1mW, 78MHz repetition rate). The detection fibre was connected to a TTL controlled
fibre switch (transmission ∼ 50%) used to direct the PL to either SPAD or spectrometer.
(a) Long-range confocal scan revealed a uniform distribution of single NV centres. (b) PL
spectrum of the highlighted NV centre. A shortpass filter with cutoff λ ∼ 640 nm was used to
filter the excitation laser. (c) Time-resolved PL measurement. Fitting a single exponential
decay determines the NV centre exited state lifetime τ = 12.4± 0.2 ns.

beam (e-beam) exposure, the diamond was further spin-coated with a protective con-
ducting layer (Electra 92, Allresist). Using e-beam lithography (30 keV), a pattern
consisting of square-shaped membranes (area dose 600µCcm−2) attached to large
holding bars via a small bridge (dose factor 3.0) was written (See Fig. 7.6 (a) and
(b)). The bridges were deliberately written off-centre to distinguish the top from the
bottom surface, should the membranes turn upside-down. Furthermore, each mem-
brane was assigned a unique label based on binary code, which will be explained in
more detail in Section 7.3.6. After exposure, the resist was developed using TMAH *

for approximately 20 seconds. To protect the unprocessed region during etching, the
sample was covered using a hard SiO2 mask with a ∼ 1×1mm2 window cut out with
a water jet (Microwater Jet, Switzerland). Approximately 2µm of the unprotected
diamond (i.e. not covered by e-beam resist or the hard mask) was removed using the
ICP-RIE, creating trenches between the platelets. As before, a cycle of ArCl2 plasma
followed by an O2 plasma was used for this etching step. After etching, the resist
was removed by dipping the diamond into a buffered oxide etch (BOE) followed by a
tri-acid and a solvent clean. A microscope image showing an overview of the entire
write-field is shown in Fig. 7.6 (a). The bridges and unique binary label are clearly
visible in the high-resolution zoom shown in Fig. 7.6 (b). To preserve the optical qual-
ity of the NV centres, no scanning electron microscope (SEM) image was recorded
of the fabricated membranes. Finally, the diamond was glued to a silicon chip using

*Tetramethylammonium hydroxide.
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Figure 7.6.: Microstructuring of diamond using e-beam lithography and subsequent reactive
ion etching. (a) Overview of the write-field after etching. (b) The membranes were attached
to the holding bars via narrow bridges. The bridges were deliberately placed off-centre to
aid identification of the top surface. Each membrane was assigned a unique label based
on binary code allowing for easy identification of every single membrane. (c) Long-range
confocal laser reflection scan (λ = 635 nm). The binary labels are clearly visible allowing for
quick identification of the platelets. (d) Confocal scan excited with λ = 532 nm shows that
the NV centres survived the the fabrication process.

crystalbond, and mounted in the experimental setup (compare Section. 7.1). Before
cooling the sample down to cryogenic temperature, a room temperature confocal laser
reflection scan (Fig. 7.6 (c)) and a confocal PL scan were performed (Fig. 7.6 (d)). The
laser reflection scan (λ = 635 nm) was acquired by removing all the longpass filters
in the detection arm and connecting the detection fibre to a photodiode. The unique
binary labels are clearly visible on the sides of the membrane. The confocal PL map
confirms that the NV centres survived the fabrication process.
After cooling down the sample, linewidth characterisation was performed on mem-

branes of various size located in all four sections of the write-field (Fig. 7.6 (a)). For all
membranes, a confocal laser reflection scan was recorded to identify the membrane.
Fig. 7.7 summarises the results obtained on one selected membrane, where four dif-
ferent NV centres were characterised (Fig. 7.7 (d)-(f)). The three highlighted NV
centres all exhibit linewidths ∆ν < 200MHz, while for the fourth NV ∆ν ∼ 500MHz
(not shown). Note that NV 2 is located at the end of the bridge, and hence in
close proximity to three etched surfaces. In total, 23 NV centres were characterised
across all platelets, with linewidths ranging from ∆ν = 105MHz to ∆ν = 4.48GHz,
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Figure 7.7.: Low temperature PLE measurement after microstructuring. (a) Confocal laser
reflection scan to identify the membrane. (b) Confocal PL scan (λ = 532 nm, P = 0.5mW)
to locate the NV centres. (c) PL spectrum of NV 1 with λZPL = 637.02 nm. (d)-(f)
PLE measurements of NV 1 (P = 162 nW, ∆ν = 190 ± 47MHz), NV 2 (P = 30µW,
∆ν = 135± 47MHz) and NV 3 (P = 116 nW, ∆ν = 185± 66MHz), respectively. Note that
NV 2 is located at the bridge, in close proximity to three etched surfaces.

with mean, median and standard deviation ∆ν̄ = 473.5MHz, ∆ν̃ = 174.8MHz and
σν = 934.2MHz, respectively. Ignoring the three NV centres with ∆ν > 1GHz gives
∆ν̄ = 189.0MHz, ∆ν̃ = 167.0MHz and σν = 72.3MHz.

7.3.4. The Effect of Microstructuring

The effect of the microfabrication was quantified by comparing the distribution of
observed linewidths before and after structuring. Binning the data yields the his-
tograms displayed Fig. 7.8 (a). Note that the histograms are binned on a logarithmic
scale, and therefore bins at higher linewidth cover a broader spectral range. By look-
ing at the histograms, two things become apparent. First, after microfabrication, the
population of linewidths shifts towards broader lines. Second, the narrowest linewidth
found after microstructuring (∆νms = 105MHz) was a factor of three broader than
the narrowest linewidth found in bulk (∆νb = 34MHz). The broadest linewidths
found in the two ensembles, ∆νb = 5.0GHz and ∆νms = 4.5GHz in the bulk and the
microstructured part, respectively, both fall within the same bin.
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Figure 7.8.: Comparison between the optical linewidths before (blue) and after microstruc-
turing (red). (a) Histogram of the measured linewidths. Fitting the histograms with a
log-normal distribution yields population medians µb = 90.5MHz and µms = 178.9MHz
for the bulk and structured diamond, respectively. The two populations indicate fabrica-
tion induced deterioration of the optical linewidths. (b) ECDFs of the data and CDFs of
the fits in (a). (c) Dashed lines show the log-normal fit from (a). Solid lines show the
posterior predictive distribution P (x̃|{xi}). Dotted lines are posterior distributions for the
median P (µ|{xi}). The two medians are well separated. (d) CDFs of the distributions in
(c). (e) Histogram of the ZPL transition frequency extracted from the PLE measurements.
NV centres in bulk were sampled from a larger area of the diamond, thus may experience
different local strain leading to a larger spread of the ZPL transition frequency. (f) Scatter
plot of ZPL transition frequency against the ZPL linewidth revealing no obvious relationship
between the ZPL frequency and the linewidth.

In this comparison, only the fabrication induced effect on the narrowest linewidths
are of interest, on the ground that the broad linewidths are broad for other rea-
sons [168, 171]. To this end, the remainder of this analysis only includes NV cen-
tres with ∆ν < 1GHz. To start, the histograms in Fig. 7.8 (a) were fitted using a
log-normal sampling distribution parameterised by the median µ and the standard
deviation σ. From the fit, a population median µb = 90.5MHz and µms = 178.9MHz
were extracted, here the subscripts refer to the bulk and microstructured parts, re-
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spectively. A log-normal distribution is an appropriate distribution for any purely
positive quantity affected by multiple independent sources of noise [171, 468]. In
other words, external noise will only contribute to the broadening of the linewidth.
Fig. 7.8 (b) shows the empirical cumulative distribution function (ECDFs) for the two
datasets. Furthermore, there is a good concordance between the computed cumulative
distribution function (CDFs) for the log-normal fits and the ECDFs.

From the distributions of measured linewidths in Fig. 7.8 (a), it seems as though
linewidths measured in bulk and in the structured part form two distinct distributions.
Therefore, following Ref. [171], a statistical model describing the two distributions was
derived. Using a Bayesian approach, the likelihood of a particular linewidth xi can
be modelled using a log-normal distribution

P (xi|µ, σ) =
1√
2πσ2

1

xi
e−

(ln(xi)−µ)2

2σ2 , (7.1)

where µ and σ is the median and standard deviation, respectively. Next, the posterior
distributions, describing the best guess for a parameter given the data acquired and
the model used, were computed. In other words, the posterior distribution allows
for calculating the distribution of further linewidths x̃ one would expect to measure,
given the data already acquired. For the derivation, the reader is guided to Ref. [171].

A graphical representation of the results is shown in Fig. 7.8 (c), where the dashed
lines represent the log-normal fits acquired from Fig. 7.8 (a) and the solid lines are the
posterior predictive distributions P (x̃|{xi}). There is a close resemblance between the
posterior predictive distributions P (x̃|{xi}) and the sampling distributions P (xi|µ, σ)
(Eq. 7.1). However, P (x̃|{xi}) is slightly broader on account of the uncertainty in
the estimation of µ and σ. The dotted lines represent the posterior distribution
for the median P (µ|{xi}). There is no overlap between the posterior distribution
P (µ|{xi}) for the bulk and structured samples, indicating that the median of the two
distributions is well separated. To quantify this statement, 108 simulated draws from
the posterior distributions revealed P (µms < µb|xall) = 0.00797, where {xall} is the
combined set of all the measured linewidth.

Finally, attention is turned toward the ZPL transition frequency. Fig. 7.8 (e) shows
a histogram of the ZPL transition frequency extracted from the PLE measurements.
As can be seen, the spread in ZPL frequencies is larger for the bulk measurements,
indicating larger variations in local strain. The NV centres characterised in bulk
were sampled from a large region of the diamond (dimension 4× 4µm2), hence larger
variations in the crystalline environment can be expected. Fig. 7.8 (f) shows a scatter
plot of the ZPL transition frequency against the ZPL linewidth. A Wilcoxon rank-
sum test (p = 0.0136) indicates no obvious relationship between the ZPL transition
frequency and the ZPL linewidth.

To summarise, this section has attempted to quantify the effect of microfabrication
on the NV centre linewidth by applying the statistical model derived in Ref. [171].
To fully capture the complete picture, a larger sample size of NV centres in bulk and
structured diamond is necessary. Ideally, one would measure the same NV centres
before and after fabrication, i.e. by tracking the NV centres [458].
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(a) (b) (c) 

(d) (e)

Thickness = 1.61 µm Thickness = 1.53 µm

Figure 7.9.: Fabrication of thin membranes by etching. (a) Gold-coated write-field after
etching showing fully and partially released membranes. (b) Zoom of fully released mem-
branes. (c) Microstructured diamond after all fabrication steps. Some membranes broke
out during the tri-acid clean. (d) - (e) PL spectra from NV centres located in a partially-
and fully released membrane, respectively. Thin-film interference strongly alters the shape
of the PSB. Fitting the fringes with a double Lorentzian yield an approximate membrane
thickness of 1.61µm and 1.53µm, respectively.

7.3.5. Deep Etching

To create thin diamond micromembranes, the structured region of the diamond was
thinned down by performing a long etching step from the backside of the sample. To
protect the NV centres, the implanted diamond surface was coated with a titanium-
gold layer (5 nm Ti, 100 nm Au) using electron beam assisted thermal evaporation.
Next, the sample was flipped around, and the unprocessed parts of the diamond were
protected using the same hard mask as before (Section. 7.3.3). The structured region
of the sample was thinned down to a thickness of 1 − 2µm using an alternating se-
quence of ArCl2 and O2 plasmas. Fig. 7.9 (a) shows the still gold-coated diamond after
etching. The etching process was not perfectly uniform, resulting in local thickness
variations. As can be seen in Fig. 7.9 (a), only membranes in the lower-left quadrature
were fully released, membranes from the two upper quadrants were only partially re-
leased. Fig. 7.9 (b) shows a zoom of the fully released membranes. Erosion from the
mask or the carrier wafer redeposited on, and masked, the diamond resulting in the
black pillars [158]. However, there is still a sufficient number of clean membranes.

After etching, the titanium-gold layer was removed using a gold etchant (Sigma



140 PLE Spectroscopy of NV centres in Microstructured Diamond

Aldrich 651818), before a tri-acid and a subsequent solvent clean were performed.
Fig. 7.9 (c) shows a microscope image after all the cleaning procedures. Unfortunately,
some membranes were lost, presumably during the tri-acid clean. As before, the
prepared diamond was glued to a silicon chip and mounted in the experimental setup.
Fig. 7.9 (e) and (f) show PL spectra of NV centres found in the partially- and fully
released membranes, respectively. Thin-film interference significantly alters the shape
of the PSB. To estimate the thickness of the membranes, the fringes were fitted with
two Lorentzian, yielding a thickness of 1.61µm and 1.53µm, respectively.

7.3.6. Optical Linewidths After Deep Etching

Performing the deep etch was like the opening of Pandoras’s box: numerous unan-
ticipated consequences materialised. To start, Fig. 7.10 (a) shows a low-temperature
confocal PL scan after deep etching. The PL spectra acquired from the two highlighted
NV centres are shown in panel (b) and (c), where the PL spectrum in Fig. 7.10 (b)
shows a sharp ZPL and the characteristic PSB of an NV centre. On the contrary, the
PL spectrum in Fig. 7.10 (c) shows no ZPL and arguably a differently shaped PSB.
This feature was observed for different NV centres throughout the sample, but was
never observed before the deep-etch. An NV centre with no ZPL is non-physical.
From the PL spectrum alone, it is hard to determine if the missing ZPL arises from
very large spectral diffusion, thus not capturing the ZPL at the spectrometer, or if
the PL spectrum arises from a different defect altogether (e.g. the neutral vacancy
GR1 [138, 469]). Note that the two highlighted spots exhibit comparable intensities
in the confocal scan.

A handful of NV centres were investigated without resolving a single linewidth
in PLE. The reason why becomes apparent when looking at the PL spectra in
Fig. 7.10 (d). The PL spectra, recorded from the same NV centre at two different
times, clearly show spectral instability. The shift in wavelength corresponds to spec-
tral jumps of 34 pm (25GHz). Here, the spectrometer resolution is 11 pm (8GHz).
With spectral wandering of this magnitude, the overlap between the resonant laser
and the ZPL is vanishingly small, and hence no signal is observed in PLE. To validate
the functionality of the experimental setup, a control measurement was performed on
the bulk part of the sample, with comparable results as obtained before the fabrication
(Section 7.3.2).

Finally, Fig. 7.10 (f) shows the PL spectrum of yet another NV centre, where a
striking feature was observed at λ = 642.7 nm. Pure graphite exhibits a characteristic
Raman feature at 3 238 cm−1 [138]. Exciting with λ = 532 nm, corresponds to the
graphite peak at λ = 642.7 nm, in good agreement with the observed spectrum.
A graphitic layer could have been created during the high-temperature thermal
annealing step, but should, at least in principle, have been removed by the tri-acid
clean. Note, that signatures of sp2 bonded carbon (Fig. 5.2) were observed in the
experiment presented in Chapter 5 and in Ref. [255].

The remainder of this subsection will present a direct comparison of the optical
coherence of the same NV centres as were characterised before the deep-etch. Fig. 7.11
show confocal PL scans recorded under nominally identical conditions (a) before and
(b) after deep-etching. The NV centres highlighted in white could easily be identified
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642. 7nm

Figure 7.10.: Linewidth measurements after deep-etching. (a) Confocal PL scan of a mem-
brane with two presumably identical fluorescent spots highlighted. The two spots exhibit
similar countrates. (b) - (c) PL spectrum from the burgundy and orange highlighted fluores-
cent spot, respectively. The spectrum in (b) exhibits the sharp ZPL and PSB characteristic
of an NV centre. On the other hand, the spectrum in (c) show no ZPL. From the spectrum
on its own, it is hard to determine if the missing ZPL arises from very large spectral wander-
ing or if the spectrum is from a different defect (e.g. GR1). This feature was reproducibly
seen for different bright spots, across several membranes. (d) High-resolution PL spectra of
the ZPL for a different NV centre recorded at two different times. The spectra show clear
signs of spectral wandering. (e) PL spectra of the same NV centre as in (d), where each
line is averaged over 60 seconds. (f) PL spectrum of yet a different NV centre showing a
sharp peak at λ ∼ 643 nm. The peak position matches with a feature characteristic for pure
graphite. The peak was observed for multiple NV centres.

after the etching step. On the contrary, NV centres highlighted in red could not,
with confidence, be resolved after etching. Either etching resulted in quenching of
the PL, or the NV centres were simply removed during the etching. The narrow lines
characterised before the deep etch could stem from native NV centres deeper in the
crystal, and could therefore have been etched away. However, the likelihood that all
the measured NV centres prior to etching were of native origin seems highly unlikely.
Quenching of the PL can be explained by surface contamination changing the Fermi
level inside the diamond, thus favouring the neutral charge state.

The disappearance of NV centres, combined with the loss of membranes during
the tri-acid clean, made the tracking of NV centres a laborious task. Nevertheless,
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(a) (b)

Figure 7.11.: Comparison between a confocal PL scan of the same platelet recorded (a)
before and (b) after the deep etching. NV centres highlighted in white could be identified
with confidence after the etching, while the NV centres highlighted in red could not. The
etching resulted in the disappearance, or quenching of the PL, for a total of 12 NV centres.

Fig. 7.12 shows the characterisation of the same NV centre before and after etching.
As mentioned in Section. 7.3.3, each membrane was assigned a unique label based
on binary code. The code works as follows: markers were fabricated on eight spots
along two sides of the membrane. The unique label was assigned by the presence (1)
or absence (0) of a marker in each spot. For example, Fig. 7.12 (a) shows a confocal
laser reflection scan performed before etching. From the markers, the label of this
membrane is 00111011 (membrane 59).
Fig. 7.12 (b) shows a confocal scan of the same region performed after the deep

etch. As before, the NV centre of interest is highlighted. Unfortunately, in the
interest of time, no PL spectrum of this NV centre was recorded before deep etch.
The PL spectrum displayed in Fig. 7.12 (c) is from a different NV centre located in
the same membrane (no PLE signal was observed for this NV centre after etching).
Fig. 7.12 (d) shows the PL spectrum from the highlighted NV after etching. Fitting
the modulations of the PSB yields an approximate membrane thickness of 1.85µm.
The PLE measurement (Poffres = 0.76mW, Pres = 2.45µW) performed before deep
etching (Fig. 7.12 (e)) revealed two peaks split by 7.7GHz. Fitting each peak with
a single Lorentzian yields ∆ν = 286 ± 6MHz and ∆ν = 189 ± 6MHz. As before,
the two peaks were attributed to the Ex and Ey transitions. After the deep etch
(Fig. 7.12 (f)), PLE measurement (Poffres = 0.55mW, Pres = 1.04µW) revealed a 15-
fold increase in linewidth from ∆ν = 189± 6MHz to ∆ν = 2830± 420MHz. Due to
the limited mode-hop free tuning range of the resonant laser, the second peak could
not be resolved*.

*The velocity laser (Section 7.1) was installed during the linewidth characterisation in bulk.
Unfortunately, the velocity laser was not available for the last PLE measurements performed after
deep etching, including the measurement in Fig. 7.12 (f).
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Figure 7.12.: Comparison of the same NV centre before and after deep etching. (a)-(b) Con-
focal scan before and after deep etching respectively. The targeted NV centre is highlighted
by the orange circle. (c) Typical PL spectrum obtained before deep-etching. Note that this
PL spectrum is from a different NV centre within the same membrane. (d) PL spectrum
of the highlighted NV centre after etching. From the modulations of the PSB, the diamond
thickness was estimated to be 1.85µm. (e)-(f) PLE measurement before (Poffres = 0.76mW,
Pres = 2.45µW) and after deep etching (Poffres = 0.55mW, Pres = 1.04µW). The etching
resulted in a 15-fold increase in the linewidth.

7.4. Optical Linewidths in Postimplanted
Microstructures

The results outlined in the previous section suggests that even minimal microfabri-
cation deteriorates the optical coherence of the NV centre. To this end, a novel fab-
rication scheme was proposed, where all the fabrication steps were performed prior
to nitrogen implantation. This fabrication process was christened “postimplanta-
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tion” [171].

7.4.1. Sample Preparation

As before, the starting material was a commercially available electronic grade dia-
mond from Element Six. Following similar fabrication procedures as described in
Section 7.3.3 and Section 7.3.5, the diamond was fabricated into thin membranes with
thickness 2.5 − 5µm, and cantilevers of various dimensions. The length of the can-
tilever varied from 35− 70µm with a width of approximately 4.5µm and a thickness
ranging from 2− 4µm*. After fabrication, the diamond was implanted with nitrogen
ions followed by thermal annealing, after which NV centres were observed in bulk.
However, no NV centres were observed in the cantilevers, presumably due to charging
of the structured areas resulting in the deflection of the ions. Therefore, to miti-
gate charging, the sample was coated with a layer of 1 nm Cr and 5 nm Au, before the
sample was re-implanted with nitrogen ions (Helmholtz-Zentrum Dresden-Rossendorf,
14N, 12 keV, 5 ·1011 ions/cm2, implanted at an angle of 7◦). After annealing, NV cen-
tres were observed throughout the sample.
An overview of the sample is shown in Fig. 7.13 (a). For convenience, the different

parts of the sample are labelled as follows: bulk, membrane, cantilever and mirror,
as indicated in Fig. 7.13 (a). NV centres were sampled from all the different regions
and categorised according to their location. Fig. 7.13 (b) shows a high-resolution laser
scanning confocal image of the structured fabricated part.
The lateral dimensions of the cantilevers are sufficiently large to allow for imple-

mentation in a Fabry-Perot cavity without suffering from beam clipping at the edges
(typical beam waist ∼ 1 − 2µm [77, 255, 387]). Therefore, a part of the diamond
(Fig. 7.13 (c)) was transferred to a DBR mirror (LaserOptik, Transmission ≃ 58 ppm)
using a micromanipulator system (Fig. 7.13 (d)). The transfer process was carried
out as follows: first, to break the holding bars (Fig. 7.13 (e)), one needle was placed
beneath said bar while the other needle gently pressed the structure down. The struc-
ture was released by breaking both the holding bars (Fig. 7.13 (f)). A combination
of released tension and electrostatic forces may result in the structure flying away
uncontrollably. However, due to the large size combined with electrostatic forces, the
structure could be picked up and moved (Fig. 7.13 (g)). The structure was placed
on a clean spot on the mirror (Fig. 7.13 (h)). For a cavity coupling experiment, it
is beneficial to have the NV centre close to the bottom mirror [77]. Therefore, the
structure was flipped over (Fig. 7.13 (i)). Both the diamond and the mirror exhibit
very smooth surfaces: the diamond bonds efficiently to the mirror via Van der Waals
forces. Strong bonding was verified by the possibility of bending and breaking the
glass needles without displacing the diamond (see Fig. 5.1 (a)) [255]. Note that the
observable interference fringes in Fig. 7.13 (h) is a sign of poor bonding; the rotation
of the structure would not have been possible with a strongly bonded diamond.

*The in-house number of this diamond is 00013BAA. This diamond sample was the sister sample
to sample A in Ref. [171].
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Figure 7.13.: (a) Microscope image of the sample. The sample consists of four different sec-
tions: bulk, thinned down membranes, cantilever and mirror. NV centres were characterised
from all parts of the sample and categorised their location. The structured part inside the
black rectangle was transferred to a DBR mirror. (b) - (c) Laser scanning confocal image
of the whole sample and the part transferred to a mirror, respectively. (d) - (i) Process flow
of transferring the diamond to the mirror using a micromanipulator system.

7.4.2. Characterisation of the Optical Linewidths

The higher fluence of nitrogen ions used for the postimplanted sample compared to
the sample described in Section 7.3, resulted in a higher concentration of NV centres.
In Ref. [220], an increase in the ZPL linewidth was observed for samples with a high
density of NV centres. Therefore, as a first characterisation, PLE measurements were
performed on a handful of NV centres in the bulk part of the diamond. Fig 7.14 (a)
shows a typical confocal scan performed in the bulk. Although the density of NV
centres is higher compared to the scan in Fig. 7.5 (a), isolating single NV centres was
still possible. For the highlighted NV centre, two closely spaced lines were observed in
PLE, with linewidths of ∆ν = 47.7± 6MHz and ∆ν = 47.2± 21MHz extracted from
a Lorentzian fit. These linewidths are comparable to the narrowest lines observed in
the low-density sample (compare Section. 7.3.2).

Next, the optical coherence of the NV centres in the fabricated structures was inves-
tigated. Fig. 7.14 (d) shows a confocal PL scan recorded on the diamond transferred
to the mirror. Compared to the PL scan in bulk (Fig. 7.14 (a)), two things become
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Figure 7.14.: (a) - (c) Characterisation of the optical linewidth in bulk. Despite the higher
density of NV centres, narrow optical lines were observed. (d) - (f) Example of an NV centre
with a broad optical linewidth (∆ν = 10GHz). Fitting the modulations of the PSB yields
a sample thickness of ∼ 2.80µm. (g) - (i) Narrow NV centre in ∼ 3.03µm thick diamond
with an averaged Lorentzian linewidth 56± 8MHz. For comparison, fitting the data with a
Gaussian yields 61± 5MHz. For details see main text.

apparent. First, a large increase in the PL countrate was observed, attributed to
the presence of the DBR mirror beneath the sample. Second, the PL scan showed
areas, or stripes, of lower PL, attributed to destructive thin-film interference caused
by a slight gradient in the diamond thickness. By fitting the fringes in the PSB for
the PL spectrum in Fig. 7.14 (e) with the sum of four Lorentzians, a diamond thick-
ness of ∼ 2.8µm was extracted. A PLE measurement with Poffres = 550µW and
Pres = 0.6µW (Fig. 7.14 (f)) revealed a broad ZPL linewidth of 10.3± 2GHz; as this
NV centre exhibited a broad linewidth, no further PLE measurements with lower
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Figure 7.15.: Two narrow NV centres within the same focal volume. (a) Confocal PL scan
(Poffres = 550µW) on the mirror. (b) PL Spectrum of the highlighted NV centre. The
modulations of the PSB corresponds to a diamond thickness of ∼ 3.03µm. The inset shows
a high-resolution PL spectrum of the ZPL. (c) Three spectrally separated peaks within a
spectral range < 1GHz resolved in a low power (Pres = 5.56 nW) PLE measurement. All
three lines exhibit averaged linewidths < 100MHz. From the similarity in linewidth, the two
leftmost peaks were attributed to the Ex and Ey transition of the same NV centre, while
the rightmost peak likely originates from a different NV centre.

resonant power were conducted.

On the contrary, Fig. 7.14 (g) - (i) show the characterisation of a different NV centre
located in a slightly different region on the mirror. Fitting the fringes in the PL
spectrum (Fig. 7.14 (h)) yield a diamond thickness of ∼ 3.03µm. However, compared
to Fig. 7.14 (e), only two fringes are visible, and hence the extracted thickness carries
a greater uncertainty. Performing 100 successive PLE scans over a time duration of
30 minutes with Pres = 0.51 nW and continuous green re-pump with power Poffres =
230µW, revealed an average linewidth ∆ν = 61±5MHz extracted from a Lorentzian
fit (Fig. 7.14 (i)). To the best of the author’s knowledge, this is the narrowest reported
linewidth in ≲ 3µm thin diamond. For comparison, a Gaussian fit yields ∆ν =
61 ± 5MHz. The smaller uncertainty implies that a Gaussian fit is a better model
of the data. The motivation for a Gaussian fit is to include spectral jumps and slow
spectral wandering averaged over many scans [130].

For numerous NV centres, two (or, in very few cases more than two) lines were
resolved in the PLE measurements. If the two lines exhibited similar linewidths, the
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two lines were attributed to the Ex and Ey transitions from the same NV centre,
on the ground that finding two NV centres with the similar ZPL frequency and sim-
ilar linewidths within the same focal volume seems unlikely [171]. The Ex and Ey

transitions have orthogonal, linear polarisation selection rules [470]. In principle, per-
forming a polarisation resolved measurement [221] will indicate whether the two lines
originate from the same NV centre or not. A study on the polarisation of the optical
transitions was beyond the scope of this experiment, as the microscope head used did
not allow for polarisation control. As an exception, the PLE measurement shown in
Fig. 7.15 revealed 3 distinct peaks separated by ∼ 400MHz. From the similarity in
linewidth, the two leftmost peaks (νZPL = 470.4752THz and νZPL = 470.4756THz)
were attributed to one NV centre, while the rightmost peak (νZPL = 470.4759THz)
likely originates from a different NV centre. All three lines exhibit linewidths well be-
low 100MHz. Out of the totally 140 NV centres characterised in this thesis, Fig. 7.15
was the only time more than two lines were observed within a sub GHz spectral
window.

7.4.3. Spectral Stability

Spectrally stable emitters are of paramount importance for entanglement protocols
relying on quantum interference of indistinguishable photons [213, 457]. To verify the
spectral stability of the NV centres, successive PLE scans were performed over the
timespan of several hours for two selected NV centres on the mirror with linewidths
≲ 100MHz. Notably, a green repump pulse with power Poffres = 475µW was applied
several times for each step of the resonant laser, thus randomising the charge envi-
ronment for each pixel [77]. Therefore, the measurement captures the spectral drift
induced by the fluctuation charge environment.

Fig. 7.16 (a) shows the average signal after 2000 successive PLE scans, acquired over
approximately 15 hours with a scanning speed of 52.1 MHz

s and power Pres = 9.3 nW.
For this NV centre, two peaks with an average frequency spacing of 660MHz were
observed. Fitting the peaks with a Gaussian yield an averaged linewidth of ∆ν =
125 ± 2MHz and ∆ν = 70 ± 1MHz. In general, the degeneracy of the Ex and Ey

transitions is lifted by the presence of local strain or electric field [227]. The small
energy spacing combined with the small average linewidth indicates low noise in close
proximity to the NV centre. Nevertheless, a slow frequency drift was observed over
the course of the measurement: the transition frequency of the leftmost peaks shifted
by approximately ∼ 107MHz, corresponding to 7.1MHz per hour. The slow drift can
be explained by a change in the environment on the time scale of several hours, which
affects one of the transitions more strongly than the other [192].

Fig. 7.16 (b) shows the spectral stability of the second NV centre investigated.
Here 4400 successive PLE scans were performed over a timespan of 7 hours, with
Pres = 16.35 nW and a scanning speed of 118.5 MHz

s . A Gaussian fit reveals an av-
erage linewidth of ∆ν = 105 ± 3MHz. To further emphasise the long-time spectral
stability, in Fig. 7.16 (c) and (d), the averaged linewidths are plotted as a function of
the cumulated number of scans for the NV centre in Fig. 7.16 (a) and (b), respectively.
In panel (c) and (d), each data point is the average of 20 scans, as the signal-to-noise
ratio is inadequate to extract reliably the linewidth for a single scan.



7.4. Optical Linewidths in Postimplanted Microstructures 149

70 ± 1 MHz
60 ± 2 MHz

125 ± 2 MHz
117 ± 7 MHz

105 ± 3 MHz
96 ± 6 MHz

(a) (b)

(c) (d)

Figure 7.16.: Probing the spectral stability of two different NV centres located on the mirror
by performing successive PLE scans. (a) Two transitions attributed to the Ex and Ey

transition of the same NV centre. 2000 successive PLE scans (Poffres = 475µW and Pres =
9.3 nW, acquired over ∼ 15 hours) resulted in an average Gaussian linewidth of ∆ν =
125± 2MHz and ∆ν = 70± 1MHz respectively. The central frequency of the transition at
−0.66GHz drifted by approximately 107MHz, corresponding to 7.1MHz per hour. (b) 4400
successive PLE scans (Poffres = 475µW and Pres = 16.3 nW, acquired over ∼ 7 hours) for
the second NV centre resulted in an average Gaussian linewidth of ∆ν = 96 ± 6MHz. (c)
- (d) Linewidth as a function of the cumulated numbers of scans for the NV centre in (a)
and (b), respectively. Each data point is averaged over 20 scans.

For the sake of completeness, Fig. 7.17 (a) shows a PLE measurement performed on
a different NV centre suffering from large spectral wandering. In this measurement,
the NV centre was pumped with a modest pump power of Pres = 73nW and re-
pumping was done using a supercontinuum laser with λ = 532±10 nm, average power
Pavg = 85µW operating at a repetition rate of 78MHz. The modest pump power
resulted in a strong signal-to-noise ratio: the peak position can easily be resolved for
each scan. Two sources of spectral wandering can be identified: a slow spectral drift
of approximately 300MHz, on top of which spectral jumps occurs [229], presumably
induced by the re-pump laser [226, 231].



150 PLE Spectroscopy of NV centres in Microstructured Diamond

357 ± 36 MHz 94 ± 9 MHz

(a) (b)

Figure 7.17.: Strong spectral wandering. (a) 100 PLE scans acquired over 30 minutes with
Pres = 73nW and re-pumped using a supercontinuum laser (λ = 532±10 nm, Pavg = 85µW,
operating at a repetition rate 78MHz). The strong spectral wandering leads to an average
linewidth of ∆ν = 357± 36MHz. (b) Overlap the maxima of the single scans in (a) results
in an average linewidth of ∆ν = 94± 9MHz.

The observed spectral drift in Fig. 7.16 and Fig. 7.17 occurred over a relatively long
time-scale, and can therefore be accounted for by applying an electric field via gate
electrodes [161, 227] and stabilised using a feedback mechanism [42, 217, 220, 231].
The random spectral jumps induced by the re-pump laser will probably still occur, but
the change in transition frequency can be accounted for quickly [231]. To illustrate,
Fig. 7.17 (b) shows the overlap of the peaks obtained from the single scans in (a),
resulting in an average linewidth of ∆ν = 95MHz. Reducing the excitation power
reduces power broadening at the expense of the signal-to-noise ratio for single PLE
scans. Typically, NV centres characterised with excitation power < 10 nW exhibit
optical linewidths ∆ν < 100MHz averaged over several hours. However, due to
the low countrate and poor signal-to-noise ratio, tracking the frequency of the ZPL
cannot be easily established with the current experimental setup. Therefore, for
future experiments increasing the collection efficiency using a solid-immersion lens
(SIL) would be beneficial [403, 471, 472].

7.4.4. Disentangling Inhomogeneous Broadening from Power
Broadening

In an attempt to disentangle inhomogeneous linewidth broadening Γin from power
broadening characterised by the Rabi coupling Ω, successive PLE measurements were
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performed with decreasing power. This study was performed on a well isolated NV
centre (Fig. 7.18 (a)) with a power broadened linewidth ∆ν ≃ 100MHz. As can be
seen from the PL spectrum in Fig. 7.18 (b), this NV centre exhibited an unusually
bright ZPL on the spectrometer under green illumination (Poffres = 500µW). The
inset in Fig. 7.18 (b) shows a PL spectrum obtained by exiting the NV centre using
a blue laser * (λ = 450 nm, P = 850µW), predominantly exciting NV0 [147]. The
modulations of the PSB corresponds to a diamond thickness of 2.82µm. Fig. 7.18 (c)
shows a high-resolution PL spectrum centred at the ZPL wavelength. The four visible
peaks indicate the presence of multiple NV centres within the focal volume. Indeed, in
the high-power PLE measurement (Poffres = 502µW and Pres = 131 nW) displayed in
Fig. 7.18 (d) three peaks are visible. Based on the linewidths, the left- and rightmost
peak (∆ν = 270± 20MHz and ∆ν = 251± 12MHz, respectively) were attributed to
the Ex and Ey transitions, and the middle peak (∆ν = 104± 8MHz) to a second NV
centre. The remainder of this section focuses on the middle peak.
This discussion follows Ref. [178]; the full derivation can be found in Appendix I.

To simplify the analysis, the spectral diffusion is assumed to follow a Lorentzian
profile characterised by the full-width at half maximum Γin (this assumption will
be revisited later). The probability of the emitter frequency being equal to f∗ is
given by the normalised Lorentzian function L(f∗ − f0,Γin), where f0 is the average
frequency. For a driven two-level system with radiative decay rate γ, the occupation
of the excited state is given by [4]

ρ22 =

(
1
2Ω
)2

4π2 (f − f∗)
2
+
(
1
2γ
)2

+ 1
2Ω

2
, (7.2)

where Ω =
√
c · P . Here, P is the excitation power and the effective coupling strength

c depending on the incoupling efficiency of the laser and the orientation of the NV
centre dipole moment. The experimentally measured lineshape is given by the con-
volution between L(f∗ − f0,Γin) and ρ22:

C(f) =
A
4π

· Ω2√
γ2 + 2Ω2

·
1
2Γ

(f − f0)
2
+
(
1
2Γ
)2 , (7.3)

which is a Lorentzian with full width at half maximum

Γ = Γin +
γ2 + 2Ω2

2π
. (7.4)

Here, C(f) yields an expression for the countrate as a function of frequency. The
factor A depends on the setup efficiency and the averaged emission rate of the NV
centre. During the PLE measurement, the detected countrate depends on the dead-
time during re-pump, time spent in the “dark” NV0 [146, 147] and in the non-cyclic
transitions (compare Section 2.2.4) [38]. All of these effects are incorporated into A.
Fig. 7.18 (e) shows a plot of the measured linewidth as a function of excitation

power. By fitting the data according to Eq. 7.4 using γ = 1
τ0

= 2π×12.6MHz revealed
an inhomogeneous broadened linewidth Γin = 67 ± 3MHz and an effective coupling

*The reasoning behind the blue excitation is the topic of Appendix J.
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Figure 7.18.: Disentangling inhomogeneous broadening from power broadening by perform-
ing PLE scans for decreasing powers. (a) Confocal PL scan on the mirror (Poffres = 500µW).
(b) PL spectrum under green illumination. Inset: PL spectrum under blue excitation
(λ = 450 nm, P = 850µW). The fringes in the PSB yield a diamond thickness of 2.82µm.
(c) High-resolution PL spectrum of the ZPL indicating the presence of multiple NV centres.
(d) High power PLE measurement (Poffres = 500µW, Pres = 131 nW). Left- and right-most
peaks are assigned to the Ex and Ey transitions of the same NV centre. The central peak
likely originates from a second NV centre and was the peak investigated in this power de-
pendence. (e) Extracted linewidth Γ as a function of resonant excitation power. The orange
line is a fit according to Eq. 7.4. (f) Average PLE signal as a function of resonant excitation
power and detuning shows a clear indication of power broadening. Data fitted according to
Eq. 7.3

strength c = (1.2± 0.4) ·105 MHz2

µW . In Fig. 7.18 (f), the averaged PLE signal is plotted
as a function of both excitation power and laser detuning, where power broadening is
clearly observed for large powers. Fitting the full dataset according to Eq. 7.3 yields an

inhomogeneous broadened linewidth Γin = 48± 2MHz and c = (3.6± 0.2) · 105 MHz2

µW .

While Eq. 7.4 only considers the measured linewidth, the global fit (Eq. 7.3) takes
spectral detuning into account and thus producing a more reliable measurement of
Γin.
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Figure 7.19.: (a) The blue points show a PLE measurement (Poffres = 500µW, Pres =
372 nW) averaged over 550 scans (∼ 3 hours, scanning speed 550 MHz

s
). The black, burgundy

and orange lines show a fit to the data using a Voigt, Gaussian and Lorentzian profile,
respectively. (b) The Voigt linewidth as a function of pump power. The burgundy and
orange points represent the linewidth of the Gaussian and Lorentzian components of the
Voigt profile, respectively. The Lorentzian component approaches the natural linewidth
for low power. Power broadening is clearly visible for higher powers. The constant value
of the Gaussian component suggests that spectral wandering is at most weakly affected
by increasing pump powers for the powers accessible here. (c) Averaged peak (blue) and
background (red) countrate extracted from the Voigt fit. The peak countrate saturates for
high power, while the background increases linearly.

The above analysis assumed spectral diffusion to follow a Lorentzian lineshape. If,
however, the slow spectral wandering follows a Gaussian profile, G(f∗− f0,Γin) [130],
the measured lineshape will be given by the convolution of ρ22 with G(f∗ − f0,Γin),
i.e. a Voigt profile [473]. Fig. 7.19 (a) shows a comparison between a Voigt, Gaussian
and a Lorentzian fit to the same PLE measurement. Here, the signal was averaged
over 550 scans (approximately three hours of acquisition time), with a scan speed of
550 MHz

s and powers Poffres = 500µW, Pres = 372 nW. By visual inspection, the Voigt
profile reproduces the data best. In Fig. 7.19 (b), the contributions from the Gaussian
and Lorentzian widths are extracted from the Voigt profile and plotted against the
pump power. The Lorentzian linewidth decreases with power, approaching the natural
linewidth limit of 12.6MHz; a clear demonstration of power broadening. Note that
for Pres ≲ 10 nW, the signal-to-noise ratio was too low to reliably distinguish the
Gaussian from the Lorentzian contribution. Measurements acquired for lower pump
powers are therefore excluded from Fig. 7.19. The Gaussian linewidth, on the other
hand, remains more-or-less constant with power, indicating that spectral wandering
is at most weakly dependent on the resonant pump power for powers < 0.4µW.
The dominant source of spectral wandering is therefore attributed to photoionisation
processes caused by the re-pump laser [226].
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7.4.5. Statistical Modelling of the Optical Linewidths

In this work, a total number of 101 NV centres were characterised, sampled from
all different regions of the postimplanted sample (Fig. 7.13 (a)). All but 13 NV cen-
tres showed a ZPL in the PLE measurements. The motivation behind this study
was to investigate whether postimplantation leads to the formation of optically co-
herent NV centres and to quantify the distribution of narrow linewidths. Therefore,
in cases where two lines were resolved, only the narrowest line was included in the
dataset [171]. As a first characterisation, Fig. 7.20 shows a plot of the ZPL transition
frequency against the measured linewidth. Here, the data points are colour coded to
indicate from which part of the diamond the NV centre was sampled. From Fig. 7.20,
three observations can be made. First, as before (Fig. 7.8), there is no obvious con-
nection between the ZPL transition frequency and linewidth. However, the transition
frequencies are shifted by approximately 20GHz compared to the first sample in-
vestigated (Fig. 7.8), indicating a different strain environment in the two diamonds.
Secondly, the measured linewidths fall within two distinct populations with linewidth
above and below 1GHz, respectively. Thirdly, there is no obvious relationship be-
tween linewidth and the location of the NV centre. Contrary to the sample discussed
in Section 7.3.6, narrow optical lines were found on all parts of the sample including
in the thin membranes.

Following the procedure discussed in Section 7.3.4 and reported by Ref. [171], the
distribution of measured linewidths will be investigated in more detail. To start,
Fig. 7.21 (a) shows a histogram plot of the measured data, where the linewidths fall
within two distinct populations: the narrow (∆ν < 1GHz) and broad (∆ν > 1GHz)
lines, respectively. For completeness, the NV centres where no ZPL were resolved in
PLE are included in the grey column. Fitting the histograms with a log-normal dis-
tribution yields population median µN = 139MHz and µB = 16045MHz, where the
subscript indicates the distribution of the narrow and broad lines, respectively. For
completeness, the black dashed line is a log-normal fit to all the measured linewidths,
excluding the NV centres where no ZPL could be resolved. Note that if the ini-
tial, high-power PLE sweep revealed a broad linewidth (several GHz), the NV centre
was labelled “broad” without performing additional measurements for lower pow-
ers. Therefore, the broad lines may suffer from power broadening, thus biasing the
statistics towards a broader median value. However, from the experiment reducing
the power will not make a > 10GHz line narrower than 1GHz. This is justified as
the motivation of the work was to investigate the distribution of narrow lines. From
the ECDFs plotted in Fig. 7.21 (b), one extracts a probability of 24% to measure
∆ν < 100MHz and a 50% to measure a linewidth narrower than 200MHz. The
dashed lines correspond to the CDFs from the log-normal fits in (a).

Following Section 7.3.4, a Bayesian approach was used to model the likelihood of
measuring a particular linewidth xi based on a log-normal distribution (Eq. 7.1) [171].
Furthermore, the posterior predictive distribution P (x̃|{xi}) was derived, allowing the
distribution of future linewidths x̃ to be calculated. The results are shown graphically
in Fig. 7.21 (c), where the solid lines are the posterior predictive distributions and the
dashed lines are the log-normal fits from Fig. 7.21 (a). As before, there is a close re-
semblance between the posterior predictive distributions P (x̃|{xi}) and the sampling
distributions P ({xi}|µ, σ). Computing the posterior predictive distribution for the
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Figure 7.20.: Scatter plot of the ZPL transition frequency against linewidth. The data is
colour coded to indicate from which part of the diamond the NV centres were sampled. The
measured linewidths fall within two distinct populations with narrow (< 1GHz) and broad
(> 1GHz) linewidths. There is no obvious relationship between location and linewidth;
narrow lines were found in all parts of the sample.

total data set, P (x̃|{xall}), (not shown) yields a maximum likelihood estimation of
the next linewidth ∆ν = 664MHz. By comparison, using the distribution of narrow
NV centres yields a maximum likelihood of ∆ν = 139.9MHz, equal to the median
of the sampling distribution. The narrow posterior distributions P (µ|{xi}) (dotted
lines) show that only a small range of values νN(B) is consistent with the distribution
of narrow (broad) linewidths, further emphasising that the narrow and broad lines
are drawn from different underlying probability distributions [171].

From the posterior predictive distributions, it is possible to calculate the probability
of the next measured linewidth being narrow, i.e P (x̃ < 100MHz|{xall}) [171]. To this
end, performing 108 simulated draws from the posterior predictive distribution yields
P (x̃ < 100MHz|{xall}) ≈ 0.207. For comparison, P (x̃ < 100MHz|{xN}) ≈ 0.285.

Next, the possible origin of the two distributions will be discussed. In Ref. [168, 171],
the optical coherence of NV centres was correlated with the nitrogen isotope. In these
studies, the samples were implanted with 15N (natural abundance of 0.37% [170]).
Here the implanted ions act as a mean to create vacancies and as a source of nitrogen
ions (compare Section 2.2.1). During the annealing process, the vacancies diffuse and
can combine and form NV centres with either the native 14N ions or the implanted
15N ions. NV centres created from 14N (I = 1) and 15N (I = 1

2 ) experience a different
hyperfine interaction, and can therefore be distinguished in an ODMR measurement
(14NV show three peaks while 15NV show two peaks) [170]. In the aforementioned
studies, the measured linewidth formed two distributions. Correlating the linewidth
with the isotope revealed that the narrow NV centres were almost exclusively 14NV
centres [168]. NV centres formed from the implanted 15N predominantly showed
broad lines, with distribution median > 1GHz. However, narrow 15NV centres were
found in both studies, thus ruling out intrinsic effects related to the isotope. It
was therefore concluded that the difference in the distributions of linewidths was a
result of differences in the local environment as a consequence of the implantation
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(a) (b)

(c) (d)

Figure 7.21.: Statistically modelling of the narrowest measurable linewidth for all the NV
centres characterised. (a) Histogram of linewidths fitted with a log-normal distribution. The
linewidths fall into two distributions, the narrow and broad lines with median µN = 139MHz
and µB = 16045MHz respectively. The black dashed line is a log-normal fit to all NV centres
where a ZPL could be resolved in the PLE measurements. The grey column includes the
NV centres for which no ZPL were resolved. (b) The solid lines are the ECDF of the data
in (a). The dashed lines correspond to the CDF of the log-normal fits. (c) Dashed lines
are the log-normal fits from (a). Solid lines show the posterior predictive P (x̃|{xi}). Dotted
lines show the posterior distributions for the median P (µ|{xi}). The two medians are well
separated, indicating sampling from two separate underlying probability distributions. (d)
CDFs of the data in (c).

process [168]. The implantation ions leave a trail of damage in the diamond, where
the harm to the lattice is greatest around the stopping point of the implanted
ion [169], i.e. where the 15NV centres were formed. Unfortunately, for the work
presented in this section, the diamond was implanted with 14N, and hence NV centres
formed from implanted nitrogen ions could not be differentiated from those formed
from native nitrogen. Nevertheless, by comparing the distributions in Fig. 7.21 to
the results from Ref. [168, 171], it is safe to assume that the distribution of narrow
linewidth is composed of NV centres formed from native nitrogen, while the broad
linewidths are formed from implanted nitrogen.

7.5. Overgrown NV Centres in a ⟨111⟩-oriented
Diamond

The final sample investigated in this thesis was fabricated in an altogether differ-
ent manner, where the NV centres were introduced during the growth of a ⟨111⟩-
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oriented diamond film*. The structure of the sample is shown schematically in
Fig. 7.22 (a). The sample consists of a ∼ 380µm thick ⟨111⟩-oriented high-pressure
high-temperature (HPHT) diamond substrate from Element Six, to which a ∼ 35µm
thick buffer diamond film was grown using CVD. NV centres were created by intro-
ducing N2 gas during this growth step. The NV centres were subsequently overgrown
with an isotopically purified 12C diamond film of thickness ∼ 15µm.
The ⟨111⟩-oriented diamond offers advantages over the more conventional ⟨100⟩-

orientation. In the diamond, the NV centre lies along one of the four equivalent
⟨111⟩-crystal directions (Fig. 2.6 (a)), consequently at an angle of 54.7◦ relative to the
⟨001⟩ diamond surface [474]. As a consequence, the overlap between the NV centre
optical dipole moment and an external cavity mode is compromised, thus limiting
the achievable Purcell factor [475]. On the contrary, for a ⟨111⟩-oriented diamond,
the dipole moment of the NV centre lies orthogonal to the diamond surface, thus
maximising coupling to external cavity modes [474–476]. The orientation of the NV
dipole combined with the 12C enriched surroundings constitute a promising platform
for combining a large Purcell effect with long spin coherence times.
The confocal PL scan shown in Fig. 7.22 (b) demonstrates the possibility of spa-

tially resolving single NV centres, where the PL spectrum (Fig. 7.22 (c)) show the
characteristic ZPL accompanied by the broad PSB. However, the high-resolution PL
spectrum in Fig. 7.22 (d) revealed a nasty surprise: the width of the ZPL is extremely
broad, with a linewidth of ∆λ = 134.2 pm (99GHz) extracted from a Lorentzian fit.
For comparison, Fig. 7.22 (e) and (f) show high-resolution PL spectra obtained from
the postimplanted sample (Section 7.4), where a Lorentzian fit reveals a linewidth of
∆λ = 39.4 pm (29GHz) and ∆λ = 28.0 pm (21GHz), respectively. Of these two spec-
tra, only the NV centre in Fig. 7.22 (f) revealed a line in the PLE measurement with
a linewidth ∆ν = 56MHz �. All the NV centres investigated on this sample showed
comparably broad linewidths on the spectrometer. Naturally, no signal was observed
in PLE.
The origin of the broad lines remains unclear, and little experimental effort was

made towards addressing the origin of the large spectral wandering. Possible expla-
nations include a large density of crystal defects as a result of the growth process. A
candidate for such defects are impurity nitrogen ions, which can be photoionised by
the green laser, causing a fluctuating charge environment (Compare Section. 2.2.4).
Although the surface is far away, surface-related defects could be another potential
source of noise. Performing an O2 etch or another tri-acid boil would, at least in
principle, oxygen terminate the surface thus quenching the surface noise.

7.6. Conclusion and Further Improvements

The overarching goal of this work was to achieve spectrally stable, optically coherent
NV centres embedded in micro-membranes for the implementation in an open Fabry-
Perot microcavity [77, 255]. In this chapter, the optical coherence of NV centres was
investigated on three different samples. For the first two samples, the NV centres

*This sample was provided by Jocelyn Achard and Alexandre Tallaire from LSPM-CNRS Vil-
letaneuse.

�In fact, this NV centre is the same NV centre as in Fig. 7.14 (g) -(i).
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Figure 7.22.: Characterisation of the optical linewidths of overgrown NV centres in a ⟨111⟩-
oriented diamond. (a) Sample structure. A diamond film with a thickness of ∼ 35µm was
grown on a ⟨111⟩-oriented diamond substrate. NV centres were introduced via N2 gas during
this growth step. Finally, the NV centres were overgrown with a ∼ 15µm diamond film.
(b) A typical confocal scan reveals single NV centres. (c) PL spectrum showing the ZPL
and the PSB. (d) A high-resolution PL spectrum reveals a broad ZPL, with a linewidth
∆λ = 134 pm (99GHz). (e) - (f) For comparison, fitting a Lorentzian to the PL spectra
from the postimplanted sample (Section 7.4) yields ∆λ = 39pm (29GHz) and ∆λ = 28pm
(21GHz), respectively. Only the NV in (f) displayed a ZPL in the PLE measurement.

were formed by ion implantation and subsequent annealing. For the final sample,
NV centres were introduced during the growth, and subsequently overgrown with an
isotropically purified diamond film. However, as the final sample did not show any
narrow lines, the sample will be omitted in the following discussion.

For the first sample, NV centres were created prior to microfabrication. In his sam-
ple the optical coherence was characterised in bulk, after microstructuring and after
deep etching. Comparing the optical coherence before and after etching demonstrated
that even exposing the diamond to a short etching step affects the optical coherence of
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the NV centres. E-beam lithography followed by etching of 1−2µm shifted the median
of the distribution of measured linewidths from µb = 90.5MHz to µms = 178.9MHz.
From the posterior distributions P (µ|{xi}), one finds P (µms < µb|xall) = 0.00797
indicating that the two populations are sampled from different underlying distribu-
tions. Next, a long etching step was performed from the backside of the diamond to
thin the sample down to a thickness of 1− 2µm. Characterising the same NV centre
before and after this etching step revealed a 15-fold increase in the optical linewidth.
These findings strongly motivated the search for a less invasive method of creating
NV centres in thin microstructures.

For the second sample investigated, fabrication was performed prior to ion im-
plantation. In this sample, NV centres with linewidths < 100MHz were routinely
measured, even in ∼ 3µm thin diamond, with the lowest measured linewidth being
as low as 57MHz. The measured linewidths fell into two separated distributions with
median µN = 139MHz and µB = 16045MHz The two distributions were attributed
to NV centres formed from native and implanted nitrogen, respectively, in analogy to
the results from Ref. [168, 171].

By directly comparing the distribution of measured linewidths from the two
samples, it is apparent that postimplantation yields NV centres with better optical
coherence compared to preimplantation. Note that the two samples were implanted
at different energies: 55 keV and 12 keV for the pre- and postimplantation, respec-
tively. The larger implantation energy used for the first sample may result in more,
hard to anneal lattice damage which can be further exacerbated by the etching. For
a fair, direct comparison, the two samples would have to be prepared in the same
manner.

It is now time to discuss possible improvements for future experiments. During
resonant excitation of NV−, there is a probability of ionising to NV0 via a two-photon
absorption process (compare Section 2.2.4) [223]. Restoring the charge state requires
optical re-pumping. In this work, re-pump was performed using an off-resonant green
laser (λ = 532 nm). However, the green re-pump pulse causes spectral wandering via
the photoionisation of nearby charge traps [224–226], thus compromising the long term
optical stability of the NV centres. Therefore, future efforts should be made towards
reducing spectral wandering caused by re-pumping. As discussed in Section 7.4.3,
slow spectral drifts and small spectral jumps can be compensated for by monitoring
the ZPL transition frequency and applying a feedback mechanism utilising the Stark
effect [161, 217, 227, 231].

Spectral diffusion may be suppressed by resonant ionisation of NV0 [220, 222], on
the grounds that resonant excitation requires low laser power, and thus does not excite
nearby charge traps. Although, resonant re-pump may not help for broad lines, say
∆ν > 500MHz, Ref. [220] demonstrated that changing from re-pump using green
(λ = 532 nm) to resonant re-pump (λ = 575 nm) reduced the averaged linewidth
from 161MHz to only 27MHz. For comparison, the lifetime limited linewidth is
13MHz. Resonant re-pump is compatible with the implementation in a Fabry-Perot
cavity. The NV0 ZPL is located at λ = 575 nm, well within the reflective stopband
of the current cavity design [255]. By careful choice of cavity geometry and diamond
thickness, a double resonant condition can be established [381], keeping the cavity on
resonance with the ZPL of both NV0 and NV− at the same cavity length, as discussed
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in Chapter 6.
In the absence of the green re-pump laser, weak spin non-conserving optical tran-

sitions polarise the NV centre away from the resonant cycling transitions [227, 243],
and no PLE signal will be observed (compare Section 2.2.2 and Fig. 2.7 (a)). How-
ever, optical pumping into a dark state can be avoided by applying microwaves to
mix continuously the spin ground-states [158]. Consequently, the implementation of
microwaves will allow for a refined PLE pulsing sequence where several resonant scans
can be performed before ionisation occurs, while still maintaining the cyclic resonant
transitions. Furthermore, the integration of microwaves allows for individual driving
of the E1,2 and A1,2 transitions; a key requirement for the creation of spin-photon
entanglement [41–43]. Alternatively, using an EOM to create laser sidebands at a fre-
quency equal to the zero-field splitting, i.e. νlaser ± 2.87GHz, allows for simultaneous
excitation of all the ground states, thus avoiding optical pumping [461, 477].
Finally, as discussed above, postimplantation constitutes a promising method to

create NV centres in thin microstructures. However, the distribution of the optical
linewidths of the NV centres created by postimplantation fall within two distinct
populations, with narrow (< 1GHz) and broad lines (≳ 10GHz). Here the broad lines
are associated with NV centres formed from the implanted nitrogen ions. Therefore,
implanting carbon ions rather than nitrogen ions may reduce the population of broad
lines, on the grounds that only the narrow distribution will fluoresce. As for nitrogen
implantation, careful selection of the implantation energy may provide control of the
depths of the NV centre formation. Carbon atoms may potentially reduce the number
of > 10GHz lines. However, it is an open question whether carbon implantation
will create NV centres with narrower optical linewidths, compared to NV centres
created by nitrogen implantation. Nevertheless, by reducing the population of broad
lines, the probability of finding an NV centre with ∆ν < 100MHz will increase. NV
centres can also be created after fabrication via electron irradiation [158]. However,
the electrons will create vacancies throughout the diamond offering little-to-no control
of the formation depth.



CHAPTER 8

Summary and Future Directions

The scalability of quantum networks using NV centres is limited by the modest en-
tanglement rate, in turn, limited by the detection rate of coherent photons. For NV
centres, the generation rate of single photons is impaired by the long radiative lifetime
(τ0 ≃ 12 ns) combined with a small branching ratio of ∼ 3% into the zero-phonon
line (ZPL). Furthermore, the high refraction index of diamond, nd = 2.41, results
in a poor photon extraction efficiency out of the host crystal, due to total internal
reflection at the diamond-air interface. Finally, the permanent electric dipole moment
renders the NV centre sensitive to charge fluctuations in the local environment, lead-
ing to inhomogeneous linewidth broadening and random spectral jumps [229]. When
observed over time, this spectral instability renders the emitted photons distinguish-
able, and thus compromising the achievable two-photon quantum interference [79, 80].
Spectrally stable emitters are of paramount importance for entanglement protocols
relying on quantum interference of indistinguishable photons from remote emitters.

In principle, utilising the Purcell effect [86], the first three limitations can be ad-
dressed by resonant coupling between the NV ZPL and a single-mode of a cav-
ity [77, 81]. Resonant enhancement of the ZPL emission has been demonstrated on
various nano- and microphotonic platforms [81–83, 165, 398, 421, 459, 460]. However,
while these approaches offer a large Purcell factor on the ground of a minimal mode
volume, the aggressive fabrication leads to the deterioration of the optical coherence,
presumably due to fabrication induced surface damage.

The work done in this thesis builds on the work from Ref. [77, 85], where it was
shown that a miniaturised Fabry-Perot microvcavity containing a thin (≲ 1µm) dia-
mond membrane constitutes a promising platform to combat the first three shortcom-
ings listed above. However, in this work, the cavity coupling was limited by a modest
Q-factor of ∼ 60 000 in combination with a low outcoupling efficiency. Furthermore,
the fabrication of the diamond micro-membranes deteriorated the optical coherence.
The starting material exhibits NV centres with long-term averaged optical linewidths
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∆ν ≲ 100MHz, while in the finished membrane the averaged linewidths increased to
∆ν ∼ 1GHz. However, these linewidths still offer a significant improvement com-
pared to the aforementioned work using nanophotonic platforms. Nevertheless, while
a linewidth of ∼ 1GHz is smaller than the ground state spin splitting of 2.7GHz, and
thus may be sufficient for applications in quantum sensing [478], it is still two orders
of magnitude larger than the natural linewidth of 13MHz.

The motivation behind the work presented in this thesis was to address and im-
prove the shortcomings listed above. Broadly speaking, the experiments performed
as part of this thesis can be divided into two groups. The first three experiments
aimed at addressing the issues with the cavity, namely the modest Q-factor and
the poor photon extraction efficiency. The final chapter aimed at addressing the
large inhomogeneous broadening of the NV centre’s optical linewidth observed after
fabrication. The following few paragraphs provide a short summary of each of the
four experimental chapters.

To start, in Chapter 4, the experimental realisation of Q-factors exceeding 105 was
demonstrated despite operating in a diamond-confined regime. In this regime, the
vacuum electric field possesses a field anti-node at the diamond-air interface, thus
maximising losses associated with the diamond surface. However, operation in a
diamond-confined regime has the benefit that the electric field is strongly confined
to the diamond layer, thus providing stronger coupling between the cavity mode and
the NV centres [87]. In the experiment, a diamond with thickness td = 733 nm was
used, resulting in a minimised mode volume. With the current design, a Purcell
factor FP ≃ 180 can be readily achieved. A Purcell factor on this order will boost the
fraction of photons emitted into the ZPL from ∼ 3% to ∼ 80%.

The generic design of the Fabry-Perot microcavity allows for coupling to, and en-
hancement of various weak radiative transitions. In Chapter 5, the versatility of the
cavity platform was demonstrated by enhancing the Raman transition from the crys-
talline diamond lattice. By comparing the signal strength inside the cavity to that of
free-space under identical experimental conditions, a ∼ 60-fold intensity enhancement
was observed. To explain this enhancement factor quantitatively, a model disentan-
gling the contribution from the Purcell effect to that of enhanced collection efficiency
was derived. The model predicts a Purcell factor ∼ 5 and a ∼ 23-fold enhancement of
the detection efficiency. Furthermore, the model provides an insight into the nature
of the cavity-enhanced Raman process: the cavity-enhanced Raman process consists
of an independent array of emitters LS coupled to a single cavity mode Lc, rather
than a collective vibration across the waist of the cavity mode.

Next, Chapter 6 took a sharp right-hand turn onto the avenue of curiosity-driven
research. Here, the possibility of establishing a double resonant Raman condition was
explored, with both the pump laser and the Raman transition resonant for the same
cavity length. The double-resonance condition enhances the Raman scattering pro-
cess on two grounds. First, as described in Chapter 5, the Raman process experiences
Purcell enhancement. Second, the resonant recirculation of the pump laser increases
the power density inside the cavity. The motivation behind this work was to demon-
strate a low-threshold Raman laser. For the current design, the theoretical threshold
was estimated to be 189mW[381], limited by the large air-gap necessary to establish
the double-resonance condition for the accessible pump frequency. However, with re-
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alistic changes in the diamond, ∼ mW threshold pump power can be achieved. On
a final note, due to a slight thickness gradient of the diamond, the double resonance
condition could be continuously tuned across a ∼ 1THz spectral window, thereby
demonstrating that the membrane-in-a-cavity constitutes a promising platform for
tunable non-linear optics.
Finally, in Chapter 7, experimental effort was guided towards addressing the final

issue of the large spectral wandering. The optical coherence of NV centres created
by nitrogen ion implantation was investigated on two different samples*. For the first
sample, the NV centres were created prior to fabrication. In the unprocessed bulk
diamond, NV centres with optical linewidths as low as ∆ν = 34MHz were found.
Modelling the distribution of measured linewidths using a log-normal distribution
revealed a population median νb = 90.5MHz for these bulk NV centres. However,
after microstructuring the diamond using electron-beam lithography followed by a
short etching step (1 − 2µm), the median of the measured linewidths increased to
νms = 178.9MHz. In the final fabrication step, the diamond was etched down to a
thickness of ∼ 1.5µm. Measuring the same NV centre before and after this etching
step revealed a 15-fold increase in the optical linewidth (∆ν = 2800MHz).
The experimental result obtained from the first sample indicated that exposing

the NV centres to minimal microfabrication has a devastating effect on the optical
coherence. The second part of Chapter 7 explored a new technique of creating NV
centres in micron thick diamond membranes. Here, all the fabrication procedures
were performed prior to the ion implantation. This postimplantation technique
routinely resulted in linewidths ≲ 100MHz in membranes with thickness td ∼ 3µm.
As before, the measured linewidths were modelled using a log-normal distribution.
Here, the measured linewidths fell within two distinct populations, with medi-
ans µN = 139MHz and µB = 16045MHz. The two distributions were attributed
to NV centres created from native and implanted nitrogen ions, respectively [168, 171].

8.1. Towards an Efficient Spin-Photon Interface

It is now time to look towards the future. The overarching goal of this work is to
enhance the flux of coherent, indistinguishable photons from NV centres by coupling
to a single-mode Fabry-Perot microcavity. Utilising the Purcell effect, resonant cou-
pling between the NV ZPL and the resonant cavity is advantageous on three grounds
(Section 4.4.1). First, the Purcell effect accelerates the emission rate by reducing the
excited-state lifetime according to

τcav =
τ0

1 + ξ0 (FP − 1)
, (8.1)

where ξ0 is the Debye-Waller factor describing the branching into the ZPL, τ0 is

the unperturbed lifetime and FP = 1 + 3
4π2 · Q

Veff

(
λ
n

)3
is the Purcell factor�. The

*A third sample, where NV centres were introduced during the diamond growth was also investi-
gated. However, as no narrow lines were observed, this sample will be omitted from this discussion.

�With this definition, the free-space decay rate γfree = ξ0γ0+(1− ξ0) γ0 and the cavity-enhanced
decay rate γcav = FPξ0γ0+(1− ξ0) γ0, i.e.

γcav
γfree

= 1+ξ0 (FP − 1). For more details, see Section 4.4.1.
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(a) (b)    

Figure 8.1.: Calculations of the modified emitter dynamics as a function of Purcell factor. (a)
Broadening of the natural linewidth calculated from Eq. 8.2. The dashed blue line represents
the median of the distribution of narrow lines, µN = 139MHz extracted from Section 7.4.5.
The burgundy line indicates a linewidth of ∆ν = 100MHz. The smallest linewidth measured
in Section. 7.4, ∆ν = 57MHz is represented by the black line. (b) The fraction of photons
emitted into the ZPL, ηZPL.

reduction of the lifetime broadens the transform limited linewidth to [85, 387]

∆νZPL
cav =

1

2π
· γ0

(
ξ0 (FP − 1) + 1

)
, (8.2)

where γ0 = 1
τ0
. Second, the cavity provides a well-defined output mode facilitating

mode matching to external single-mode detection optics [255]. Finally, a large Purcell
factor boosts the fraction of photons emitted into the ZPL, ηZPL , according to [214,
387]

ηZPL = FP · ξ0γ0
γcav

=
ξ0FP

ξ0 (FP − 1) + 1
. (8.3)

A graphical representation of Eq. 8.2 and Eq. 8.3 is shown in Fig. 8.1 (a) and (b),
respectively. Here, and for the remaining of this chapter, the Debye-Waller is set
to ξ0 = 2.55% according to Ref. [77, 85, 214]. The blue and black dashed lines
in Fig. 8.1 (a) represent the median µN and the narrowest linewidth measured in
Chapter 7, respectively. A Purcell factor of ∼ 300 is required for broadening of the
transform-limited linewidth to ∆νZPL

cav = 100MHz. The remainder of this chapter will
discuss potential improvements to the existing experimental configuration to enhance
further the flux of coherent photons.
Chapter 7 demonstrated that increasing the dimensions of the defect-free crystalline

environment around the NV centres strongly reduces spectral wandering, and thus
providing spectrally stable emitters [158, 171]. However, embedding a thicker diamond
membrane into the Fabry-Perot cavity increases the mode volume Veff, consequently
reducing the achievable Purcell factor. Therefore, a compromise between spectrally
stable emitters and a large Purcell factor has to be made. To this end, Fig. 8.2
shows three-dimensional numerical simulations (COMSOL Multiphysics) of the cavity
resonance for increasing diamond thickness td. In these simulations, the cavity was
constructed using a realistic top mirror with Rcav = 15µm and depth d = 0.5µm *.

*The profile of the top mirror is described by Eq. 4.1.
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(a) (b) (c)  

(d)  

(e)  

(f)  

Figure 8.2.: Simulations of (a) Q-factor, (b) mode volume Veff and (c) Purcell factor, FP as
a function diamond thickness td for Rcav = 15µm. (d) - (f) Line-cut of Q-factor, Veff and FP

along λ = 637.2 nm for a lossless cavity (blue) and in the presence of surface scattering with
surface roughness σq = 0.3 nm (red). The oscillations arise due to the transitions between
air- and diamond-confined geometries.

To simplify the problem, and thus reduce the computational time, axial symmetry
was assumed. All the simulations were performed for the shortest air-gap possible.

Fig. 8.2 (a) - (c) show heatmaps of the Q-factor, effective mode volume Veff and
Purcell factor FP, respectively. As expected, Veff is minimised for the smallest td,
thus maximising FP. Fig. 8.2 (d) - (f) show a line-cut of (a) - (c) for λ = 637.2 nm
indicated by the orange line. Here, the blue curve corresponds to a lossless cavity,
while the red line corresponds to a scattering layer on the diamond with RMS surface
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roughness σq = 0.3 nm. The value of σq was motivated by the AFM measurement
in Fig. 4.3 (c) and typical roughness measurements reported by Ref. [159, 387]. The
observed oscillations arise as a consequence of the transitions between air- and
diamond-confined cavity geometries (compare Chapter 3). As expected, the envelope
of the Q-factor and Veff exhibit a linear and superlinear increase with td, respectively.
The combination of the two results in a decrease of FP with td. However, the
behaviour is not as strong as one might expect: increasing the diamond thickness
from td = 1µm to td = 3µm, results in ∼ 20% decrease in FP, a small price to pay
for spectrally stable emitters. For comparison, in Chapter 7, the median linewidth in
∼ 3µm thick diamond, µN = 139MHz, is 40% smaller than the narrowest linewidth
of 250MHz in 1.6µm thick diamond [171].

8.1.1. The LaserOptik Mirrors

The following sections will evaluate different mirror designs in terms of the photon
extraction efficiency and the potential improvements to quantum network nodes. A
total of five different mirror designs will be discussed.
As discussed in Section 7.4, a part of the diamond sample was transferred to a

planar DBR mirror prior to linewidth characterisation (Fig. 7.13). The refractive in-
dex profile of this mirror is given by (nH · nL)14 · nH *, with nH = nTa2O5

= 2.120
and nL = nSiO2

= 1.481 �, where the layer count starts at the substrate. From
the modulations in the phonon sideband (PSB) caused by thin-film interference, the
diamond thickness was estimated to be td ∼ 2820 − 3030 nm (Fig. 7.14). For the re-
mainder of this chapter, the upper limit (td = 3030 nm) will be assumed. Fig. 8.3 (a)
shows a one-dimensional transfer matrix simulation (Essential Macleod) of the mirror
transmission (top) and reflected phase delay (bottom). The minimum in transmis-
sion and phase delay for λ = 637.2 nm (dashed orange line) suggests the forma-
tion of an air-confined cavity mode (compare Chapter 3). From Fig. 8.3 (a) one finds
Tbot (λ = 637.2 nm) = 59 ppm for the diamond on the mirror. Fig. 8.3 (b) shows the
resulting mode-structure for a cavity completed with a (nH · nL)12 · nH top mirror.
The locations of the anti-crossings in combination with the steep slope ( dλ

dta
) confirm

the formation of an air-confined cavity mode for λ = 637.2 nm (orange dashed line).
Next, the standing wave inside the cavity is examined. Fig. 8.4 shows a simulation

of the vacuum field for a cavity constructed from the aforementioned bottom mirror
and a top mirror on the form (nH ·nL)j ·nH, where j = 12, 13, 14 for (a), (b) and (c),
respectively. The amplitude of the vacuum field is quantised according to Eq. 3.5 [255].
From the simulations, one finds T12 = 238 ppm, T13 = 116 ppm and T14 = 57ppm for
the top mirror for λ = 637.2 nm. As expected for an air-confined geometry, all three
configurations exhibit field node at the interface. Therefore, for simplicity, surface
losses will be neglected in this discussion.
Fig. 8.5 (a) simulates the Q-factor as a function of air-gap for the cavities described

above. It comes as no surprise that the more reflective top mirror ((nH · nL)14 · nH)

*Note that this design differs from the experimental design used in Chapter 4, Chapter 5 and
Chapter 6. The experimental mirrors will be considered in Section 8.1.4.

�LaserOptik, transmission = 58 ppm, using the refractive indices provided by LaserOptik.



8.1. Towards an Efficient Spin-Photon Interface 167

(a) (b)

Figure 8.3.: (a) Effective mirror transmission (top) and reflected phase delay (bottom) for
a diamond with thickness td = 3030 nm on a (nH · nL)

14 · nH DBR mirror. The orange
line indicates a transmission minimum for λ = 637.2 nm suggesting the formation of an
air-confined cavity geometry. (b) Resulting mode structure for the bottom mirror in (a)
combined with a (nH · nL)

12 · nH top mirror. The cavity is air-confined for λ = 637.2 nm
(dashed orange line).

offers the largest Q-factor. The thicker diamond leads to an increased effective cavity
length and thus a larger beam waist at the top mirror wI. Therefore, for completeness,
The analysis presented here assumes no scattering or absorption losses: a cavity

photon is only lost by transmission through the two mirrors. This assumption is
justified on the grounds that the extracted diamond thickness (td = 3030 nm) forms
an air-confined cavity mode for the NV ZPL wavelength. For a diamond-confined
geometry, surface losses would have to be considered, as discussed in Section 3.3.5. In
the experiment, only photons exiting the top mirror will reach the detectors. For a
photon already present in the cavity, the probability of transmission through the top
mirror, ηtop, is determined by the ratio of the loss-rate through the top-mirror κtop
to the total loss-rate κtot, i.e.

ηtop =
κtop
κtot

. (8.4)

Recall from Section. 3.3.5, that for a loss-less cavity κtop can be calculated according
to

κtop =
Ttop

Ttop + Tbot
· κ , (8.5)

where Ttop (bot) is the transmission of the top (bottom) mirror and

κ =
2πc

λQ
. (8.6)

Using the extracted value of Ttop (bot), Fig. 8.5 (c) evaluates ηtop as a function of
air-gap thickness. The transmission probability decreases with increasing top mirror
reflectively. For a highly reflective top mirror, the large Q-factor implies that the pho-
ton is stored in the cavity for a longer time. However, as Ttop → Tbot the photons are
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(a)     

(b)     

(c)     

Figure 8.4.: Profile of the vacuum electric field for a cavity with td = 3030 nm and ta =
1283 nm assembled from a bottom DBR made from (nH · nL)

14 · nH and a top DBR made
from (a) (nHnL)

12 ·nH, (b) (nH ·nL)
13 ·nH, (c) (nH ·nL)

14 ·nH respectively. All configurations
result in an air-confined cavity mode.

transmitted through the top (bottom) mirror with approximately equal probability,
i.e. ηtop → 0.5.
The efficiency of detecting a ZPL photon ηout is given by

ηout =
κtop

κtot + γ0
· ηZPL , (8.7)

where ηZPL is given by Eq. 8.3 and γ0 is the emission into non-cavity modes. For
simplicity, Eq. 8.7 will be broken down into the “cavity part”, ηcav, and the emitter
part, where ηcav is given by

ηcav =
κtop

κtot + γ0
. (8.8)

Fig. 8.5 (d) shows a graphical evaluation of ηout as a function of air-gap thickness.
Despite achieving the lowest Purcell factor, the ZPL detection efficiency is greatest
for the lowest reflective top mirror, due to the favourable value of

κtop

κtot
. From this,
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(a) (b)    

(c) (d)    

Figure 8.5.: Performance of a cavity constructed from (nH · nL)
14 · nH bottom and (nH ·

nL)
j ·nH, j = 12, 13, 14 top mirror, with diamond thickness td = 3030 nm, Rcav = 15µm and

D = 6.0µm as a function of increasing air-gap thickness. For simplicity, losses associated
with the diamond surface have been neglected, on the grounds of the formation of an air-
confined geometry for λ = 637.2 nm. (a) The Q-factor increases with increasing top-mirror
reflectivity. Clipping losses occur for air-gaps > 3µm. (b) The maximum achievable Purcell
factor is largest for the top mirror with the highest reflectivity. (c) With increasing top-
mirror reflectivity, κtop → κbot → 0.5. Therefore, the transmission through the top mirror,
κtop

κtot
is largest for the top mirror with the fewest layer pairs. (d) The total detection efficiency,

and thus the achievable flux, of ZPL photons is largest for an asymmetric cavity, despite the
lower Purcell factor.

it becomes apparent that there is a trade-off between the highest achievable Pur-
cell factor and the maximum photon extraction efficiency [125]. It is important to
accentuate that this analysis assumes DBR mirrors without any unwanted loss; in
a cavity-coupling experiment, it is of pivotal importance that the cavity loss-rate is
dominated by transmission through the top mirror, as was discussed in Section 3.3.5.

8.1.2. Low-index Terminated Top-Mirror

Up until this point, only high-index terminated bottom DBR mirrors were examined.
In the following section, the potential benefits of using a low-index terminated bottom
mirror will be investigated. In this discussion, low-index termination is achieved by
adding an additional λ

4 layer of SiO2 to the bottom DBR. Consequently, the refractive
index profile of the mirror becomes (nH · nL)15. To ease the comparison, the top
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(a)     

(b)     

(c)     

Figure 8.6.: Field profile in a cavity constructed from a low-index terminated bottom DBR
with refractive index profile (nH·nL)

15 and diamond thickness td = 3030 nm (Tbot = 104 ppm)
for top mirror (a) (nH · nL)

12 · nH, (b) (nH · nL)
13 · nH and (c) (nH · nL)

14 · nH. Low-index
termination results in the a field anti-node at both the diamond-mirror and the diamond-air
interface.

mirrors will be kept identical to the ones discussed above. The resulting field profile
is shown in Fig. 8.6. Compared to the high-index terminated mirror (Fig. 8.4), the
low-index termination results in a field anti-node at both interfaces of the diamond:
the cavity is shifted from an air- to a diamond-confined regime. The added λ

4 layer of
SiO2 effectively increases the transmission of the bottom mirror from Tbot = 59ppm
to Tbot = 104 ppm.

The performance of the low-index terminated bottom mirrors is shown graphically
in Fig. 8.7. The transition from an air- to a diamond-confined configuration, alongside
the added λ

4 layer of SiO2, increases the effective cavity length, reflected by the
increase in the Q-factor for small air-gaps (compare Chapter 3). As discussed, the
low-index termination results in a field anti-node across both diamond interfaces.
Therefore, for completeness, a scattering layer with RMS surface roughness σq =
0.3 nm is introduced on both sides of the diamond (semi-transparent lines). Despite
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(a) (b)    

(c) (d)    

Figure 8.7.: Performance of a cavity constructed from a low-index terminated bottom DBR
mirror, (nH · nL)

15, combined with (nH·nL)
j ·nH, j = 12, 13, 14 top mirror with td = 3030 nm,

Rcav = 15µm and D = 6.0µm. The semi-transparent lines correspond to the presence of
a scattering layer with RMS surface roughness σq = 0.3 nm. (a) Q-factor and (b) Purcell
factor as a function of air-gap thickness. The Q-factor, and hence Purcell factor, increases
with the reflectivity of the top mirror. (c) Relative loss-rate through the top mirror,

κtop

κtot

and (d) ZPL detection efficiency ηcav ·ηZPL as a function of air-gap. The detection efficiency
is greatest for the most asymmetric cavity ((nH · nL)

12 top) .

the presence of scattering, the maximum achievable Purcell factor remains larger
for the low-index terminated mirror. However, the increase in the bottom-mirror
transmission induced by the low-index termination reduces the value

κtop

κtot
according

to Eq. 8.5. As a consequence, ηcav · ηZPL is reduced compared to the high-index
termination discussed in Fig. 8.5.
Next, the amplitude of the scattering losses, Lloss will be described, following the

same procedure as in Section 3.3.5. In the presence of surface scattering, the total
cavity loss-rate κ′ is given by κ′ = κtop + κtop + κloss, where κtop and κbot remain
unaltered. From this, the value of κloss can be calculated from

κloss =
2πc

λ
·
(

1

Q′ −
1

Q

)
, (8.9)

where Q′ and Q are the quality factors with and without scattering, respectively.
Recall from Section. 2.1.1 that the cavity round-trip time τ is defined as τ = L

κ ,
from which a simple rearrangement yield Lloss = τ · κloss. For σq = 0.3 nm, this
amounts to Lloss = 33ppm, still considerably smaller than the mirror transmission
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(a) (b)  (c)  

𝝀 = 𝟔𝟑𝟕. 𝟐 𝐧𝐦

Figure 8.8.: Cavity mode structure for λ
4

coated diamond with (a) TiO2 (n = 2.58, t =
61.72 nm), (b) Al2O3 (n = 1.77, t = 90.22 nm) and (c) SiO2 (n = 1.48, t = 107.56 nm).
The presence of the oxide layer significantly changes the mode structure. The orange line
indicates λ = 637.2 nm.

Tbot = 104 ppm, T12 = 238 ppm, T13 = 116 ppm and T14 = 57ppm. For comparison,

the scattering losses are estimated using S =
(

4πσq

λ

)2
= 35ppm (Eq. 3.7) [104]. Here,

the slight discrepancy can be explained by the shift in the maxima of the electric
field across the diamond-air interface; the field maxima does not occur exactly at the
interface (Fig. 8.6 (c)).

To conclude, for the current diamond thickness (td = 3030 nm), a low-index
terminated mirror is only beneficial in combination with a highly transmissive
top mirror. Furthermore, the field anti-nodes at both of the interfaces of the
diamond render the cavity sensitive to surface losses; these losses will have to be
mitigated. To benefit from a low-index terminated bottom mirror, surface roughness
σ ≪ 0.3 nm is a requirement. Fabrication of such a smooth diamond surface
may prove to be challenging, if not impossible. Therefore, the use of low-index
terminated bottom mirrors is not recommended in combination with the current
design of the top mirror. Note that this analysis was only performed with the current
diamond thickness (td = 3030 nm) in mind. A detailed theoretical study of mir-
ror termination as a function of diamond thickness is beyond the scope of this outlook.

8.1.3. Depositing a λ/4-layer of Oxide on the Diamond

In Chapter 4 we proposed to use ALD to deposit a 10 nm thin layer of SiO2 or Al2 O3

on top of the diamond [123]. The motivation back then was to step-wise reduce the
contrast in refractive index from the diamond to the air, and thus reducing scattering
losses. Deposition of an oxide layer may have the added benefit of further reducing
the surface-related losses on the grounds that ALD may smoothen the surface [479].
Therefore, this section develops the idea one step further by investigating the effect of
depositing a λ

4 layer of TiO2 (nTiO2
= 2.58, tTiO2

= 61.72 nm) [480], Al2O3 (nAl2O3
=
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(a)     

(b)     

(c)     

(d)     

Figure 8.9.: Profile of the electric field inside the cavity with a λ
4
layer of (a) TiO2, (b) Al2O3

and (c) SiO2. The difference in refractive index alters the maximum field in the diamond

(air); E
d(a)
TiO2

= 30.85 (32.75) kV
m
, E

d(a)
Al2O3

= 30.05 (41.64) kV
m

and E
d(a)
SiO2

= 29.38 (47.65) kV
m
.

The cavity mirrors are assembled from (nH · nL)
12 nH top, (nH · nL)

14 nH bottom with td =
3030 nm. (d)Field profile of an uncoated diamond for comparison.

1.77, tAl2O3
= 90.22 nm) [481, 482] and SiO2 (nSiO2

= 1.48, tSiO2
= 107.56 nm) on the

top surface of the diamond*. For simplicity, this analysis considers the same cavity
geometry as Fig. 8.4 (a), i.e. (nH · nL)12 nH top mirror, (nH · nL)14 nH bottom mirror
and td = 3030 nm, Rcav = 15µm and D = 6µm.
The presence of the deposited λ

4 oxide layer significantly alters the cavity mode-
structure (Fig. 8.8) and the profile of the electric field inside the cavity (Fig. 8.9). The

*The refractive index for TiO2 and Al2O3 are extracted from refractiveindex.info. Refractive
index for SiO2 provided by LaserOptik.

http://www.refractiveindex.info
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(a) (b)    

(c) (d)    

Figure 8.10.: Performance of a cavity constructed from (nH · nL)
12 nH top and (nH · nL)

14 nH

bottom with a λ/4 oxide layer on the top side of the diamond, with td = 3030 nm,
Rcav = 15µm and D = 6.0µm. (a) The presence of the oxide layer increases the effec-
tive cavity length, thus resulting in larger Q-factors compared to the uncoated diamond
(orange). However, the transition to a diamond-confined configuration reduces the finesse
for the oxide-coated diamond. The semi-transparent lines show the behaviour of the Q-
factors in the absence of beam clipping. (b) The larger Q-factors combined with a smaller
effective mode volume result in larger Purcell factors for the coated diamonds. The Purcell
factor is largest for the highest material with the largest refractive index. (c) The presence
of the oxide layer reduces the effective reflectivity of the bottom mirror, thus decreasing

κtop

κtot
.

(d) Detection efficiency of a ZPL photon as a function of air-gap. The larger Purcell factor
for the oxide layers results in only a small reduction in the detection efficiency of 13% and
25% for SiO2 and Al2O3 respectively. For TiO2, the detection efficiency drops by 38%.

electric field maxima in the diamond is found to increase with increasing refractive
index: ETiO2 = 30.85 kV

m , EAl2O3
= 30.05 kV

m and ESiO2
= 29.38 kV

m , respectively,

compared to Euncoat. = 28.32 kV
m for the uncoated diamond. Furthermore, compared

to an uncoated diamond, the presence of the dielectric coatings increases the relative
fraction of the field intensity confined to the diamond*, while preserving a field node
across the diamond-oxide interface. As a consequence, the field profile possesses an
anti-node across the oxide-air interface, thus mimicking a diamond confined geometry.
In the following analysis, loss-less oxide layers are assumed – the possibility to deposit
thick oxides on diamond without the formation of cracks or defects remains an open

*Computing the ratio of the field maxima in the diamond to that of air yield
(|Ediamond

uncoated|)/(|E
air
uncoated|) = 0.46 compared to (|Ediamond

TiO2
|)/(|Eair

TiO2
|) = 0.94.
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question to be addressed in further experiments.
Fig. 8.10 repeats the same analysis as previously done for Fig. 8.5 and Fig. 8.7. The

oxide layers alter the effective transmission of the bottom mirror (here the diamond is
considered to be part of the mirror). From the simulations, one finds TTiO2

= 292 ppm,
TAl2O3

= 172 ppm and TSiO2
= 125 ppm, compared to Tbot = 59ppm for the uncoated

diamond. Fig. 8.10 (a) shows the behaviour of the Q-factor with increasing air-gap.
As predicted by the transition to a more diamond-confined geometry, the absolute
value of Q-factors is larger for the coated diamond for short cavity lengths. However,
the uncoated diamond exhibits a steeper slope (larger dQ

dta
), which translates into a

larger finesse (Compare Chapter. 3). Owing to the larger Q-factors, a 20% increase
in Purcell factor can be expected for the coated samples. The magnitude of the Q-
factors, and likewise the Purcell factor, increases with the refractive index of the oxide
layer. This can be understood by considering the longer effective cavity length for the
higher-index materials: the photons propagate at a slower speed, and thus the overall
round-trip time increases (compare Section. 2.1.1).
The increased mirror transmission induced by the oxide layers results in a decreased

value of
κtop

κtot
(Fig. 8.10 (c)). However, as shown in Fig. 8.10 (d), the larger Purcell

factor offered by the oxide layers results in only a small reduction in ηcav · ηZPL

of 13% and 25% for SiO2 and Al2O3, respectively. The large refractive index of
TiO2 causes the output efficiency to drop by 38%. From this analysis, it is clear
that ALD deposition of SiO2 and Al2O3 may provide a viable option to increase
the photon flux, provided the deposition occurs without introducing additional losses.

8.1.4. The ECI Mirrors

The observant reader will have noticed that the mirror design used for the analysis
presented so far in this chapter differs from the mirror design used in the experimen-
tal chapters (See Chapter 4, Chapter 5 and Chapter 6). The experiments presented
in the aforementioned chapters were performed using a pre-existing cavity [77, 255]
assembled with mirrors from an earlier fabrication run*. Therefore, for completeness,
the above analysis will be repeated for the “old” cavity mirrors. Contrary to the
LaserOptik mirrors discussed so far, the reflective stopband of the ECI mirrors was
characterised using a white-light transmission measurement [255, 387] (for details see
Fig. 5.3 (c)). Using a transfer-matrix based refinement algorithm, the mirror designs

were found to be (nL · nH)14 for the top mirror and (nL · nH)15 for the bottom mirror,
where nL = nSiO2

= 1.46 and nH = nTa2O5
= 2.11. By further allowing for a 3%

tolerance on the individual layer thickness, allowing for the reconstruction of the full
reflective stopband. By simulating the bare mirrors, one finds Ttop = 94ppm and
Tbot = 62ppm, where a diamond with thickness td = 3030 nm are included as part of
the bottom mirror. Fig. 8.11 shows the profile of the electric field for (a) Rcav = 15µm
and (b) Rcav = 20µm, where D = 6µm for both simulations. The larger radius of
curvature results in a larger mode volume, thus causing a 7% drop in the maximum
field amplitude from ER=15µm = 28.8 kV

m to ER=20µm = 26.5 kV
m .

Fig 8.12 shows the performance of a cavity assembled from the ECI mirror coatings.
Compared to the LaserOptik mirrors, the higher mirror reflectivity is emphasised

*ECI evapcoat.



176 Summary and Future Directions

(a)

(b)

Figure 8.11.: Electric field profile for the ECI mirror; (nL · nH)
14 top and (nL · nH)

15 bottom
for D = 6.0µm and (a) Rcav = 15µm and (b) Rcav = 20µm. The larger radius of curvature
manifests itself in a larger mode volume, and thus reduces the maximum amplitude of the
vacuum field inside the diamond from ER=15µm = 28.8 kV

m
to ER=20µm = 26.5 kV

m
.

by the increased Q-factor and consequently larger Purcell factor. A larger radius
of curvature translates to a larger beam waist at the top mirror. Therefore, beam
clipping occurs for shorter cavity lengths. The close-to balanced mirror reflectivity
results in a maximum detection efficiency

κtop

κtot
= 0.60 and ncav · ηZPL = 0.53. For

short cavity lengths, the detection efficiency is more-or-less independent of the top
mirror geometry.

8.1.5. Comparison of the Mirrors

From the above analysis, it becomes apparent that there is a trade-off between the
maximum Purcell factor and the maximum detection efficiency. In this section, the
aforementioned mirror configurations will be discussed and compared on the account
of the achievable photon flux. The end-to-end efficiency of a photon from an NV
centre in the cavity is given by ηcavtot = ηex ·ηZPL ·ηcav ·ηext, where ηex is the excitation
efficiency and ηext is the efficiency of the external detection optics, including the
quantum efficiency of the photon detectors [102, 194]. Consequentially, the detection
rate of ZPL photons, CZPL is calculated from CZPL = ηtot · γcav. By using Eq. 8.3,
one arrives at [214]

CZPL = ηex · ηcav · ηext ·
ξ0FP

ξ0 (FP − 1) + 1
· γcav

= ηex · ηcav · ηext · ξ0FP · γ0 .
(8.10)
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(a) (b)

(c) (d)

Figure 8.12.: Performance of a cavity assembled from the ECI mirrors; (nL · nH)
14 top

and (nL · nH)
15 for two different top mirror geometries; Rcav = 15µm in blue and Rcav =

20µm in red. D = 6µm for both configurations. The highly reflective mirror coating
manifest itself in (a) a large Q-factor, and consequently (b) a large Purcell factor. The
larger radius of curvature (red) results in a larger beam waist, and thus beam clipping
occurs for shorter cavity lengths. (c) The close-to balanced mirror coating results in a
cavity detection efficiency

κtop

κtot
= 0.6, and (c) a ZPL detection efficiency ηZPL · ηcav = 0.53,

independent of top mirror geometry for short cavity lengths.

For argument’s sake, assume a rather bold scenario where both ηex and ηext equal
unity (the second assumption will be revisited below).

Fig. 8.13 shows the graphical evaluation of Eq. 8.10 for the different mirror config-
urations discussed above. Here, ξ0 = 0.025 and γ0 = 1

τ0
= 2π × 12.6MHz as before.

To start, Fig. 8.13 (a) and (b) show a comparison between the high- and low-index
terminated LaserOptik mirrors, respectively. For the high-index terminated mirror,
the detection rate is the largest for the intermediate reflective top mirror (red data
points). Here, the reduction in the detection efficiency is counteracted by a larger
Purcell factor (Fig. 8.5). On the contrary, the reduced reflectivity of the low-index
terminated bottom DBR favours a lower reflectivity top mirror. For the low-index
terminated mirrors, the presence of surface scattering (σq, faint lines in Fig. 8.13 (b))
further reduces the detection rate. In conclusion, with the top mirrors considered
here, low-terminated bottom mirrors will not improve the detection rate.

On the other hand, coating the diamond with a λ/4 layer of SiO2 or Al2O3 offers
a possible route to enhance the detection rate, as can be seen in Fig. 8.13 (c). In the
current configuration, the deposition of higher-index TiO2 offers no added benefits.
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(a) (b)    

(c) (d)    

Figure 8.13.: Detection rate of ZPL photons calculated from Eq. 8.10 for different cavity
configurations. Here, a top mirror with Rcav = 15µm and D = 6µm are assumed for all
cases. (a) Cavity constructed from the LaserOptik mirrors with bottom mirror (nH·nL)

14·nH.
(b) Low-index terminated bottom mirror, (nH · nL)

15. The semi-transparent lines represent
scattering losses with surface roughness σq = 0.3 nm. (c) Depositing λ/4-layer of oxide
on top of the diamond surface. The cavity is constructed from DBR mirrors created from
(nH · nL)

14 · nH bottom and (nH · nL)
12 · nH top. (d) Cavity constructed using the ECI

coating, with (nL · nH)
14 top and (nL · nH)

15 bottom.

To recap, here a top mirror on the form (nH · nL)12 nH is considered, i.e. identical to
the blue points in Fig. 8.13 (a). Note that the analysis here assumes the possibility
of depositing a loss-less λ/4 layer on the diamond via ALD. Should this assumption
hold, deposition using ALD could further lead to smoothing of the surface [479], and
thus allowing for operating in a diamond-confined geometry with little-to-no surface
scattering.

The high Purcell factor combined with a detection efficiency of
κtop

κtot
∼ 0.6 renders

the highly refractive ECI coating displayed in Fig. 8.13 (d) unrivalled in terms of
the expected detection rate. Therefore, in the assumption of DBR mirror coatings
without any unwanted losses, this mirror configuration will be the obvious choice.
However, in a real-life experiment, imperfections in the mirror coating can introduce
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scattering and absorption with loss-rate κDBR. In the presence of losses, it is of
paramount importance that transmission through the top mirror constitutes the
dominant loss channel, i.e. κtop ≫ κDBR (compare Section 3.3.5). To verify this as-
sumption, it is worth revisiting Chapter 4, where this exact mirror configuration was
used [387]. Here, the measured finesse Fexp

bare = 42 500±4 200 and the finesse expected
from the simulations, F sim

bare = 44 410, was in excellent agreement, to within the errors
of the experiment. The difference in finesse corresponds to LDBR ≃ 6 ppm, albeit
with a large errorbar. Compared to Ttop = 93.5 ppm, it is clear that LDBR ≪ Ttop
thus validating the assumption of loss-less mirrors.

In a cavity-coupling experiment, the parameter ηext depends on the efficiency
and losses of each optical component. Performing a back-of-the-envelope estima-
tion, where transmission through the DBR-substrate Tsub ≃ 97.5%, transmission
through the objective Tobj ≃ 75%, coupling efficiency to the single-mode detec-
tion fibre ηfibre ≃ 70% and SPAD detection efficiency ηSPAD ≃ 70% [85], results
in ηext = 35.8%. However, this number can be further improved: applying an
anti-reflective coating to the DBR-substrate allow for Tsub → 100%, Tobj ≃ 99 for
a single aspheric lens, and using superconducting nanowire detectors can increase
ηSPAD ≳ 90%, resulting in ηext → 62.4%.
For the remainder of this chapter, consider a cavity assembled using the ECI

mirror-coating and a typical crater with radius of curvature Rcav = 15µm and depth
d ∼ 0.7µm [385, 393]. From Fig. 8.12, the closest resonance to contact (qair = 4 for
λ = 637.2 nm*) occurs for an air-gap ta = 975 nm. For this mode, Q = 645 440,

|Evac| = 28.8 kV
m and Veff = 197.7 ·

(
λ
n

)3
. An optimally positioned NV centre will

thus experience FP = 249, ηcav = 0.588 and ηZPL = 0.867, thus ηout = 0.506. By
including ηext = 0.358, one find CZPL = 106.1 · 106 s−1 for γ0 = 2π × 12.6MHz and
ξ0 = 2.55% [77]. With nominally the same experimental setup, Ref. [85] measured
ηext = 0.15%, which in this analysis translates to CZPL = 4.44 · 105 s−1.

State-of-the-art spin-photon entanglement schemes utilise a hemispherical solid im-
mersion lens (SIL) [42, 43, 66, 73, 396, 397], with a typical collection efficiency of
∼ 30% [471, 483, 484]. For ξ0 = 2.55%, the collection efficiency of a ZPL photon
using a SIL amounts to ηSILtot = 0.77%. Successful entanglement events are heralded
by the detection of two independent ZPL photons, thus the success rate of these pro-
tocols scales with η2tot [84, 485]. In a cavity experiment under otherwise equivalent
conditions, i.e. equal ηex and ηext, the spin-spin entanglement rate will be boosted by
a factor [65, 85, 405] (

ηcavtot

ηSILtot

)2

=

(
ηcav · ηcavZPL

ηSIL · ηSILZPL

)2

≃ 4 440 . (8.11)

Deterministic light-matter interaction requires cooperativity, C = 4g2

κγ0
> 1 (compare

Section 2.1.3) [30, 58, 61]. Following Ref. [61, 214], the Purcell factor of the ZPL, FZPL
P ,

can be calculated from

FZPL
P = 1 +

CZPL

ξ0
. (8.12)

*Following the convention introduced in Chapter 4, qair is defined as the mode index in air starting
at qair = 1 for the first resonance, corresponding to ta = 19nm.
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A simple rearrangement gives*

CZPL = ξ0 ·
(
FZPL
P − 1

)
= 6.3 , (8.13)

for FP = 249 and ξ0 = 2.55%.
Following Section 4.4.1, the NV-cavity coupling can be described using the param-

eters of the Jaynes–Cummings Hamiltonian. The NV-cavity coupling rate, gZPL, is
given by gZPL = dNV · Evac (compare Section 2.1.4). Extracting Evac = 28.8 kV

m from
Fig. 8.11 (a) and using dNV/e =

√
ξ0 · 0.108 nm [77] yields gZPL = 755 · 106 s−1. Com-

bining all the above, one finds

gZPL = 2π × 120MHz

κ = 2π × 728MHz

γ0 = 2π × 12.6MHz ,

(8.14)

firmly placing the system in the weak coupling regime of QED. Furthermore, The
condition (κ > gZPL > γ0) is favourable for a large photon collection efficiency [125,
214].
Finally, calculating the cooperative using the values in Eq. 8.14:

CZPL =
4g2ZPL

κγ0
= 6.3 , (8.15)

giving the same numerical value as before (Eq. 8.13). Note that up to this point,
spectral diffusion has been neglected in this definition of the cooperativity. Spectral
diffusion can be accounted for using the coherent cooperativity Ccoh, defined as [58,
113]

Ccoh =
4g2ZPL

κ (γhom + γ∗)
, (8.16)

where γhom = γrad + γnonrad and γ∗ is the spectral diffusion rate [387]. Ignoring the
non-radiative decay rate γnonrad reduces γhom = γrad = γ0 as used elsewhere in this
chapter. Including an inhomogeneous broadened linewidth of γ∗ = 2π × 100MHz
(motivated by Fig. 7.21 (a)), reduces the cooperativity to Ccoh = 0.7.

8.2. Concluding Remarks

To conclude, a Fabry-Perot microcavity operating in the weak coupling regime of
cavity quantum electrodynamics constitutes a promising platform to enhance signif-
icantly the flux of coherent photons from single NV centres. A careful choice of the
DBR mirror coatings are required to establish a balance between a high Q-factor and
the cavity outcoupling efficiency ηcav; it is of paramount importance that the cavity
loss-rate κ is dominated by the transmission through the top mirror κtop. A scenario
with κloss > κtop would be detrimental to the photon detection rate, on the grounds
that the cavity photons will be lost to the environment rather than by transmission
through the top mirror. However, with a suitable choice of mirror coatings, a ZPL

*The cooperativity CZPL is not to be confused with CZPL, the detection rate of ZPL photons.
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detection rate exceeding 1 · 106 s−1, and a cooperativity CZPL > 3 are within reach,
consequently allowing for a drastic increase in the spin-spin entanglement rates [42].
The overarching goal of the work presented in this thesis is to enhance the rate of

coherent photons from single NV centres in diamond. With the current experimental
platform, the realisation of highly efficient spin-photon [41] and spin-spin [42, 43] en-
tanglements are within reach. However, technical hurdles, such as efficient delivery of
microwaves for coherent spin control and smoothing of the diamond surface, will have
to be overcome. In addition, maintaining optically coherent NV centres during the
micro-fabrication is of paramount importance. Here, post-implantation constitutes a
promising way to create close to the surface NV centres with narrow (∼ 100MHz)
linewidths [171]. Furthermore, laser-writing has proved to create NV centres in bulk
diamond with outstanding optical properties [172, 178]. Vacancies are created in a
highly non-linear process, thus limiting lattice damage to within the focal volume
of the tightly focused laser [173]. However, due to the threshold of surface damage
being lower than the threshold for vacancy creation, the creation of close-to-surface
(< 100 nm) NV centres remains challenging. At the time of writing, it is not clear
how the optical coherence of the laser-written NV centre evolves during fabrication.
On a final note, although, the work presented in this thesis is guided towards the

NV centre in diamond, the versatile design of the Fabry-Perot microcavity allows for
the incorporation of other defect centres in wide bandgap materials. Examples of such
defect centres are the centrosymmetric group-IV defects in diamond [100, 219, 256,
257, 261, 263, 264, 269, 296, 301, 302, 486], defects in silicon carbide [318, 319, 322],
rare-earth ions in crystalline hosts [101, 325, 330, 331] or emitters in 2D materials [419,
420, 487]. In other words, with a tunable Fabry-Perot microcavity, the world is your
oyster!





APPENDIX A

Introducing the Transfer-Matrix Formalism

In a nutshell, the transfer-matrix formalism describes the propagation of optical
beams. In a ray optics picture, a ray is completely described by a two-element vector
ψ containing position x1 and slope x′1 with respect to the optical axes [93]

ψ1 =

(
x1
x′1

)
. (A.1)

The optical path through a medium with refractive index n depends on the optical
properties of the medium and on the input condition [91]. The corresponding output
parameters, x2 and x′2, are linearly dependent on the input parameter, i.e.(

x2
x′2

)
= M ·

(
x1
x′1

)
, (A.2)

where M =

(
A B
C D

)
is the transfer matrix* [91]. Depending on the various optical

element, such as lenses, mirrors etc., the transfer matrix assumes different forms; for
an overview the, reader is referred to Ref. [91, 93].
In this thesis, the cavity mirrors were constructed from DBR coatings, with an

alternating stack of high- and low index materials. Therefore, the remaining of this
section concerns the propagation of light between two different materials with different
refractive indices. The forward (E+) - and backward (E+) propagation wave in the
two different layers, labelled j and j + 1, are related via [85, 488](

E+
j+1

E−
j+1

)
= M ·

(
E+

j

E−
j

)
. (A.3)

*In the literature, this matrix is often referred to as the ABCD matrix [93].
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A plane wave exiting layer j with refractive index nj is described by the following
transfer matrix

Tj =

(
1 1
nj −nj

)
. (A.4)

By symmetry, the transfer matrix for entering layer j is given by the inverse T−1
j .

Consequently, the transfer from layer j to layer j + 1 is thus described by [85]

T−1
j+1Tj =

(
nj+nj+1

2nj

nj−nj+1

2nj
nj−nj+1

2nj

nj+nj+1

2nj

)
=

1

tj→j+1

(
1 rj→j+1

rj→j+1 1

)
, (A.5)

where tj→j+1 and rj→j+1 are the transmission and reflection coefficients between the
two layers, respectively. For a plane wave with k = 2π

λ , the propagation through a
layer with thickness dj and refractive index nj is described by [488]

P =

(
eiknjdj 0

0 e−iknjdj

)
. (A.6)

By combining the above, the complete transfer through layer j is described by [85]

Mj = T−1
j PjTj =

(
cos(knjdj)

i
nj

· sin(knjdj)

inj · sin(knjdj) cos(knjdj)

)
. (A.7)

The transfer matrix describing the propagation through successive layers can readily
be obtained by matrix multiplication, i.e.

Mm = T−1
sub ·

m∏
j

Mj · Tsub . (A.8)

The waves entering and exiting the system is related via [85, 488](
1
r

)
=

(
M11 M12

M21 M22

)
·
(
t
0

)
, (A.9)

from which the transmittance T and reflectance R can be calculated from

T = |t|2 =

∣∣∣∣ 1

M11

∣∣∣∣2 (A.10a)

R = |r|2 =

∣∣∣∣M21

M11

∣∣∣∣2 . (A.10b)

Following from Eq.A.8, a DBR mirror consisting of m layer pairs can be described
by

MDBR = T−1
air (MTa2O5

MSiO2
)
m
Tsub , (A.11)

where T−1
air and Tsub are the matrices for the air and the substrate, respectively.

For the cavity used in the experiments presented in Chapter 4, Chapter 5and
Chapter 6, the structure of the top- and bottom mirror were (nL · nH)14 · nH and
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(a) (b) (c)  

Figure A.1.: One-dimensional transfer matrix calculations of the cavity mode-structure for
(a) td = 0µm, (b) td = 1µm and (c) td = 3µm. To properly capture the cavity resonance,
all panel shows the logarithm of the cavity transmission.

(nL · nH)15 ·nH, respectively. Here, the subscript H (L) corresponds to the high (low)
refractive index material. The full description of this cavity is thus given by

Mcav = T−1
sub (MTa2O5MSiO2)

14 MairMdiamond (MTa2O5MSiO2)
15
Tsub . (A.12)

Fig.A.1 shows one-dimensional transfer matrix calculations of the resonant wave-
length as a function air-gap ta for different diamond thicknesses td. Due to the sharp
nature of the cavity resonance close to the stopband centre (Q ∼ 105) and the dis-
crete pixel size (δta = 1nm and δλ = 0.1 nm), the cavity transmission is plotted on a
logarithmic scale. The calculations of the cavity-mode structure were obtained using
Essential Macleod.





APPENDIX B

Modelling Clipping Losses

In Chapter 4, a reduction in theQ-factor was observed for air-gap ≳ 2.5µm, associated
with clipping losses. Beam clipping occurs when the cavity beam waist at the top
mirror grows larger than the spherical extend of the curvature of said mirror. In
this chapter, a model describing beam clipping will be derived from a Gaussian optics
approach. This model accounts for beam clipping on the side of the crater, in addition
to a relative tilt angle between the two mirrors. Here, a tilt angle causes a lateral
displacement of the cavity mode thereby increasing clipping losses [387].
For a Gaussian beam with beam waist w, the radial intensity profile is given by

I(r) = I0 · e−
2r2/w2

. (B.1)

from which the total intensity can be calculated from

Itotal = I0 ·
∫ ∞

r=0

∫ 2π

θ=0

e−
2r2/w2

rdr dθ = I0 · 2π
w2

4
. (B.2)

The loss on passing through an aperture of radius ρ < w is given by

∆I = I0 ·
∫ ∞

r=ρ

∫ 2π

θ=0

e−
2r2/w2

rdr dθ

∆I = I0 · 2π
w2

4
e−

2ρ2/w2
.

(B.3)

The losses L can then be defined as [104, 390].

L ≡ ∆I

Itotal
= e−

2ρ2/w2
, (B.4)

In the presence of tilt, the profile of the curved mirror is described by

z = −
(
x2 +R2

) 1
2

+ θx , (B.5)
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where R is the radius of the mirror and θ is the tilt angle. The equation z2 = x2+R2

represents a circle centred at (x, z) = (0, 0). However, the relative tilt displaces the
beam to position x = a, at which the top and bottom mirrors are parallel. This x
position can be found from the condition

dz

dx

∣∣∣∣
x=a

= 0 . (B.6)

From Eq.B.5, one finds

dz

dx
= −1

2

(
x2 +R2

)− 1
2 · (2x) + θ , (B.7)

which reduces to
a

(a2 +R2)
1
2

= θ

θ = a
(
a2 +R2

)− 1
2

θ = a

R2 ·

(
1 +

(
a

R

)2
)− 1

2

θ =
a

R
·

1− 1

2

(
a

R

)2

+O

[(
a

R

)3
] .

(B.8)

For a≪ R, Eq. B.8 reduces to

a ≃ R · θ (B.9)

Now, define a new Gaussian beam

I0 · e−
2r2/w2 → Ĩ(x, y) = I0 · e−

2y2/w2 · e−2(x−a)2/w2
, (B.10)

where the y-dependence remain unaltered and the x-dependence is displaced by a.
Expanding Ĩ(x, y) yield

Ĩ(x, y) = I0 · e−
2y2/w2 · e−2x2/w2 · e4xa/w2 · e−2a2/w2

, (B.11)

which can be transformed to polar coordinates

Ĩ(r, θ) = I0 · e−
2a2/w2 · e−2r2/w2 · e4ar cos(θ)/w2

. (B.12)

Following from Eq.B.3, the losses on passing the aperture in the presence of tilt, ∆Ĩ,
is calculated according to

∆Ĩ =

∫ ∞

r=ρ

∫ 2π

θ=0

Ĩ(r, θ) rdr dθ

= I0 · e−
2a2/w2

∫ ∞

r=ρ

re−
2r2/w2

∫ 2π

θ=0

e
4ar cos(θ)/w2

dθ dr .

(B.13)
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By introducing ∫ 2π

θ=0

eb cos(θ) dθ = 2πB0(b) , (B.14)

where B0(b) is the modified Bessel functions of the first kind, Eq.B.13 becomes

∆Ĩ = 2πI0 · e−
2a2/w2

∫ ∞

r=ρ

re−
2r2/w2

B0

(
4ar/w2

)
dr . (B.15)

There exists no analytic solution to Eq.B.15. Therefore, numerical approximations
will have to be made. The integrand is largest for r = ρ. At this r,

4ar

w2
=

4aρ

w2
= 4 · ρ

w
· a
w
. (B.16)

By using typical experimental parameters,

w ≃ 1µm

ρ ≃ 2.5µm

R ≃ 10µm

θ ≃ 0.1◦ = 1.75 · 10−3 radians ,

(B.17)

one finds
a ≃ 0.017µm

4aρ

w2
≃ 0.17 ≲ 1 .

(B.18)

Performing Taylor expansion of B0(x);

B0(x) = 1 +
x2

4
+
x4

64
+O(x6) , (B.19)

one finds that Eq.B.15 can be approximated to

∆Ĩ ≃ 2πI0 · e−
2a2/w2︸ ︷︷ ︸
≈1

∫ ∞

r=ρ

re−
2r2/w2 ·

[
1 +

1

4

(
4ar

w2

)2

+
1

64

(
ar

w2

)4
]
dr︸ ︷︷ ︸

= 1
4w2 (w8+2a2(2ρ2w4+w6)+2a4(2ρ4+2ρ2w2+w4))

≃ 2πI0 · e−
2ρ2/w2 · w

2

4
·

[
1 + 4

(
aρ

w2

)2

+ 4

(
aρ

w2

)4
]
,

(B.20)

where, for the last line, the assumption ρ >> w was used. Analogously to Eq.B.4,
the losses due to tilt can be calculated from

L̃ =
∆Ĩ

Itotal

L̃ = e−
2ρ2/w2 ·

1 + 4

(
aρ

w2

)2

+O

((
aρ

w2

)4
) . (B.21)
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TableB.1 displays a comparison between the approximation used (ρ≪ w) in deriving
Eq.B.21 and numerically integration of Eq.B.15 for the experimental parameters
listed in Eq.B.17. Finally, defining the diameter of the crater as D = 2ρ, reduces
Eq.B.15 to

L = e−
2a2/w2 ·

[
1 +

(
aD

w2

)2
]
, (B.22)

as introduced in Section 4.3.1.

Table B.1.: Calculating clipping losses from Eq.B.21 compared to numerical inte-
gration of Eq.B.15. For small angles, there is an excellent concordance between the
approximation and the numerical integration.

θ a (µm) L̃ from Eq.B.21 L̃ from Eq.B.15

0.0◦ 0 3.727 · 10−6 3.727 · 10−6

0.01◦ 1.75 · 10−3 3.727 · 10−6 3.727 · 10−6

0.1◦ 1.75 · 10−2 3.755 · 10−6 3.755 · 10−6

0.5◦ 0.087 4.432 · 10−6 4.460 · 10−6

1◦ 0.175 6.580 · 10−6 7.065 · 10−6



APPENDIX C

Incorporate Clipping Losses

This chapter will discuss the incorporation of clipping losses into one-dimensional
transfer-matrix simulations. In this thesis, the transfer matrix simulations were
performed using Essential Macleod, where losses, such as surface scattering and
absorption, can be incorporated via the complex refractive index (Compare Sec-
tion. 3.3.3). However, clipping losses is an inherently three-dimensional property and
can thus not be accounted for using Macleod. To this end, clipping losses have to
be incorporated into the model after the one-dimensional transfer-matrix simulations.

For a cavity with finesse F , the Q-factor can be expressed as (Eq. 2.26)

Q =
2LcavF

λ
, (C.1)

where Lcav is the length of the cavity. Introducing the phase length;

Lcav = Lphase = Lair + Ltop
DBR + Lbottom

DBR , (C.2)

where Li =
cτi
2 . Here, τ is the reflected phase (group) delay, accounting for the field

penetration into the DBR mirrors [94]. The phase τ can be calculated by simulating
the reflectivity of each mirror individually. Recall from Section 2.1.1 the finesse is
related to the cavity round-trip loss Ltot via

F =
2π

Ltot
. (C.3)

For a perfect cavity, where Ltot = Ttop + Tbot, combining Eq.C.1 and Eq.C.3 gives

Qtot =
4πLphase

λLtot
. (C.4)
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Figure C.1.: Orange line: Q-factor obtained directly from Macleod. Blue points: Q-factor
calculated according to Eq.C.5. Black line: Sanity check of Eq.C.8. The calculatedQ-factors
are in good concordance with the Q-factor obtained directly from Macleod, as expected.
Burgundy line and red points: Q-factor in the presence of tilt of θ = 0.5 ◦ for Rcav = 15µm
and D = 5µm calculated from Eq.C.7 and Eq.C.8, respectively.

Now, consider the result obtained from Macleod. For clarity, rewrite Eq.C.4 as

QMacleod =
4πLphase

λLMacleod
, (C.5)

where QMacleod is the Q-factor obtained from Macleod for losses LMacleod. From a
simple rearrangement of Eq.C.5, one finds

LMacleod =
4πLphase

λQMacleod
. (C.6)

In the presence of beam clipping, the total losses Ltot = LMacleod + Ltilt, where Ltilt

is calculated from Eq.B.22. From this, Eq.C.4 becomes

Qtot =
4πLphase

λ
·
(

1

LMacleod + Ltilt

)
, (C.7)

which, by using Eq.C.6 reduces to

Qtot = QMacleod ·
(

LMacleod

LMacleod + Ltilt

)
. (C.8)

To verify the above analysis, Fig. C.1 shows the Q-factor as a function of increasing
air-gap for a bare cavity. As expected, there is an excellent agreement between the
Q-factor from Macleod (solid orange line) and the Q-factor calculated from Eq.C.5
and Eq.C.8 (blue points and black dashed line, respectively). The burgundy line and
red data points show the calculated Q-factor in the presence of a tilt angle θ = 0.5◦

for a cavity with Rcav = 15µm and D = 5µm calculated according to Eq.C.7 and
Eq.C.8, respectively.



APPENDIX D

A Toy Model Describing ∆Q0

In the experiment presented in Chapter 4, the experimentally measured finesse was
found to be in good agreement with the finesse expected from simulations [387]. How-
ever, the Q-factor on the other hand was lower than expected. Therefore, the term
∆Q0 was introduced, rigidly shifting the Q-factor to lower values. The origin of the
∆Q0 was attributed to surface waviness [387]. In this chapter, a rudimentary toy
model describing the ∆Q0 term will be derived. This model is inspired by Ref. [88],
where imperfections lead to hybridisation and mixing of the cavity modes (compare
Section 2.1.1). In this model, the imperfections and mode mixing are introduced by
the waviness (see Section 4.2 and Fig. 4.3).

Consider a cavity mode at frequency ν1 with linewidth Γ1 (Fig.D.1 (a)). The
presence of waviness couples the mode to an additional mode at a larger frequency ν2
with linewidth Γ2 as shown in Fig.D.1. Let the frequency spacing ∆ = ν2 − ν1 and
g being the coupling strength. For the unperturbed case (Fig.D.1 (a)), the finesse is
given by

F =
∆

Γ1
. (D.1)

The origin of this second mode remains unknown – for simplicity, the second mode
will be treated as a fundamental mode. Assuming g ≪ ∆, the hybridisation causes

the modes to repel, shifting the centre frequency by g2

∆ , i.e. the spacing of the peaks

increases to ∆+ 2g2

∆ (Fig.D.1 (b)). The low-frequency solution of the coupled system
is given by

ϕ− = c1 · ϕ1 + c2 · ϕ2 , (D.2)
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Figure D.1.: Toy model describing the hybridisation of the cavity modes. (a) Perfect cavity.
b The hybridisation causes the cavity modes to repel. For details, see main text.

where |c1|2 ≃ 1− g2

∆2 and |c2|2 ≃ g2

∆2 . As a consequence, the finesse F ′ becomes

F ′ =
∆+ 2g2

∆

|c1|2Γ1 + |c2|2Γ2
(D.3)

=
∆ ·
(
1 + 2g2

∆2

)
(
1− g2

∆2

)
· Γ1 +

g2

∆2 · Γ2

, (D.4)

where Eq.D.2 was used. Making the dubious assumption that Γ2 = 3Γ1, reduces
Eq.D.4 to

F ′ =
∆ ·
(
1 + 2g2

∆2

)
Γ1 ·

(
1 + 2g2

∆2

) =
∆

Γ1
= F , (D.5)

where Eq.D.1 was used. In other words, the finesse remains unaltered.
Next, consider the Q-factor. For the unperturbed cavity, one has

Q1 =
ν1
Γ1

, (D.6)

while the mode mixing leads to

Q′ =
ν1 − g2

∆

Γ1

(
1 + 2g2

∆2

) (D.7)

=
ν1

(
1− 2g2

ν1∆

)
Γ1

(
1 + 2g2

∆2

) (D.8)

≃ ν1

Γ1

(
1 + 2g2

∆2

) , (D.9)
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where ν1 ≫ g2 was used in the last line. Using a Taylor expansion, Q′ reduces to

Q′ =
ν1
Γ1

·

(
1− 2g2

∆2

)
= Q1 −∆Q , (D.10)

where

∆Q = Q1 ·
2g2

∆2
. (D.11)

From Fig. 4.8, one finds ∆Q
Q0

≃ 1
2 , which, from Eq.D.11, implies g = 1

2∆.
To summarise, this model predicts that in the presence of mode mixing under the

stringent condition Γ2 = 3Γ1, the finesse remains unchanged, while the Q-factor gets

reduced by ∆Q = Q1 · 2g
2

∆2 . Qualitatively this toy model agrees with the experimental
findings presented in Chapter 4.





APPENDIX E

Piezo-Calibration Using the Cavity
Mode-Structure

In this chapter, the method of using the cavity mode-structure to calibrate the dis-
placement of the z-piezo will be discussed. In the experiment presented in Chapter 4,
the cavity length was step-wise reduced by applying an increasingly positive voltage
to the z-piezo located beneath the bottom mirror (see Fig. 4.4) [387]. Fig. E.1 show the
raw, unprocessed mode-structure. Here, the mirror separation was decreased until the
two mirrors were in contact, verified by no longer observing a change in resonant wave-
length with increasing voltage. The displacement of the piezo with applied voltage is
non-linear. Consequently, the resulting mode-structure exhibits non-linear features,
where the relative spacing between the fundamental modes appears to increase with
applied voltage.

In a nutshell, the piezo was calibrated by equating the voltage spacing between
two fundamental modes to the FSR = λ

2 (Eq. 5.1) in nanometers. To do so, only
the fundamental modes enclosed by the red box in Fig. E.2 (a) were considered, on
the account of a sufficiently large signal to noise ratio to easily distinguish the cavity
mode from the background in an automated fashion.

To convert from applied piezo voltage to length, the change in length per applied
voltage was calculated. As previously mentioned, for a single wavelength, the cavity
length changes by λ

2 from one fundamental mode to the next. Therefore, the con-
version factor at the halfway point between the two modes was calculated according
to FSR

∆V . For example, the two first fundamental modes for λ = 630 nm occurs for
V = 5.97V and V = 1.77V respectively. At this position, a change in voltage of
∆V = 4.2V was required to change the cavity length by 315 nm. Hence, at the
halfway point, i.e. V = 3.87V, the piezo moves 75nm

V . Repeating this procedure for
each wavelength pixel (∆λ = 0.13 nm) for all the fundamental modes produced the
curve in Fig. E.2 (b). Here, the inset highlights the few outliers, where the algorithm
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Fundamental modes

Higher order modes

Contact

Raman

Figure E.1.: Unprocessed cavity mode-structure. In this experiment, the cavity length was
made shorter and shorter until the two mirrors were in contact, at which point the resonant
wavelength no longer changed with applied piezo voltage, as indicated by the orange arrows.

(a) (b)

Figure E.2.: (a) The piezo was calibrated using the fundamental cavity modes encapsulated
by the red square. (b) Calibration curve obtained by calculating the change in voltage
required to extend the cavity length by one FSR for all wavelengths. The inset shows the
few cases where the automated algorithm failed to extract the correct distance. The data
were smoothed by fitting a 10th order polynomial (red line). For details, see main text.

failed to locate the correct cavity mode. For the remainder of the procedure, only
the data points located between the two red lines were considered. The data were
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(a)

(b)

Figure E.3.: (a) Calibrated mode structure. (b) Top panel: Comparison between the cal-
culated and extracted FSR. Bottom panel: Difference between the measured and calculated
FSR, σFSR = LMeas − LTheory.

smoothed by fitting a 10th order polynomial indicated by the red line.
The calibrated mode-structure is shown in Fig. E.3 (a), where the MATLAB com-

mand pcolor was used to account for the non-linear pixel size. The top panel in
Fig. E.3 (b) shows a comparison between the calculated (orange) and extracted FSR.
The difference between the extracted and measured FSR, σFSR = LMeas − LTheory,
is plotted in the bottom panel. The orange data points represent the average FSR
calculated for the two visible modes for each wavelength. Computing the mean error
of σ̄FSR = −0.0154 nm and root-mean-square error, RMS = 1.055 nm validates the
calibration. The maximum error |σFSR(λ = 623.167 nm)| = 2.7346 nm underestimates
the cavity length by only 3%.





APPENDIX F

Cavity-Enhanced Detection Efficiency

The experiment presented in Chapter 5 demonstrated cavity-enhanced Raman scat-
tering with a 58.8-fold increase in intensity compared to free-space measurements
under likewise identical conditions. The observed intensity enhancement was in good
concordance with a theoretical enhancement of 56.8 based on a quantitative model,
which will be derived in this chapter. Motivated by Eq. 5.4, the model assumes that
the diamond is build of an array of single identical Raman scatters, all emitting at
the same wavelength.

Bare Diamond

Consider a thin diamond membrane bonded to a DBR mirror. An objective lens with
numerical aperture NA = 0.4 is used for excitation and collection in a backscattering
geometry (Fig. F.1 (a)). For the bare diamond, the detection efficiency, η0, can be
derived based solely on geometrical arguments; only light emitted into a cone formed
by the NA of the objective will be detected:

η0 =
1

2
· (1− cos(θ))× 2

=
1

2
· (1−

√
1− sin2(θ))× 2

= (1−
√
1−NA2) ,

(F.1)

where the factor of 2 accounts for the light reflected by the DBR mirror and
NA = n · sin(θ). A ray of light emitted from inside the diamond at an angle θ′ relative
to the diamond surface will be diffracted according to Snell’s law: (Fig. F.1 (a))

sin(θ) = nd · sin(θ′) , (F.2)
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Diamond

NA=0.4

Diamond

Figure F.1.: Comparison of the detection efficiency for a photon emitted in a bare diamond
to a photon emitted inside the cavity. (a) For the bare diamond, the detection efficiency is
determined by the cone spanned by the NA of the objective lens. (b) In a loss-less cavity,
the detection efficiency is determined by the ratio of the loss-rate through the top mirror,
κtop to that of the bottom mirror κbot.

where nd = 2.4 is the refractive index of diamond. From Eq. F.2, one finds

sin(θ′) =
NA0

nd
, (F.3)

where NA = nd ·sin(θ′) and NA0 indicates the NA in vacuum spanned by the objective
lens. Combining Eq. F.1 and Eq. F.3, one arrives at

η0 = 1−

√
1−

(
NA0

nd

)2

, (F.4)

which for NA = 0.4 yield η0 = 1.39%.

Diamond in the Cavity

Consider a Fabry-Perot microcavity, embedded with the same diamond membrane as
before. In the cavity, the photons bounce between the mirrors with a probability Ttop
(Tbot) to be transmitted through the top (bottom) mirror. Only photons transmitted
through the top mirror will reach the detector. Therefore, the detection efficiency for
the cavity, ηcav is given by

ηcav =
κtop

κtop + κbot + κloss
· β , (F.5)

where κtop(bot) is the loss-rate through the top (bottom) mirror, κloss is the cavity
round-trip loss-rate and

β =
FP

FP + 1
, (F.6)
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is the probability of a photon being emitted into the cavity mode. The loss-rate
through the top mirror is calculated from

κtop =
Ttop

Ttop + Tbot
· κtot , (F.7)

with κtot = 2πc
Qλ . From the experiment in Chapter 5, one finds Ttop = 7728 ppm,

Tbot = 4322 ppm and Qsim = 12 738 for λ = 572.67 nm, κtop = 1.656 · 1011 s−1,
κbot = 9.525 · 1010 s−1. In the experiment, the total cavity loss rate κexp = κtop +
κbot + κloss is extracted from the cavity linewidth

κloss = κexp −
(
κtop + κbot

)
κloss =

2πc

λ
·

(
1

Qexp
− 1

Qsim

)
,

(F.8)

where Qexp = 8200. The experimental Purcell factor were calculated to be FP = 4.67
and thus β = 0.824. Inserting the numbers yield κloss = 1.429 · 1011 s−1 and ηcav =
32.5%.

Comparison of the Signal Strength

Assuming an identical pump rate and likewise identical diamond material and detec-
tion optics, the ratio of the cavity-enhanced Stokes emission to the free-space Stokes
emission is given by

Scav

S0
= FP · ηcav

η0
. (F.9)

Finally, the spectral overlap between the cavity mode and Stokes emission will have
to be considered. In the experiment, the Stokes (QS = 8066) and cavity (Qcav =
8200) exhibit similar linewidths. Only the Raman scatterers close to the resonance
contributes, those in the spectral wings do not. Including the spectral dependency of
FP, yield

Scav

S0
= FP · QS

QS +Qcav
· ηcav
η0

. (F.10)

Inserting the numerical values yield Scav

S0
= 56.78, in excellent concordance with the

measured value of 58.8.





APPENDIX G

A Note on Q-Factor and Mirror Parallelity

Recall from Section 4.2 and Fig. 4.4 that a thin layer of indium was used as a spacer
between the cavity cage and the holder for the top mirror. Fig.G.1 shows an image
of the cavity used in Chapter 5 and Chapter 6. Here, the cavity was illuminated using
a LED with λLED ≃ 850 nm, for which the cavity is transparent. Replacing the
objective lens with a long focal length aspheric lens allows for imaging of the whole
mirror. Some details; for this particular top mirror, 56 dimples were fabricated using
the aforementioned CO2 laser ablation technique [402]. To minimise the contact area,
a circular mesa was etched into the mirror substrate prior to coating [85]. In the

Mesa

Overview Craters

Marker

Diamond
(C,3)

Marker

(A,1)

(A,7)

(H,1)

Newton
Ring

Bottom mirror

Top mirror

Figure G.1.: Image of the cavity used in Chapter 5 and Chapter 6 under LED illumination
with wavelength λLED ≃ 850 nm, to which the cavity is transparent. For the top mirror, an
array of 56 craters were fabricated on top of a circular mesa. The diamond is parked under
the crater with coordinates (C,3). For the left image, the asymmetric pattern of Newton
fringes indicates a slight tilt angle. Adjusting the tilt between the two mirrors results in
symmetric fringes (rightmost image).



206 A Note on Q-Factor and Mirror Parallelity

𝒬 = 156 000 ± 2700 𝒬 = 259 000 ± 1900

(a) (b)

1 2 3

54 6

1 2 3

54 6

Figure G.2.: (a) Top panel: Snapshot of the Newton fringes while modulating the cavity
length. The asymmetry and centre of the fringes hint at a small tilt angle between the
mirrors. Bottom panel: using the laser sidebands at νlaser ± 3.9GHz as a frequency ruler
yield Q = 156 000. (b) Correcting for the tilt increases the quality factor to Q = 259 000.

current configuration, the diamond was parked under the dimple with coordinates
(C,3).

When minimising the separation of two, perfectly parallel mirrors, the diamond
membrane (td ≃ 700 nm) will be the point of contact, provided the mirrors are free
of dust and other residuals. However, in the presence of a tilt angle, the two mirrors
will go into contact at a different location. The contact point can be determined by
locating the centre of the Newton fringes as can be seen in Fig.G.1. To this end,
monitoring the point of contact between the two mirrors allows for minimising the
tilt angle. In the experiment, this was achieved by carefully tightening the four screws
mounting the top mirror to the cage, while monitoring the Newton fringes. The two
mirrors are parallel when the fringes are symmetric and centred around the position
of the diamond. Applying a small modulation to the cavity length facilitated the
observation of the Newton fringes.

The sensitivity on the Q-factor with tilt was first experimentally observed during
the experiments presented in Chapter 6. Here, the cavity length was large (to estab-
lish the double resonance condition), and hence sensitive to small tilt angles. Fig.G.2
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shows the reflection from the cavity, where an EOM were used to create sidebands
at νlaser ± 3.9GHz. The tilt was verified by no longer being able to resolve the laser
sidebands. The top panel in Fig.G.2 (a) shows snapshots of the newton fringes while
modulating the cavity length. As discussed, the asymmetry and centre of the New-
ton fringes indicate a tilt. Extracting the cavity linewidth using the sidebands as a
frequency rules yield Q = 156 000. Correcting for the tilt (top panel Fig.G.2 (b))
increases the quality factor to Q = 259 000.





APPENDIX H

Calculation of the Raman Lasing Threshold

This chapter aims at deriving the equation for the lasing threshold presented in
Chapter 6, by following the approach presented by Checoury et al. [370, 489]. Fol-
lowing the notation introduced in Chapter 6, consider a doubly-resonant system
(ωp = ωpump = ωcav

p and ωS = ωR = ωcav
S ). In the following, the “cav” superscript will

be omitted for concise notation and clarity. The spacing between the cavity modes is
given by ωS = ωp−∆ωR, where ∆ωR is the Raman shift. The coupled mode equations
linking the mean Stokes (NS) and pump photon numbers (Np) are given by:

dNp

dt
= −Np

τp
− γ

Np

τR
− (NS + 1) · Np

τ cavR

+ κinPp (H.1)

dNS

dt
= −NS

τS
+ (NS + 1) · Np

τ cavR

. (H.2)

Here τS = QS/ωS and τp = Qp/ωp are the Stokes and pump photon lifetimes. γ
describes the Raman scattering into modes other than the cavity mode and τR is
a measure for the spontaneous Raman scattering lifetime in bulk. Stimulated (NS)
and spontaneous (+1) Raman scattering into the cavity mode are accelerated over
the bulk scattering rate via Purcell enhancement; the corresponding lifetime becomes
τ cavR . The constant κin relates the injected pump photon-number per time to the
incident pump power Pp.

The spontaneous Raman scattering rate in bulk when the pump mode-polarisation
is aligned along the ⟨110⟩ crystallographic axis (Fig.H.1) can be calculated via [369]:

1

τR
=

2gBRc
2ℏωp

3npnSV
·M . (H.3)

Here, gBR denotes the bulk Raman gain and V the mode volume of a hypothetical large
cavity. M characterises the total number of Raman modes into which the system can
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radiate in such a large cavity with mode volume V for a frequency band of width
δωR [489]:

M =
V ω2

Sn
3
S

2πc3
· δωR . (H.4)

δωR describes the FWHM linewidth of the gain profile of the Raman scattering pro-
cess. Hence:

1

τR
= ΓR =

ω2
Sn

2
Sg

B
RℏωpδωR

3npπc
. (H.5)

The cavity enhancement is given by a Lorentzian with amplitude FP [399]. We ap-
proximate the Raman gain-profile with a normalised Lorentzian [369]. We assume
that the cavity is resonant with the Raman scattered light ωS = ωR:

1

τ cavR

=
ω2
Sn

2
Sg

B
RℏωpδωR

3npπc

∫ ∞

0

dω× 2

π

δωR

4(ω − ωS)2 + δω2
R

×FP
δω2

S

4(ω − ωS)2 + δω2
S

. (H.6)

For ωS ≫ δωS, δωR the integrand is close to 0 for ω = 0, so the lower limit of the
integral can be extended to negative infinity to obtain an analytical solution:

1

τ cavR

= Γcav
R =

ω2
Sn

2
Sg

B
RℏωpδωR

3npπc
· FPδωS

δωR + δωS
. (H.7)

The Purcell enhancement of the system is given by:

Γcav
R

ΓR
= FP · δωS

δωR + δωS
. (H.8)

This equation resembles the expression for Purcell enhancement of a two-level emitter
in a regime in which the linewidth of the cavity and a coupled emitter are compara-
ble [126, 423, 490–492]:

Γcav
R

ΓR
=

3

4π2
·
(
λcavS

nS

)3

· 1

VR

QSQR

QS +QR
. (H.9)

The lasing threshold power in the steady state can be calculated from:

Γcav
R Np(NS + 1) =

NS

τS
. (H.10)

Using Eq.H.1 and Eq.H.2,

κinPp =
NS

τS
·

 1

Γcav
R (NS + 1)

·

(
1

τp
+

γ

τR

)
+ 1

 . (H.11)

Taking into account NS ≫ 1 and 1
τp

≫ 1
τR

: *

κinPp =
1

τSτpΓcav
R

. (H.12)

* τp
τR

∼ 10−5.
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(a) (b)    

Figure H.1.: (a) Polarised Raman spectra obtained by rotating a λ
2
-plate in front of the

objective lens. From the angular dependence, one finds Imin
Imax

= 0.61. (b) Calculation of the

lasing threshold as a function of the bulk Raman gain coefficient gBR.

With κin = η/(ℏωp):

η

ℏωp
· Pp =

ωSωp

QSQp
· nSnpVR
2ℏωpc2gBR

· QS +QR

QS
, (H.13)

one obtains the result for the lasing threshold:

Pp =
1

η
· 2nSnpπ

2

λcavS λcavp gBR
· VR(QS +QR)

Q2
SQp

. (H.14)

Using the experimental values summarised in TableH.1 yield Pth = 189.3mW as
stated in Chapter 6. Fig.H.1 (b) evaluates the lasing threshold as a function of gBR.

Table H.1.: Summary of experimental parameters

λcavp 634.57 nm λcavS 693.13 nm
np 2.4 nS 2.4
τ−1
p 10.0 · 109 s−1 τ−1

R 2.38 · 105 s−1

Qp 296 900± 600 QS 6 650± 50
QR 8 960± 290 gBR ∼ 40 cm/GW[449]
η 0.45 VR 108.25µm3





APPENDIX I

Inhomogeneous Broadening of NV Centres
under Resonant Drive

This chapter derives the model used to disentangle inhomogeneous broadening from
power broadening presented in Section 7.4.4. In this model, the NV centre is simplified
as a two-level system, with ground- and excited state |1⟩ and |2⟩, respectively (Fig. I.1).
Furthermore, for simplicity, the model assumes Lorentzian spectral diffusion.
The probability of an emitter being at frequency f0 is given by the normalised

Lorentzian P (f0) = L(f0):

L(f0 − fc,Γ) =
1

π

Γ/2

(f0 − fc)2 +
(
Γ/2
)2 , (I.1)

where Γ is the full width at half maximum (FWHM) and
∫∞
−∞ L(f,Γ) df = 1.

Consider a 2-level system driven by a laser at frequency fL with excited state
population ρ22(δ,Ω) where δ = fL − f0 is the detuning and Ω =

√
c · P is the Rabi

frequency. Here c is the experimentally effective coupling strength and P is the laser
power. For simplicity, this can be written as ρ22(δ) = ρ22(fL−f0). The experimentally
measured line shape C(fL) is given by the convolution between L and ρ22:

C(fL) =

∫
ρ22(fL − f0) · P (f0) df0 . (I.2)

Defining

f̃ = f0 − fc

f = fL − fc

df̃ = df0

fL − f0 = (f + fc)− (f̃ + fc) = f − f̃

(I.3)
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Figure I.1.: (a) 2-level structure in the single excitation picture, where the ground and excited
state are denoted by |1⟩ and |2⟩, respectively. (b) The probability of emitter frequency
being f0 is given by the normalised Lorentzian function L(f0 − fc,Γ), where fc is the centre
frequency.

simplifies Eq. I.2 to

C(f) =

∫ ∞

−∞
ρ22(f − f̃) · P (f̃) df̃ , (I.4)

where P (f̃) = 1
π

Γ/2

f̃2+(Γ/2)
2 according to Eq. I.1, i.e.

C(f) =

∫ ∞

−∞
ρ22(f − f̃) · L(f̃ ,Γ) df̃ . (I.5)

For a 2-level system, one has [4]

ρ22 =
Ω2
/4

(ω − ω0)
2
+ γ2sp + Ω2

/2
, (I.6)

where ω0 = 2πf0 and ω = 2πf . However, in Ref. [4] the rate of spontaneous emission
is defined as 2γsp rather than the more familiar γ. Therefore, Eq. I.6 becomes

ρ22 =
(Ω/2)2

4π2(f − f0)2 + (γ/2)2 + Ω2
/2
. (I.7)

For small Ω, one finds FWHM = γ. However, for large Ω, one finds FWHM =√
γ2 + 2Ω2, i.e. power broadening of the linewidth.

First, consider the scenario where Ω is small:

ρ22 ≃ (Ω/2)2

4π2(f − f0)2 + (γ/2)2
=

(Ω/4π)2

(f − f0)2 + (γ/4π)2
. (I.8)

For f = f0 this reduces to ρ22 ≃ (Ωγ )
2, i.e. ρ22 ∝ Ω2 ∝ intensity, i.e. a linear

dependence between power and the measured countrate. In the case of small Ω,
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substituting the expression for ρ22 into Eq. I.5 yields

C(f) =

∫ ∞

−∞

(Ω/4π)2

(f − f0)2 + (γ/4π)2
· L(f̃ ,Γ) df̃

=

(
Ω

4π

)2
π

γ/4π

∫ ∞

−∞

1

π

γ/4π

(f − f0)2 + (γ/4π)2
· L(f̃ ,Γ) df̃

C(f) =
Ω2

4γ

∫ ∞

−∞
L(f − f̃ , γ/4π) · L(f̃ ,Γ) df̃ ,

(I.9)

where in the last step Eq. I.2 was used. Recall that∫ ∞

−∞
L (x− y, a) · L(y, b) dy =

2 (a+ b)

π
(
4x2 + (a+ b)

2
)

=
1

π
·

(a+b)/2

x2 +
(
(a+b)/2

)2
= L (x, a+ b)

∴ L (a+ b) = L(a)⊗ L(b) .

(I.10)

For low powers,

C(f) =
Ω2

4γ
· L(f, γ/2π + Γ). (I.11)

Using L (0, a) = 2
πa , one finds that on resonance (i.e. f = 0):

C(0) =
Ω2

4γ
· 2

π(γ/2π + Γ)
=

1

2π
· Ω2

(γ
2
/2π + γΓ)

. (I.12)

In the absence of inhomogeneous broadening (Γ = 0),

C(0) =
1

2π
·
(
Ω

γ

)2

. (I.13)

In the presence of inhomogeneous broadening

C(0) =
1

2π
· Ω2

(γ
2
/2π + γΓ)

, (I.14)

which for Γ ≫ γ reduces to

C(0) =
1

2π
· Ω

2

γΓ
=

γ

2πΓ
·
(
Ω

γ

)2

. (I.15)

By comparing Eq. I.14 to Eq. I.15, it is apparent that the presence of inhomogeneous
broadening reduces the signal C(f) by a factor

γ

2πΓ
=

γ/2π

Γ
. (I.16)
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Next, consider a general case:

ρ22 =

(
1

2π

)2

·

(
Ω
2

)2
(f − f0)

2
+ 1

4 · (γ2 + 2Ω2) · 1
(2π)2

(I.17)

ρ22 =

(
Ω/4π

)2
(f − f0)

2
+ 1

(4π)2
· (γ2 + 2Ω2)

. (I.18)

Expressing Eq. I.18 on the form L(f − f0, a) with a = 1
2π ·

√
γ2 + 2Ω2 gives

ρ22 =

(
Ω

4π

)2

· π · 4π√
γ2 + 2Ω2

· 1
π
·

1/4π ·
√
γ2 + 2Ω2

(f − f0)2 +
(

1
4π

)2 · (γ2 + 2Ω2)
(I.19)

ρ22 =
Ω2

4
√
γ2 + 2Ω2

· L
(
f − f0,

1

2π
·
√
γ2 + 2Ω2

)
. (I.20)

Substituting Eq. I.20 into Eq. I.5 yields

C(f) =
Ω2

4
√
γ2 + 2Ω2

·
∫ ∞

−∞
L

(
f − f̃ ,

1

2π

√
γ2 + 2Ω2

)
L
(
f̃ ,Γ

)
df̃ , (I.21)

which, by using Eq. I.10, reduces to

C(f) =
1

4π
· Ω2√

γ2 + 2Ω2
·

1
2

(
Γ + 1

2π ·
√
γ2 + 2Ω2

)
f2 + 1

4 ·
(
Γ + 1

2 ·
√
γ2 + 2Ω2

)2 . (I.22)

By writing (Eq. 7.4)

Γ = Γin +
γ2 + 2Ω2

2π
(I.23)

reduces Eq. I.22 to

C(f) =
1

4π
· Ω2√

γ2 + 2Ω2
·

1
2Γ

f2 +
(
1
2Γ
)2 , (I.24)

as defined in Eq. 7.3.

On resonance

C(0) =
1

2π
· Ω2√

γ2 + 2Ω2
· 1

Γ + 1
2π ·

√
γ2 + 2Ω2

, (I.25)

which for Ω ≫ γ,Γ reduces to

C(0) → 1

2π
· Ω2

√
2Ω

· 2π√
2Ω

=
1

2
(I.26)
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(a) (b)    

𝐶 0 ∝ 𝑃

𝐶 0 ∝ 𝑃

Figure I.2.: Graphical representation of Eq. I.24 for inhomogeneous broadening Γin =

50MHz, effective coupling strength c = 2 · 105 MHz2

µW
and γ = 2π · 12.6MHz. (a) Depen-

dency of the count rate C(f) with excitation power for zero detuning. The inset shows the
behaviour of the FWHM linewidth Γ with power calculated from Eq. I.23. (b) Dependency
of the count rate as a function of detuning and power.

as expected. Furthermore, for Γ ≪ γ,Ω one finds

C(0) → 1

2π

Ω2√
γ2 + 2Ω2

· 1
1
2π

√
γ2 + 2Ω2

=
Ω2

γ2 + 2Ω2
(I.27)

as expected. However, for low excitation power Ω ≪ γ and Γ ≫ Ω, γ

C(0) =
1

2π
· Ω

2

γ
· 1
Γ
, (I.28)

i.e. C(0) ∝ Ω2 ∝ P . For large power, Γ ≫ Ω ≫ γ

C(0) =
1

2π
· Ω2

√
2Ω

· 1
Γ

=
1

2
√
2π

· Ω
Γ
,

(I.29)

i.e. C(0) ∝ Ω ∝
√
P .

To conclude, Fig. I.2 shows a graphical representation of the derived model. Moti-
vated by the results extracted from Section 7.4.4, Fig. I.2 (a) displays the countrate on
resonance (C(0)) in the presence of inhomogeneous broadening Γin = 50MHz and an

effective coupling strength c = 2 · 105 MHz2

µW and γ = 2π · 12.6MHz. For low- and high

excitation power, C(0) ∝ P and C(0) ∝
√
P as predicted by Eq. I.28 and Eq. I.29,

respectively. The inset shows the FWHM linewidth Γ as a function of excitation
power calculated from Eq. I.23. Finally, Fig. I.2 (b) shows the behaviour of C(f) as a
function of both detuning and excitation power derived from Eq. I.24.





APPENDIX J

PLE Spectroscopy of NV Centres under Blue
Illumination

As discussed in Chapter 7, spectral wandering compromises the achievable two-photon
quantum interference. The spectral wandering likely arises due to fluctuating charges
in the vicinity of the NV centre, excited by the green laser. This chapter discusses
the possibility of illuminating the NV centre with blue light (λ ∼ 450 nm) during
the photoluminescence excitation (PLE) pulsing sequence. The perhaps rather näıve
idea, was that the blue light saturates the charge traps in the close vicinity of the
NV centre, and thus hopefully result in a slower ionisation rate and minimal spectral
wandering.

In this experiment, a blue laser diode (Thorlabs PL450B, λ ∼ 450 nm) was injected
via the same microscope arm as the green laser (Fig. 7.2). Due to the difference in
wavelength, and consequently poor AOM efficiency, the blue and green laser were
combined using a fibre combiner (Thorlabs RGB46HA) positioned after the green
AOM. In other words, the blue laser was continuously kept on during the PLE pulsing
sequence, while the green laser was pulsed according to Fig. 7.1.

As a first characterisation, PL spectra were recorded for the same NV centre under
green and blue excitation. Exciting the NV centre with green light (λ = 532 nm,
Pgreen = 133µW) (Fig. J.1 (a)) reveals the sharp NV− ZPL at ∼ 637 nm and a PSB
slightly altered by thin-film interference in the diamond membrane. A weak NV0

ZPL was observed next to the first-order Raman transition. On the contrary, when
exciting the NV centre using blue light (λ = 450 nm, Pblue = 360µW), no NV− ZPL
was observed (Fig. J.1 (b)). Under blue illumination, an increase in both the NV0 ZPL
and PSB were observed, alongside a reduction in the NV− PSB. Finally, in Fig. J.1 (c)
the NV centre was simultaneously excited with blue and green light, using the above-
mentioned powers. An ever so slight decrease in the NV− ZPL intensity was observed,
while the NV0 ZPL intensity roughly equals the sum of the intensities in Fig. J.1 (a)
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≈

(a)     

(b)     

(c)     

Raman

NV0

NV-

≈

NV0

Raman

NV0

NV-

Figure J.1.: PL spectra of the same NV centre under (a) Pgreen = 133µW of green light, (b)
Pblue = 360µW of blue light and (c) Pgreen = 133µW of green light and Pblue = 360µW
blue light.

and Fig. J.1 (b). Note that the small discrepancy in intensity could originate from
statistical errors. Furthermore, in this experiment, the respective powers of the green
and blue lasers were kept fixed, thus increasing the total power density for Fig. J.1 (c).
A detailed study, with the total illuminated power kept constant, were not performed
here.

From Fig. J.1 (b), it is apparent that λ = 450 nm predominantly excites NV0. To
characterise this dependency in more detail, PL spectra were recorded for increasing
blue excitation power. In this study, the green power was kept constant at Pgreen =
133µW. As can be seen in Fig. J.2 (a), increasing the blue excitation power increases
the NV0 ZPL, while a slight variation of the NV− PSB was observed. To further
quantify this behaviour, high-resolution PL spectra of the ZPL of the two charge
states were recorded for each power (Fig. J.2 (b) and (c)). Here, the dashed orange
lines indicate a spectral window of λZPL ± 1 nm. The photon spectral density (SPD)
was calculated by integrating the intensity across this spectral window. Fig. J.2 (d)
shows the behaviour of the PSD with increasing blue power. As can be seen, the NV0

ZPL intensity increases with power, while the NV− ZPL intensity remains roughly
constant, further implying that λ = 450 nm predominantly excites NV0. Finally,
Fig. J.2 (e) shows the ratio of the PSD of NV− ZPL to that of NV0 with increasing
power.

A hand-wavy explanation for the predominate signature of NV0 under λ = 450 nm
illumination goes as follows. The NV− ground state lies approximately 2.6 eV beneath
the conduction band minima (Compare Fig. 2.10). Therefore, under illumination
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Raman
NV0

(a) (b)

(e)(d)

(c)

Figure J.2.: (a) Photoluminescence spectra under green illumination (Pgreen = 133µW) for
increasing blue power. (b) - (c) High-resolution PL spectrum of the NV0 and NV− ZPL,
respectively, for Pgreen = 133µW and Pblue = 360µW. The dashed orange lines indicate the
spectral window λZPL ± 1 nm. (d) Photon spectral density (PSD) of NV0 ZPL (blue) and
NV− ZPL (red) for increasing blue excitation power. The PSD is obtained by integrating
the counts between the orange lines in (b) and (c), respectively. (e) Ratio of the PSD of
NV− ZPL to that of NV0 for increasing blue power.

with λ = 450 nm (2.76 eV), there is a probability of photoionisation directly from
the ground state to the conduction band minima, from which the NV centre decays
as NV0. The continuous green laser ensures photoionisation back into the negative
charge state (Compare Section 2.2.4).
Finally, the attention was guided back to the linewidth measurements. In this

study, PLE measurements with increasing blue power were performed on 7 different
NV centres on the part of the post-implanted sample transferred to the DBR mirror
(Compare Section 7.4). Fig. J.3 summarises the results for the first NV centre. The
highlighted NV centre revealed three separate lines, where the two outermost lines
were assigned to the Ex and Ey transitions of the same NV centre (Compare Sec-
tion 7.4.4 and Fig. 7.18 *). The left-most, highlighted peak at was investigated in this
study. Fig. J.3 (c) shows PLE measurement with increasing blue power, where the
resonant power Pres = 11.8nW and the green Pgreen = 471µW were kept constant.

*The narrow central line was the subject of an extensive study with decreasing resonant laser
power.
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𝟐𝟕𝟎 ± 𝟐𝟎 𝐌𝐇𝐳
𝟏𝟎𝟒 ± 𝟖 𝐌𝐇𝐳

𝟐𝟓𝟏 ± 𝟏𝟐 𝐌𝐇𝐳

(a) (b)

(c) (d) (e)

Figure J.3.: First attempt at PLE spectroscopy under blue illumination. (a) Confocal scan
of diamond on the mirror highlighting the selected NV centre. (b) High-power PLE mea-
surement (Pgreen = 500µW, Pres = 131nW, compare to Fig. 7.18). The left-most peak was
investigated in this experiment. (c) PLE measurement with Pgreen = 471µW, Pres = 11.8nW
with increasing blue power. (d) Measured linewidth as a function of increasing blue power.
All linewidths were averaged over 50 scans. A significant narrowing of the optical transi-
tion with power is observed. (e) Photon spectral density integrated over a spectral window
of 1.2GHz for increasing power. The increased PSD can be attributed to the increase in
background observed in (c).

For zero blue power, a Gaussian fit reveals a linewidth ∆ν = 238MHz. A significant
rise in background fluorescence was observed with increasing blue laser power. Recall
that the green and blue laser were combined after the green AOM; the blue laser is on
continuously, even when collecting the photons on the single-photon avalanche diode
(SPAD, Compare Section 7.1). As can be seen in Fig J.3 (d), a significant linewidth
narrowing were observed with increasing blue power. Here, the linewidth of each data-
point was extracted from a Gaussian fit averaged over 50 scans. Due to the increase
in background counts with blue power, the linewidth could not be reliably extracted
for larger (≳ 181µW) blue powers. Calculating the PSD by integrating the averaged
counts in a 1.2GHz wide spectral window further emphasised this problem. A final
curiosity, the NV centre corresponding to the central peak in Fig. J.3 (b) bleached
during this study. In subsequent PLE measurements, only the two outermost peaks
were observed. The origin and time of bleaching remain unknown. Furthermore, this



223

(a) (b)

(c) (d) (e)

Figure J.4.: Second PLE measurement under blue illumination. (a) Confocal scan of dia-
mond on the mirror highlighting the selected NV centre. (b) PL spectra of the highlighted
NV centre excited with blue and green (red line) and blue only (blue line). The NV centre
exhibits an unusually strong NV0 line. (c) PLE measurement in the absence of the blue
laser (red) and with Pblue = 47µW for Pres = 41.2mW and Pgreen = 454µW. A Gaussian
fit revealed ∆ν = 92MHz and ∆ν = 114MHz. (d) Measured linewidth as a function of blue
power. Each data point was averaged over 50 scans. (e) PSD integrated over a spectral
window of 600MHz with increasing blue power.

was the only NV centre observed to completely bleach.
The initial test using blue illumination during the PLE pulsing sequence revealed a

promising result: a 15% narrowing of the optical linewidth was observed. However,
these results were neither consistent nor conclusive. Fig. J.4 summarises the results
obtained from a different NV centre. Note that the selected NV centre exhibited
an unusually strong NV0 ZPL line, as can be seen in the PL spectra displayed in
Fig. J.4 (b). The red data points in Fig. J.4 (c) show a PLE measurement with Pres =
41.2mW and Pgreen = 454µW averaged over 50 scans in the absence of the blue
laser. A linewidth of ∆ν = 91.6MHz was extracted from a Gaussian fit. As before,
introducing the blue laser resulted increased the background fluorescence, as can be
seen by the orange data-points. Now, in stark contrast to Fig. J.3 (d), the measured
linewidth was found to increase with blue power (Fig. J.4 (d)). Furthermore, the PLE
signal was lost in the background noise for much lower laser power, 50µW compared
to ≃ 180µW in Fig. J.3.
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To conclude this chapter, the introduction of the blue laser culminated in results
unintelligibly distributed over a wide spectrum. As discussed above, the blue laser
leads to both narrowing (Fig. J.3 (d)) and broadening (Fig. J.4 (d)). Out of the other
five NV centres characterised (not shown here), two showed a narrowing of the ZPL
linewidth, while the effect on the remaining three can only be described as incon-
clusive. Note, that for the two NV centres included here, both the resonant and
the green power differed, Pres = 11.8nW, Pgreen = 471µW and Pres = 41.2mW and
Pgreen = 454µW respectively. Furthermore, the linewidth in the absence of the blue
laser greatly differed, ∆ν = 238MHz compared to ∆ν = 91.6MHz. A systematic
study of the linewidth as a function of Pres, Pgreen and Pblue was beyond the scope of
this thesis. Although the sample size presented here is too small to draw a bulletproof
conclusion, the initial results are promising. Nevertheless, for future experimental in-
vestigation, a laser with λ ≳ 500 nm (2.5 eV) is probably beneficial to avoid direct
photoionisation from the NV− ground state. Furthermore, the observed increase in
background fluorescence can be mitigated by using an AOM asynchronous to the APD
counting window, in a similar fashion to the current green pulse (Compare Fig. 7.1).



APPENDIX K

Spin-Photon Entanglement

This chapter will briefly introduce spin-photon and spin-spin entanglement protocols.
Starting from two spin-photon entangled pairs, remote spin-spin entanglement can
be established via two-photon quantum interference of otherwise indistinguishable
photons [493, 494], projecting the NV centre spin onto a joint entangled state [85, 495].
Recall from Section 2.2.2 and Section 2.2.5 that the ms ± 1 spin sub-levels of the

ground-state are connected to the A1,2 excited states via circularly polarised light.
From the A2 excited state, the population decays with equal probability to the ms ±
1 states, thereby creating a Λ-scheme. The decay into the two spin-states emits
orthogonally polarised photons, resulting in an entangled state on the form [41]

|Ψ⟩ = 1√
2

(
|σ−⟩ |+1⟩+ |σ+⟩ |−1⟩

)
, (K.1)

where |σ±⟩ and |±1⟩ corresponds to the orthogonally polarised single-photon states
and the ms = ±1 states, respectively. In Ref. [41], the state of the photon was
determined by measuring in the |σ±⟩ or the |H⟩ = 1√

2

(
|σ+⟩+ |σ−⟩

)
, |V ⟩ =

1√
2

(
|σ+⟩ − |σ−⟩

)
basis. The spin state was readout using the optical techniques in-

troduced in Section 2.2.5. Microwave fields with frequency ω± were used to drive the
spin from |±1⟩ to |0⟩ = ms = 0, from which a laser pulse resonant with |0⟩ ↔ |Ey⟩
allowing for resonant spin readout [242]. For more details, the reader is directed to
Ref. [41, 190, 494, 496].
Spin-spin entanglement of remote NV centres has been experimentally demon-

strated [42, 43] using the Barrett and Kok protocol [493]. In a nutshell, this protocol
works by establishing spin-photon entanglement for two remote NV centres, here la-
belled A and B. Overlapping the photons on a 50:50 beamsplitter, project the spin
onto a joint, entangled state. Following Ref. [495], the protocol goes as follows.
NV A and NV B are prepared in the ms = 0 ground state by optical spin pumping

(See Section 2.2.5). Applying a resonant π
2 microwave pulse prepares the spin in an



226 Spin-Photon Entanglement

equal superposition state:

|ψ⟩ = 1√
2

(
|↑⟩+ |↓⟩

)
, (K.2)

where |↑⟩ and |↓⟩ corresponds to the spin-states ms = 0 and ms = −1, respectively.
Next, a short, resonant spin-selective optical pulse is applied, affecting only one of the
spin-states, say |↑⟩. Subsequent emission of a resonant photon entangles the spin-state
of the NV centre with the presence of a photon:

|ψ⟩ = 1√
2

(
|↑⟩ |1⟩+ |↓⟩ |0⟩

)
, (K.3)

where |1⟩ (|0⟩) denotes the presence (absence) of a photon.
Applying a resonant π pulse leads to a coherent inversion of the spin state:

|ψ⟩ = 1√
2

(
|↓⟩ |1⟩+ |↑⟩ |0⟩

)
. (K.4)

Applying a second optical pulse resonant with |↑⟩ entangles the spin with the temporal
mode of a photon:

|ψ⟩ = 1√
2

(
|↓⟩ |L⟩+ |↑⟩ |E⟩

)
, (K.5)

where |E⟩ and |L⟩ denotes the arrival of an early or late photon, respectively. If
the initial spin-state was |↑⟩, the NV centre was excited by the first excitation pulse,
leading to the detection of an early photon |E⟩. On the other hand, if the initial spin-
state was |↓⟩, the NV centre was exited by the second pulse resulting in the detection
of a late photon.
Finally, the photons from the two NV centres are overlapped on a beamsplitter.

If the photons are indistinguishable, the detection of one early and one late photon
projects the spins of the NV centres onto a Bell state:

|Ψ⟩ = 1√
2

(
|↑⟩A |↓⟩B ± |↓⟩A |↑⟩B

)
. (K.6)

Detecting the photons in the same output port leads to a symmetric state (+), while
detection in different ports leads to an anti-symmetric state (-).
In this protocol, the entanglement is heralded by the detection of a photon. The

overall success probability is 1
2η

2, where η is the probability of detecting a single ZPL
photon from the resonant excitation pulse and the factor of 1

2 accounts for the need
to detect two photons per successful entanglement event. As discussed extensively in
Chapter 8, η can be dramatically enhanced in a resonant cavity.
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D. Englund, M. Lončar, D. D. Sukachev, and M. D. Lukin, Experimental demonstration of
memory-enhanced quantum communication, Nature 580, 60 (2020).

[292] B. C. Rose, D. Huang, Z.-H. Zhang, P. Stevenson, A. M. Tyryshkin, S. Sangtawesin, S. Srini-
vasan, L. Loudin, M. L. Markham, A. M. Edmonds, D. J. Twitchen, S. A. Lyon, and N. P.
de Leon, Observation of an environmentally insensitive solid-state spin defect in diamond,
Science 361, 60 (2018).

[293] B. L. Green, M. W. Doherty, E. Nako, N. B. Manson, U. F. S. D’Haenens-Johansson, S. D.
Williams, D. J. Twitchen, and M. E. Newton, Electronic structure of the neutral silicon-
vacancy center in diamond, Physical Review B 99, 161112 (2019).

[294] T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K. D.
Jahnke, L. J. Rogers, B. Naydenov, F. Jelezko, S. Yamasaki, S. Nagamachi, T. Inubushi,
N. Mizuochi, and M. Hatano, Germanium-Vacancy Single Color Centers in Diamond, Scien-
tific Reports 5, 12882 (2015).

[295] P. Siyushev, M. H. Metsch, A. Ijaz, J. M. Binder, M. K. Bhaskar, D. D. Sukachev, A. Sipahigil,
R. E. Evans, C. T. Nguyen, M. D. Lukin, P. R. Hemmer, Y. N. Palyanov, I. N. Kupriyanov,
Y. M. Borzdov, L. J. Rogers, and F. Jelezko, Optical and microwave control of germanium-
vacancy center spins in diamond, Physical Review B 96, 1 (2017).

[296] M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J.
Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, and M. D. Lukin, Quan-
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