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Tunable open-access Fabry–Perot microcavities are versatile and widely applied in different areas of photonics research.
The open geometry of such cavities enables the flexible integration of thin dielectric membranes. Efficient coupling of
solid-state emitters in various material systems has been demonstrated based on the combination of high quality factors
and small mode volumes with a large-range in situ tunability of the optical resonance frequency. Here, we demonstrate
that by incorporating a diamond micromembrane with a small thickness gradient, both the absolute frequency and the
frequency difference between two resonator modes can be controlled precisely. Our platform allows both the mirror
separation and, by lateral displacement, the diamond thickness to be tuned. These two independent tuning parameters
enable the double-resonance enhancement of nonlinear optical processes with the capability of tuning the pump laser
over a wide frequency range. As a proof of concept, we demonstrate a >THz continuous tuning range of doubly resonant
Raman scattering in diamond, a range limited only by the reflective stopband of the mirrors. Based on the experimen-
tally determined quality factors exceeding 300,000, our theoretical analysis suggests that, with realistic improvements, a
∼mW threshold for establishing Raman lasing is within reach. Our findings pave the way to the creation of a universal,
low-power frequency shifter. The concept can be applied to enhance other nonlinear processes such as second harmonic
generation or optical parametric oscillation across different material platforms. © 2022 Optica Publishing Group under the

terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.466003

1. INTRODUCTION

The strong confinement in optical nano- and microresonators can
greatly enhance the interaction between light and matter [1,2].
In the context of nonlinear optics, whispering-gallery modes in
microdisk, microring, and racetrack resonators stand out since they
combine large optical quality (Q) factors with small mode volumes
(V ) [3–6]. Such monolithic microresonators have been made
from a variety of different materials including, but not limited to,
diamond [7–10], silica [11,12], silicon carbide [13–15], silicon
nitride [16–18], lithium niobate [19,20], gallium phosphide
[21–24], and hexagonal boron nitride [25].

Efficient enhancement of nonlinear optical processes in a
microcavity requires simultaneous resonant enhancement of all
the optical fields involved. The resonance frequencies in mono-
lithic resonators are set by the device geometry [26]. Therefore,
careful tailoring of the device cross section [27] or modulation of
the device radius [28,29] is required for frequency matching at
distinct frequencies. Fabrication imperfections, however, limit the
device yield. Hence, typically a large matrix of devices with varying
parameters is required to achieve a desired frequency configura-
tion. Certain tuning mechanisms such as gas condensation [13],

thermo-optic effects [21] and strain [30] allow the global disper-
sion profile to be adjusted. An in situ technique to tune the absolute
and relative frequencies of certain modes, required for achieving
multi-resonant configurations, remains elusive. In principle,
crossed-fiber-based tunable optical Fabry–Perot microcavities
could be used for this purpose [31,32]. In practice, however,
implementing such crossed fiber microcavities comprising a non-
linear optical material constitutes a major technological challenge.
Furthermore, small mode volumes for the crossed resonators are
prevented by the device geometry.

Nevertheless, the integration of a thin dielectric membrane into
an individual highly miniaturized Fabry–Perot cavity represents
an appealing approach to enhance nonlinear optical processes.
Such “open microcavities” offer a high Q/V ratio [33] and thereby
promote strong light–matter interactions [2,34]. In addition, the
platform offers full in situ tunability of its resonance frequencies
upon changing the mirror separation. Importantly, the full mode
dispersion of a membrane-in-the-middle cavity depends on both
the membrane thickness and the separation of the mirrors [33,35].

Here, we show that the dependence on membrane thickness can
be exploited as an additional tuning mechanism. By controlling
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both the vertical separation of the two mirrors and the lateral posi-
tion of the cavity with respect to the membrane, both the absolute
frequency and the relative frequency splitting between two distinct
modes can be tuned.

We implement such a platform by embedding a diamond
micromembrane into an open microcavity, which exhibits a small
thickness gradient, i.e., a wedge. As a proof-of-principle experi-
ment, we focus on the doubly resonant enhancement of Raman
scattering from the diamond membrane [36]. Raman-scattered
light is generated when, upon the creation of a phonon, incom-
ing pump photons are redshifted by the fixed phonon energy.
Diamond is particularly suited for testing our platform based
on the combination of a large Raman gain (∼75 GW · cm−1 at
532 nm) [37], a large Raman shift (∼1,332 cm−1,∼40 THz) [38]
and a narrow gain linewidth (1νR ∼ 40 GHz) [39–41].

By tuning the mirror separation, we show that we are able to
establish a double-resonance condition, where the frequency sep-
aration between two fundamental modes ν1 and ν2 corresponds
exactly to the Raman shift, i.e., ν1 − ν2 =1νR. Hence, via precise
tuning of the pump frequency to ν1, the pump laser and the Raman
transition are each brought into resonance with a cavity mode
simultaneously leading to a strong enhancement of the creation of
Stokes photons at frequency ν2. Importantly, for our device, this
double-resonance condition is not limited to one pair of frequen-
cies, but it can be continuously tuned in situ over a >THz range
by exploiting the thickness gradient of the diamond membrane.
Experimentally, this is achieved simply by first displacing the dia-
mond membrane laterally with respect to the cavity mode and then
adjusting the mirror separation accordingly. In our implementa-
tion, the tuning range is limited by the overall change in thickness
of the membrane, but in principle, a double-resonance condition
with fixed frequency difference can be established across the whole
reflective stopband of the mirrors corresponding to several tens of
THz.

2. METHODS

Our plano–concave microcavity design supports Gaussian funda-
mental modes [Fig. 1(a)] [35,42–46]. The microcavity is formed
by two mirror-coated fused silica substrates, one of which contains
an array of spherical micromirrors fabricated via laser ablation [47]
enabling efficient coupling to a single free-space mode [41,48].
The radii of curvature of these micromirrors are∼10 µm resulting
in a beam waist of ∼1 µm. We integrate a high-quality single-
crystalline diamond micromembrane [∼20× 20× 0.8 µm3,
Fig. 1(b)] into the cavity using a micromanipulator [49,50] (see
Appendix A).

For conventional Fabry–Perot resonators, the resonance wave-
length changes linearly with the mirror separation ta. However, the
presence of a diamond membrane with thickness td significantly
alters this linear mode structure. The hybridization of modes
confined in the air and diamond layers of the resonator manifests
in avoided crossings [35,50–54]. The cavity resonance frequencies
depend on both the separation of the two mirrors and the thickness
of the diamond at the location of the cavity mode. One of the main
advantages of our cavity platform is the in situ tuning capabil-
ity. Both the separation of the mirrors and the lateral position of
the cavity mode with respect to the diamond membrane can be
controlled via a stack of piezoelectric nanopositioners (attocube
ANPx51, ANPz51). The diamond membrane exhibits a slight
thickness gradient introduced during the thinning of the diamond
[55–57]. It was shown in the past that this thickness gradient is
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Fig. 1. (a) Schematic of the plano–concave Fabry–Perot microcavity.
The cavity is formed by two fused silica (SiO2) substrates coated with
a distributed Bragg reflector (DBR). One of the substrates contains
spherical micro-indentations resulting in a Gaussian resonator mode
with a small beam waist (∼1 µm). Piezoelectric nanopositioners allow for
spatial and spectral tunability of the cavity mode. The wedged diamond
membrane enables the diamond thickness within the cavity mode to be
changed by lateral positioning. The thickness gradient of the diamond
is exaggerated for clarity. The collimated green and tunable red lasers are
combined via two long-pass (LP) dichroic mirrors (splitting wavelengths
at 560 nm and 644 nm) and coupled into the cavity via a mode-matching
objective lens. (b) Optical microscope white-light image of a large array
of fabricated diamond micromembranes. The Newton fringes indicate
a variation of the membrane thickness that is introduced during the
thinning process using plasma etching. (c) In red: measurement of the
reflectivity of the planar DBR revealing a stopband centered at 625 nm
with a bandwidth of ∼100 THz. In blue: experimental cavity spectrum
for a fixed cavity length under 532 nm illumination. The mirror separa-
tion is set such that there are two fundamental modes with a splitting of
∼40 THz. In this configuration resonant recirculation of a laser resonant
with mode qeff = 19 increases the intracavity intensity (denoted by Icirc),
while the Raman process is enhanced by mode qeff = 17. The differently
shaded wavelength regimes are bound by the splitting wavelength of the
employed dichroic mirrors. For details, see text. Inset: Raman process,
depicted as a three-level system. A photon is converted into a redshifted
photon and an optical phonon of fixed frequency.

universal to thinned diamond devices, but that it can also be tuned
with reasonable accuracy [56]. Harnessing this gradient, we are
able to tune the exact diamond thickness of the membrane in the
cavity by adjusting the relative lateral positions of the mirrors.
The in situ tuning capability allows controlling both the absolute
frequency as well as the relative splitting of the resonator modes.

Excitation of the first-order Raman process (here, the Stokes
process) in diamond can be modeled as a three-level atom-like sys-
tem [inset Fig. 1(c)] involving a ground state |1〉, a virtual state |2〉,
and a meta-stable state |3〉. A pump laser excites the ground-state
population from |1〉 to |2〉. The system decays via state |3〉 emitting
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a redshifted photon (|2〉→ |3〉) followed by an optical phonon of
fixed frequency (∼1,332 cm−1 [38],∼40 THz, |3〉→ |1〉).

By coupling both the pump and the Stokes photons to a cavity
mode, the Stokes process can be strongly enhanced [58]. Resonant
recirculation of the pump laser increases the intracavity intensity,
denoted by Icirc in Fig. 1(c), while a cavity mode resonant with the
Raman transition enhances the creation of Stokes photons [41].
Careful tuning of the mirror separation ta and the diamond thick-
ness td allows the double-resonance condition to be established
for a wide range of pump wavelengths in the visible wavelength
regime. Upon changing the pump wavelength, td and ta need to
be adjusted such that one cavity mode remains resonant with the
pump laser; another mode is red-detuned with respect to the pump
by exactly the Raman shift (see Appendix D).

The operation wavelength range of the cavity is given by the
reflective stopband of the distributed Bragg reflector (DBR), which
we determine using a white-light transmission measurement [41].
Figure 1(c) displays the stopband of the planar bottom mirror
centered around λc,bot = 625 nm; the reflectivity is more than
99% over a bandwidth of ∼100 THz. The top mirror has similar
properties but with a stopband centered at λc,top = 629 nm. To
characterize the mode structure of the cavity, we couple a green
laser at 532 nm into the cavity through the curved top mirror via
a dichroic mirror (Semrock, FF560-FDi01). We tune the mirror
separation by applying a voltage to the z-piezo using a highly stable
voltage source (Basel Precision Instruments SP 927). Background
photoluminescence (PL) from the diamond acts as an internal light
source and couples to the different resonator modes [41]. Crucially,
the green laser is outside the reflective stopband of the mirror, and
can thus excite PL independent of the cavity length.

3. RESULTS

We set the mirror separation such that the splitting between the
modes with effective mode numbers qeff = 17 and qeff = 19 cor-
responds to the Raman shift in diamond [1νR ∼ 40 THz, inset
Fig. 1(c)]. We define the effective mode number qeff by the number
of half-wavelengths between the two mirrors, i.e., within the air
gap and the diamond layer, qeff λ/2≈ ta + ndtd. A small deviation
from integer values of qeff is caused by field penetration into the
DBR mirrors [59,60]. Figure 1(c) displays a PL spectrum collected
through the top mirror using a grating-based spectrometer with
300 grooves/mm (Princeton Instruments Acton SP2500). We
model the spectrum using a one-dimensional transfer-matrix
calculation and infer the mirror separation and diamond layer
thickness to be ta = 4.18 µm and td = 756 nm, respectively.
We note that the values of ta and td carry a potential source of
systematic error (see Appendix B).

Next, we verify that we are able to establish the double-
resonance condition. To this end, we couple an additional tunable
external cavity diode laser into the cavity (Toptica DL Pro 635,
λpump = 630 · · · 640 nm, δν ≤ 500 kHz) by adding a dichroic
mirror to our optical setup (cut off at 644 nm, AHF F48-644).
We set the laser wavelength to be resonant with mode qeff = 19 at
λpump = 632.99 nm. The resulting Raman scattered light is at a
wavelength of λR = (1/λpump −1νR/c )−1

= 691.25 nm, where
c is the speed of light.

In the following, we denote the effective mode number of
the cavity mode that is close in wavelength to the tunable red
pump laser (λpump) as qp and the corresponding wavelength as
λcav

p ; and the effective mode number of the cavity mode close in

wavelength to that of the Raman photon (λR) as qS and its associ-
ated wavelength as λcav

S . An analogous notation is adapted for the
corresponding frequencies ν.

We then tune the mirror separation and record spectra
from the cavity (Fig. 2). The background PL excited by the
green laser couples to the cavity modes with effective mode
numbers qS = 16 . . . 18 and wavelengths in the range of
λ= 670 . . . 700 nm, which redshift with increasing mirror sepa-
ration. When the tunable red pump laser at λpump = 632.99 nm
is resonant with the qp = 18 . . . 20 modes for relative mirror sep-
arations 1L cav of −317.0 nm, 0 nm, and +317.0 nm, narrow
peaks appear in the spectrum at CCD pixels corresponding to
λ= 691.19 nm and λ= 691.32 nm, as highlighted in the insets
of Fig. 2 matching well the predicted λR = 692.25 nm. As dis-
played in the respective linecuts for1L cav =−317 nm, the cavity
mode with qS = 16 appears at a too long wavelength, while for
1L cav =+317 nm, the wavelength of qS = 18 is too short. Only
at 1L cav = 0 nm are both the pump and the Stokes field each
resonant with a cavity mode.

Similarly, the linecut at λ= 691.19 nm clearly shows that
the cavity resonances for qS = 16 and qS = 18 appear at smaller
(−345.6 nm) and larger relative mirror separations (+345.6 nm)
than the Raman peaks, respectively. Only for a mirror separation
of ta = 4.18 µm are λpump and λR simultaneously resonant with
the cavity (within the spectrometer resolution) for qp = 19 and
qS = 17. For this double-resonance condition, the signal intensity
is increased by over three orders of magnitude compared to the
other peaks.

Next, we characterize in more detail the exact detuning depend-
ence of the double-resonance condition by tuning the pump laser.
For the remainder of this paper, excitation is carried out using the
tunable red laser only. Its wavelength (frequency) will be denoted
as λpump (νpump). We modulate the cavity length continuously and
exploit the fact that Raman signal is generated only when a cavity
mode qp is resonant with the pump laser, νpump = ν

cav
p . Using this

technique, it is not necessary to keep the cavity at one particular
length—this circumvents any problems caused by either drift or
acoustic and thermal noise.

Figure 3(a) displays a set of PL spectra recorded using a
high-resolution grating with 2,160 grooves/mm. We vary
νpump = ν

cav
p (λpump = λ

cav
p ) from 468.475 THz (639.932 nm)

to 474.471 THz (631.845 nm). We find that for the pump
frequency νpump,dres = 472.434 THz, the double-resonance
condition is fulfilled: νR = ν

cav
S = νR,dres = 432.508 THz.

These values are different from those given in Fig. 2 due to
a slightly different lateral position of the cavity mode corre-
sponding to a different diamond thickness, which we will
discuss in detail in a subsequent section. We determine a
Raman shift of 1ν̃R = νpump,dres/c − νR,dres/c = 1,331.8 cm−1

(1νR = c1ν̃R = 39.927 THz), in good agreement with the pre-
viously reported value, ∼1,332 cm−1 [37,61,62]. We plot the
peak Raman counts for different detunings of the pump laser from
the double-resonance condition, νpump − νpump,dres [projected
blue points in Fig. 3(a)]. We find that these peak counts follow a
Lorentzian with FWHM linewidth of 519.8 GHz [58]. The corre-
sponding projected Raman amplitude is fitted well by a Lorentzian
with FWHM linewidth of 502.9 GHz [projected red points in
Fig. 3(a)].

We fit the individual spectra for different detunings of the
pump laser (with respect to the double-resonance frequency
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Fig. 2. Demonstration of cavity-enhanced doubly resonant Raman scattering. (top) Optical spectra as a function of relative cavity length reveal the
cavity mode structure. Here, a laser at 532 nm excites background PL in the diamond, and a narrowband diode laser at λpump = 632.99 nm drives Raman
scattering. For qp = 19 and qS = 17, the pump and Raman scattered lights are resonant simultaneously, i.e., the double-resonance condition is met. (bot-
tom) Linecut at λ= 691.19 nm highlighting the strong signal enhancement of doubly resonant Raman scattering. (right) Linecuts at different relative
cavity lengths1L cav showcasing the double resonance for qp = 19 and qS = 17. At shorter1L cav, the mode splitting between qp = 18 and qS = 16 is too
large for the Raman scattered light to be resonant, while for larger1L cav, the mode splitting between qp = 20 and qS = 18 is too small. For more details, see
text.

νpump,dres) to the product of two Lorentzians describing the cav-
ity mode at νcav

S (FWHM δνcav
S ) and the gain bandwidth of the

Raman scattering process at νR [FWHM δνR, Fig. 3(b)]. These
fits allow the peak positions and linewidths to be extracted [41].
Figures 3(c) and 3(d) display the results of these fits. Over the
tuning range of the pump laser, the detuning between νcav

S and
νR varies from −319.7 GHz to 526.7 GHz. The linewidth of
the Raman gain for the different fits is δνR = (48.3± 1.6) GHz
corresponding to QR = 8,960± 290. This Raman linewidth
agrees well with previously reported values (40.8 . . . 47.8 GHz)
[39–41], indicating low strain in the diamond membrane. The
linewidth of the cavity mode closest to νR at νcav

S decreases from
δνcav

S = (167.3± 0.8)GHz to (47.0± 0.4)GHz for increasing
νpump = ν

cav
p , which is expected from the increase in reflectivity

on approaching the stopband center of the DBR mirror coatings.
The corresponding Q-factor increases from QS = 2,570± 90 to
9,250± 90. In the double-resonance condition, the Q-factor of
the Stokes cavity mode is QS,dres = 6,650± 50.

We now turn to discussing the effect of the diamond thick-
ness in more detail. The presence of the diamond membrane in
the cavity significantly alters the cavity mode dispersion with
respect to conventional Fabry–Perot cavities. Conceptually, the
cavity mode structure can be described using a coupled two-cavity
model: one cavity is confined to the diamond bounded by the
bottom DBR and the diamond–air interface; the other cavity is
confined to the air bounded by the diamond–air interface and
the top DBR [33,41,63]. The finite contrast in refractive index
across the diamond–air interface couples the two cavities, resulting
in a hybridized mode structure, manifested by the emergence of
avoided crossings [35]. The resonance frequencies depend on
both ta and td at the position of the cavity mode. Figure 4 displays a
one-dimensional transfer-matrix calculation (Essential Macleod)
of the cavity mode structure, using the mirror structure extracted
from Fig. 1(c). These calculations confirm that the locations of the
avoided crossings in the mode structure depend on the choice of
diamond thickness td.

Next, we demonstrate the possibility to tune the double-
resonance condition by changing the thickness of the diamond
layer within the cavity mode in situ [Fig. 5(a)]. To this end, we

laterally displace the cavity mode with respect to the diamond
membrane, exploiting the small thickness gradient [Fig. 1(a)].
Over the lateral fine-tuning range of the nanopositioner (travel
range∼4 µm), the double-resonance condition can be tuned from
νpump,dres = 471.44 THz to 472.29 THz (νR,dres = 431.51 THz
to 432.36 THz), a continuous tuning range of 0.85 THz.
Considering that the width of the double-resonance gain pro-
file is>500 GHZ, this would enable a>THz continuous tuning
range of the lasing frequency as will be discussed below.

To extract the exact diamond thickness, we perform one-
dimensional transfer-matrix-based simulations of the cavity
mode structure. For these simulations, we use the exact mirror
structure obtained from fitting the mirror stopband (Fig. 1(c)
[33,41]), and sweep the width of the air gap ta and the diamond
thickness td for fixed wavelengths λcav

p and λcav
S . The double-

resonance condition is met whenever the modes for λcav
p cross the

modes for λcav
S . Figure 5(b) shows a transfer-matrix simulation

for λcav
p = 634.57 nm and λcav

S = 693.15 nm [extracted from
Fig. 3(c)]. Here, the two cavity modes overlap for ta = 4.18 µm
and td = 755 nm, which well reproduces the spectrum in Fig. 1(c).
We note that we neglected dispersion in the diamond membrane
since the error is significantly smaller than the uncertainty of the
transfer-matrix simulation (see Appendix B).

We extract td for all measurements displayed in Fig. 5(a) and
plot td versus lateral displacement of the cavity mode [Fig. 5(c)]. To
calibrate the lateral displacement, we use the edges of the diamond
(∼18 µm) measured with a laser scanning confocal microscope
(Keyence Corporation) as a reference. We find a thickness gradient
|
1td
1x | = (0.16± 0.10) nm/µm. This gradient agrees well with

the thickness variation we extract from analyzing thin-film inter-
ference of the diamond membrane (see Appendix A). As shown
in Fig. 5(d), we observe a linear shift of λcav

S with td. From our
simulations, we find that for the right combination of ta and td,
the double-resonance condition can be tuned continuously across
the whole mirror stopband corresponding to a continuous tuning
range of tens of THz (see Appendix D).

Next, we perform double-resonance measurements for different
pump powers Ppump (as measured before the sample objective)
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Fig. 3. (a) Series of cavity spectra for different detunings of the pump
laser from the double-resonance condition νpump − νpump,dres. The
cavity spectra comprise the Raman signal at νR and the closest cavity
mode at νcav

S . We fit the amplitude of the Raman signal for every value
of νpump − νpump,dres with a Lorentzian (projected blue points) with
linewidth of 519.8 GHz. The center frequency of the fit indicates that the
double-resonance condition is satisfied when νR,dres = 432.508 THz for
νpump,dres = 472.434 THz. (b) Individual cavity spectra obtained with
different pump frequencies can be fitted well using a model based on two
multiplied Lorentzians centered at the Stokes frequency νR − νR,dres and
the frequency of the adjacent cavity mode νcav

S − νR,dres. (c) Peak position
of the cavity (νcav

S ) and Raman scattering (νR) as a function of pump
frequency νpump relative to the double resonance condition at νpump, dres

and νR, dres. (d) Linewidth of the cavity (δνcav
S ) and the Raman gain (δνR)

versus pump frequency νpump − νpump, dres.

[Figs. 6(a) and 6(b)]. Up to the largest available pump power in the
experiment, the intensity increases linearly: there is no superlinear
dependence presaging Raman lasing.

We estimate the threshold power required to establish Raman
lasing using classical coupled mode equations [64,65]. Lasing
occurs when the round-trip gain equals the round-trip loss.
Assuming that both the pump laser and the Raman light are

Fig. 4. One-dimensional transfer-matrix calculation of the cavity
mode structure, i.e., resonance frequencies for different mirror separations
ta, for different diamond thicknesses td. The nonlinear mode dispersion
arises as a consequence of hybridization of cavity modes resonant with the
air gap (indicated by the dashed burgundy line) and the diamond (dashed
green line). The hybridization leads to avoided crossings whose posi-
tions depend on the exact diamond thickness. The central panel shows
the mode structure for the extracted diamond thickness (td = 755 nm)
from Fig. 5(b). The orange circles indicate a pair of cavity modes whose
frequencies are separated by the Raman shift of 1νR ∼ 40 THz (black
arrow).

(a)

(b)

(c)

(d)

Fig. 5. (a) Demonstration of the tunability of the double-resonance
condition. Owing to the thickness gradient, shifting the diamond lat-
erally changes the diamond thickness in the cavity and subsequently
the condition for double resonance. The images to the right show the
relative position of the cavity, as indicated by the circles, with respect
to the edges of the diamond (purple rectangle). The bright feature in
the center of the cavity stems from the reflection of the excitation laser.
(b) The diamond thickness and the width of the air gap are extracted from
one-dimensional transfer-matrix simulations. The double-resonance
condition is satisfied when the pump mode (blue) and the Stokes mode
(red) cross. For λcav

p = 634.57 nm and λcav
S = 693.15 nm, we extract

td = 755 nm and ta = 4.18 µm. (c) Lateral displacement of the cavity
mode plotted against diamond thickness td. Here, the relative position of
the cavity mode is calculated with respect to the corners of the diamond.
Extracting the diamond thickness from the double-resonance measure-
ments in (a) gives a thickness gradient of 0.16nm/µm. (d) Linear shift of
the double-resonance condition with the diamond thickness resulting in a
redshift of the Stokes wavelength.
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(a) (b)

Fig. 6. (a) Spectrally resolved cavity signal with increasing pump power
in the double-resonance condition. (b) Integrated intensity of the peaks in
(a) as a function of pump power. The linear behavior suggests that no las-
ing occurs.

resonant with the cavity, λpump = λ
cav
p and λR = λ

cav
S , the lasing

threshold Pth can be calculated via (see Appendix F):

Pth =
1

η

2nSnpπ
2

λcav
S λ

cav
p g B

R

VR(QS + QR)

Q2
S Qp

. (1)

Here, λcav
p(S), np(S), and Qp(S) are the wavelengths, refractive indices,

and Q-factors for the cavity modes resonant with the pump
laser and the Raman light, respectively. QR is the quality factor
corresponding to the bandwidth of the Raman gain. The bulk
Raman gain coefficient in the employed pump wavelength range
is g B

R ∼ 40 cm/GW [66]. The power incoupling efficiency η
and the quality factor of the pump mode can be extracted from
the cavity transmission measurement displayed in Fig. 8 [67,68].
From the dip in reflection, we infer a power incoupling efficiency
of ηC = 1− PR/P0 = 0.45, while the quality factor of the pump
mode Qp is determined to be 296,900±600.

We model specifically the possibility of Raman lasing in the
cavity used in all the experiments. Using a one-dimensional
transfer-matrix model along with Gaussian optics, we estimate a
Raman mode volume of VR = 108 µm3 (see Appendix E). Taking
np(S) = ndia = 2.4, we find Pth = 189 mW. This relatively low
threshold power constitutes a reduction in threshold power by
more than an order of magnitude with respect to a bulk Raman
laser in the visible [69–71].

We acknowledge that the current experiment does not feature
the best combination of frequencies for Raman lasing—the Stokes
frequency lies close to the edge of the stopband such that its cavity
mode has a modest Q-factor—but the experimental cavity has
the virtue of having been extensively investigated. Accessing more
suitable wavelengths close to the center wavelength of the mirror
stop bands at∼625 nm, which would maximize the figure of merit
(QS + QR)/(Q2

S Qp) [Eq. (1)], was not possible since we do not
have access to a tunable laser around 600 nm.

In general, diamond is particularly suited for the creation
of a Raman laser owing to the combination of a large Raman
gain (∼75GW · cm−1 at 532 nm) [37] and a large Raman shift
(∼1,332 cm−1) [38]. This large Raman shift enables coherent
radiation to be created at exotic wavelengths, e.g., in the yellow
band [69,70,72–75], for which no ideal solution exists in terms
of cost, convenience, and output power. The wide bandgap of
diamond prevents free carrier absorption, thus minimizing optical
losses, allowing for operation across a large range of wavelengths,
from the ultraviolet [76] across the visible [70,75,77] and infrared
[78–86], all the way to the mid-infrared [81]. However, current
implementations based on bulk diamond crystals are limited

by their high threshold pump powers, typically on the order of
several Watts. As demonstrated here, the threshold pump power
can be drastically reduced in an optical microcavity, where reso-
nant recirculation of the pump beam significantly enhances the
intensity-dependent Raman gain. Furthermore, simultaneous
coupling of the Raman field to a second cavity mode boosts the
efficiency of stimulated emission.

It should be noted that no population inversion is required for
stimulated Raman scattering and hence the creation of a Raman
laser [87]. Importantly, the gain of the Raman process is maxi-
mized by strong confinement and overlap of the pump and Raman
modes, suggesting the use of fundamental resonator modes. Based
on this doubly resonant configuration, low-threshold Raman
lasers were demonstrated in many platforms such as silica [11,12],
silicon [88–91], lithium niobate [92], silicon carbide [93], and
aluminum nitride [94]. Recently, even molecules adsorbed to silica
microtoroids emerged as promising gain media [26]. Advances in
diamond nanofabrication enabled the demonstration of integrated
diamond Raman lasers using ring resonators at infrared [8] and
near-visible [9] wavelengths with threshold powers of ∼20 mW.
Further progress, however, is limited by loss due to fabrication-
induced roughness and the lack of widely available diamond films
with homogeneous thickness.

We predict that with realistic improvements, our platform
has the potential to feature threshold powers in the ∼mW range
(see Appendix G) and that, based on its wide-range tunability, it
could pave the way to the creation of a universal, low-threshold,
frequency shifter for coherent radiation.

4. CONCLUSION

In conclusion, we demonstrate a platform for the widely tunable,
doubly resonant enhancement of Raman scattering from diamond
based on a tunable open-access microcavity. The in situ tuning
capability of our device provides a convenient way to establish
a double-resonance condition in which both pump and Raman
wavelengths are each resonant with a cavity mode. The key novelty
is the exploitation of a slight thickness gradient in the incorporated
diamond membrane. This enables the doubly resonant configu-
ration to be achieved over a wide tuning range, more than 1 THz.
These results, together with the high quality factors of the cavity
in the visible wavelength range, suggest that Raman lasing can
be achieved with the present system. With the experimentally
determined parameters, we predict a lasing threshold of 189 mW,
a reduction by more than an order of magnitude compared to
bulk Raman lasers [95]. We anticipate that with realistic improve-
ments of our platform, sub-mW Raman lasing thresholds can be
achieved. Importantly, we predict that there are configurations
where mode-hop-free tuning of the double-resonance condition
over tens of THz is possible, limited only by the spectral widths of
the reflective stop bands of the mirrors. Finally, we note that due
to the generic design of our platform, other wide-bandgap Raman
laser materials such as aluminum nitride [94] can readily be incor-
porated into our device. A wider point is that the integration of
materials exhibiting a strong χ (2) nonlinearity such as silicon car-
bide [14,96], lithium niobate [97], or gallium phosphide [22,23]
could enable low-threshold frequency conversion using other
nonlinear processes, for instance, second harmonic generation or
sum- and difference-frequency mixing.
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APPENDIX A: OPEN MICROCAVITY PLATFORM

The core of this experiment is the tunable, planar–concave
Fabry–Perot microcavity [44,45] with an embedded diamond
micromembrane, depicted schematically in Fig. 1(a). The
microcavity comprises two fused silica substrates exhibiting
highly reflective dielectric mirror coatings (ECI evapcoat).
Prior to applying the coating, we fabricate an array of spherical
micro-indentations via CO2 laser ablation [47] in one of the
substrates. The micro-indentations feature small radii of curva-
ture Rcav ∼ 10 µm and depths d ∼ 1.5 µm. We employ 14 (15)
λc/4 layers of a SiO2/Ta2O5 DBR for the curved top (planar
bottom) mirrors. From a white-light transmission measurement
[33,41,98], the center of the stopband of the bottom mirror
is determined to be λc = 625 nm [Fig. 1(c)]. Using a transfer-
matrix-based refinement algorithm (Essential Macleod) we can
reconstruct the reflection spectrum utilizing an individual layer-
thickness tolerance of 3% with nSiO2 = 1.46 and nTa2O5 = 2.11.
Using the same approach, we findλc = 629 nm for the top mirror.

Starting with commercially available high-purity, 〈100〉-cut
single-crystal diamond (Element Six, d ∼ 40 µm), we fabri-
cate membranes via inductively coupled reactive-ion etching
and electron-beam lithography [49,55,99]. Figure 7(a) displays
a scanning electron micrograph of a region with dimensions
∼600 µm× 800 µm thinned down to ∼5 µm. The quartz
mask is subsequently swapped to a mask with a narrower open-
ing (∼500 µm) to avoid detaching of the membrane due to a
trenching effect close to the edge of the quartz mask. When the
diamond is thinned down to a sub-µm thickness, Newton fringes
emerge based on thin-film interference. By analyzing the spacing
of the fringes, we find that the thinnest region of the membrane
has a thickness variation as low as 0.5 nm/µm in the y direction
and 1.1 nm/µm in the x direction in the center [Fig. 7(b)]. To
fabricate the micromembranes, the diamond is flipped and the thin
region of the diamond is structured via electron-beam lithography
using a hydrogen silsesquioxane negative electron beam resist and
subsequent plasma etching. We then transfer a membrane with
typical dimensions ∼20× 20× 0.8 µm3 to the planar mirror
using a micromanipulator [49,50] [Fig. 1(b)].

(a) (b)

Fig. 7. (a) Scanning electron microscopy image obtained after the
first thinning step of a diamond plate. (b) Red channel (∼630 nm) of an
optical microscope white-light image of the final membrane structure.
By analyzing the spacing between the Newton fringes emerging due to
thin-film interference, the thickness gradient of the diamond membrane
can be determined. The plot on the right displays the thickness gradient
extracted from measuring the spacing between crests (blue) and troughs
(red) of the interference pattern along the linecut marked by the red
dashed line.

(a) (b)

Δ = 7.8 GHz

Fig. 8. (a) Q-factor measurement for νcav
p = c/λcav

p = 473.545 THz.
Sidebands created by an EOM at νpump ± 3.9 GHz act as a frequency
ruler to extract the cavity linewidth. (b) Q-factor as a function of cavity
resonance frequency.

The bottom mirror is mounted on a stack of x y z-piezoelectric
nanopositioners (attocube, 2× ANPx51 and ANPz51) and
placed inside a home-built titanium “cage”; the top mirror is
rigidly attached to the top of the cage [33]. By applying a voltage
to the nanopositioners, the bottom mirror can be moved in all
three dimensions with respect to the top mirror, offering both
spatial and spectral tunability [50]. Finally, the titanium cage is
mounted on top of a high-precision mechanical stage (Newport,
M-562-XYZ) to enable the cavity output to be coupled to external
detection optics [41]. We use a narrowband tunable red diode laser
as the pump laser (Toptica DL Pro 635, λpump = 630 · · · 640 nm,
δν ≤ 500 kHz). We determine the wavelength of the laser using
a high-precision wavelength meter (HF-Angstrom WS/U-30U)
calibrated with a stabilized helium neon laser. This tunable pump
laser is spectrally filtered (Semrock, FF01-637/7-25 and FF01-
650/SP-25) and then coupled into the cavity using an objective of
moderate numerical aperture (Microthek, 20×, NA = 0.4) [41].
The Stokes signal is collected via the same objective in a backscat-
tering geometry [Fig. 1(a)]. A combination of a dichroic mirror
(cutoff 644 nm, AHF F48-644) and a long-pass filter (Semrock,
BLP02-635 R-25) is used to filter the excitation laser from the
signal. The Stokes signal is then coupled into a single-mode detec-
tion fiber (Thorlabs, 630-HP) and recorded with a spectrometer
(Princeton Instruments, Acton SP2500).

We determine the quality factor of the pump mode of the cavity,
Qp, following the method reported in Ref. [33]. To extract the
cavity linewidth, we keep the laser frequency νpump fixed while
scanning the cavity length and monitoring the reflected light
on a photodiode. An electro-optic modulator (EOM, Jenoptik
PM635) is used to create laser sidebands at νpump ± 3.9 GHz,
thereby providing a frequency ruler to extract the cavity linewidth.
Figure 8(a) shows the reflected signal averaged over 200 scans for
νpump = 473.233 THz. Assuming a linear response of the piezo
across the resonance, we extract a cavity mode FWHM linewidth
of δνcav

p = (1.593± 0.004) GHz corresponding to a quality
factor of Qp = 297,000± 800. Figure 8(c) shows the dependence
of Qp on the cavity resonance frequency νcav

p .

APPENDIX B: SYSTEMATIC UNCERTAINTY IN THE
AIR AND DIAMOND THICKNESS

We briefly discuss two sources of systematic errors. In this work,
the values of ta and td are extracted from transfer-matrix simu-
lations using the reconstructed mirror structure extracted from
Fig. 1(c). We note that the 3% thickness tolerance for each layer,
amounting to 2.2 nm and 3.2 nm for the high- and low-index
material, respectively, introduces a potential systematic error
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upon extracting ta and ta from these simulations. However, as all
simulations are performed using the same mirror structure, this
systematic error will be the same for all calculations—relative val-
ues of ta and td are determined with high precision. To quantify this
systematic error, we repeat the simulation in Fig. 5(b), and extract
ta = 4.18+0.01

−0.03 µm and td = 756+12
−1.9 nm, where the high and low

bounds are estimated by accounting for the extreme tolerance in
each mirror layer thickness.

Similarly, dispersion in the diamond membrane introduces
another source of systematic error. Accounting for disper-
sion in Fig. 5(b) yields a maximum uncertainty 1ta = 1.9 nm
and 1td = 0.8 nm—significantly smaller than the uncertainty
associated with the transfer-matrix simulations.

APPENDIX C: ESTABLISHING THE
DOUBLE-RESONANCE CONDITION

In Fig. 2(a), we establish the double-resonance condition by
spectrally investigating the mode dispersion with increasing ta.
A faster way to confirm that the double-resonance condition is
satisfied is displayed in Fig. 9. Here, we couple only the diode laser
at λpump into the cavity and record the cavity transmission using a
photodiode located beneath the bottom mirror. The transmission
spectrum reveals several peaks at mirror separations where the
pump laser is resonant with the cavity. These peaks are associated
with fundamental and higher-order cavity modes. Simultaneously,
we measure the cavity emission at wavelengths >644 nm using a
single-photon-counting module. A strong signal is observed only
when λpump is resonant with mode qp = 19, while at the same time
λR is resonant with qS = 17. The correlation between a peak in
transmission (signifying a resonant pump laser) and a strong peak
in cavity emission at longer wavelengths (signifying a resonant
Raman process) is a clear demonstration that the double-resonance
condition is satisfied.

APPENDIX D: TUNING OF DOUBLE-RESONANCE
CONDITION

Open-access microcavities offer a convenient tuning mechanism
of their resonance frequency simply by changing the separa-
tion of the two mirrors (ta) using a piezoelectric nanopositioner.
Importantly, such cavities offer another tuning mechanism where,
rather than the width of the air gap, the thickness of the material

Fundamental modes

δt =250µs

λpump = 632.99nm

Fig. 9. Cavity transmission (top) and cavity emission at wavelengths
>644 nm measured with a single photon counter (bottom) as a function
of cavity length for λpump = 632.99 nm. A cavity signal is observed only
when the double-resonance condition is satisfied. The piezo voltage is
changed at a rate of 2 mV/ms, which corresponds to a change of cavity
length1L cav/dt = 0.13 nm/ms.

layer is changed in situ. Here, a small thickness gradient in the
diamond membrane converts a lateral displacement of the cavity
mode into a change of the membrane thickness (td). Tuning both
ta and td allows both the absolute frequency and the spacing of the
cavity modes to be controlled. As a consequence, a gradient in the
diamond thickness |1td

1x | enables the double-resonance condition
to be satisfied for different pairs of frequencies. In Fig. 5(a), we
demonstrate experimentally a continuous tuning range of the
double-resonance condition by 0.85 THz. This is achieved by
changing the diamond thickness by ∼0.9 nm, from 755.4 nm to
756.3 nm. To explore this tuning mechanism in more detail, we
perform one-dimensional transfer-matrix calculations (Essential
Macleod). We calculate the combinations of air-gap width ta and
diamond thickness td at which specific wavelengths are resonant.
We perform pairwise calculations for the pump cavity mode λcav

p

[solid lines Fig. 10(a)] and the corresponding wavelengths red-
shifted by the Raman shift at λcav

S = (1/λ
cav
p −1νR/c )−1 [dashed

lines Fig. 10(a)] for the range of ta and td accessible with the device
presented in the main text. At pairs of ta and td where the solid and
dashed line cross, the double-resonance condition is satisfied.

We find that, in principle, the double-resonance condition can
be tuned continuously from λpump,dres = 625.00 nm (λR,dres =

681.75 nm) to λpump,dres = 649.00 nm (λR,dres = 710.41 nm)
(17.3 THz) by changing the diamond thickness from 751.4 nm
to 763.8 nm [green points in Fig. 10(a)]. The experimentally

(a) (b)

(c)

Fig. 10. One-dimensional transfer-matrix calculations of the cavity
resonances as a function of ta and td for different combinations of λcav

p

(solid line) and λcav
S = (1/λ

cav
p −1νR/c )−1 (dashed line) at specific

wavelengths. The double-resonance condition is satisfied when the
corresponding solid and dashed lines cross (indicated by same color).
By changing the diamond thickness, the condition for the double res-
onance can be tuned continuously, as indicated by the green circles.
(a) Calculations for pairs of ta and td in a range accessible with the device
presented in the main text. The calculations suggest a continuous tuning
range of 17.3 THz. The experimentally verified tuning is indicated by the
purple circles. (b) Optimizing the choice of ta and td enables continuous
tuning across the entire reflective stopband, amounting to 72.2 THz.
For simplicity, only cavity modes for which continuous tuning is possible
are included. (c) Cavity mode structure for the three different diamond
thicknesses highlighted in (b). The double-resonance conditions are indi-
cated by the black arrows. The rightmost panel shows the fit of reflective
stopband for the bottom mirror extracted from Fig. 1(c).
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demonstrated tuning range is indicated by the purple points in
Fig. 10(a).

By optimizing the choice of ta and td, we find a configuration
that, in principle, allows the double-resonance condition to be
tuned in a mode-hop-free fashion harnessing the whole stop-
band of the mirror [72.2 THz, λpump,dres = 565 · · · 645 nm,
λR,dres = 610.98 · · · 705.62 nm; see Figs. 10(b) and 10(c)].

APPENDIX E: CALCULATION OF THE EFFECTIVE
RAMAN MODE VOLUME

We consider a doubly resonant system (ωp =ωpump =ω
cav
p and

ωS =ωR =ω
cav
S ). In the following, we omit the “cav” superscripts

for concise notation and clarity. The effective Raman mode volume
VR accounts for the spatial overlap of the pump (p) and Stokes (S)
cavity modes and can be determined via [64,100]

VR =

∫
cav n2

p(Er )| EEp(Er )|2d3r ×
∫

cav n2
S(Er )| EES(Er )|2d3r∫

dia n2
p(Er )| EEp(Er )|2 × n2

S(Er )| EES(Er )|2d3r
, (E1)

where EEp(S)(Er ) is the pump (Stokes) electric field at position Er . The
integrals over the electric field can be calculated following the same
approach as reported in Ref. [41]. We approximated the beam waist
to be constantw0,I and solve the integral in cylindrical coordinates:∫

cav
n2(Er )| EE (Er )|2d3r

=

∫
cav

n2(z)| EE (z)|2dz
∫ 2π

0
dφ
∫
∞

0
r e−r 2/2w2

0,Idr

=2π
1

4
w2

0,I

∫
cav

n2(z)| EE (z)|2dz, (E2)

where εR = n2, and w0,I is the intensity beam waist given by
[33,101]

w0,I =

√
λ

π

[(
ta +

td
nd

)
× Rcav −

(
ta +

td
nd

)2
] 1

4

. (E3)

Calculating the respective field profiles according to Eq. (E2)
reduces Eq. (E1) to

VR = 2π
1

4

(
w2

p +w
2
S

)
×

∫
cav n2

p(z)|Ep(z)|2dz×
∫

cav n2
S(z)|ES(z)|2dz∫

dia n2
p(z)|Ep(z)|2 × n2

S(z)|ES(z)|2dz
. (E4)

To calculate the Raman mode volume, we approximate the axial
vacuum electric field distribution with a one-dimensional cavity
using a transfer-matrix calculation (Essential Macleod). We use
the exact mirror structure obtained from fitting the mirror stop-
band [Fig. 1(c)] and the combination of ta and td extracted from
Fig. 5(b). Figure 11 shows the result of our calculations. We deter-
mine the electric field profile for the pump and Stokes fields and
then their product by numerical integration. Using Rcav = 11 µm
and np ' nS = 2.4, we calculate the beam waists according to
Eq. (E3), and find wp = 1.05 µm and wS = 1.09 µm taking the
λcav

S,p combination extracted from Fig. 3(c). Finally, we arrive at
VR = 108.3 µm3, as quoted in the main text.

DiamondBottom DBR Air Top DBR

Diamond

Air

Diamond

Fig. 11. One-dimensional transfer-matrix simulation of the cavity for
ta = 4.18 µm and td = 755 nm. The top panel shows the refractive index
profile as a function of cavity length. The middle panel shows the profile of
the pump (blue) and Stokes (red) electric fields. The bottom panel shows
the overlap of the energy density calculated according to the denominator
in the fraction of Eq. (E1).

APPENDIX F: CALCULATION OF LASING
THRESHOLD

To calculate the lasing threshold, we follow the approach presented
by Checoury et al. [65,102]. We consider a doubly resonant system
(ωp =ωpump =ω

cav
p and ωS =ωR =ω

cav
S ). As above, we omit the

“cav” superscripts. The spacing between the cavity modes is given
by ωS =ωp −1ωR, and 1ωR is the Raman shift. The coupled
mode equations linking the mean Stokes (NS) and pump photon
numbers (Np) are given by

dNp

dt
=−

Np

τp
− γ

Np

τR
− (NS + 1)

Np

τ cav
R

+ κin Pp, (F1)

dNS

dt
=−

NS

τS
+ (NS + 1)

Np

τ cav
R

. (F2)

Here, τS = QS/ωS and τp = Qp/ωp are the Stokes and pump
photon lifetimes, respectively. γ describes the Raman scattering
into modes other than the cavity mode, and τR is a measure of the
spontaneous Raman scattering lifetime in bulk. Stimulated (NS)
and spontaneous (+1) Raman scattering into the cavity mode
is increased with respect to the bulk scattering rate via Purcell
enhancement; the corresponding lifetime becomes τ cav

R . The con-
stant κin relates the injected pump photon number per time to the
incident pump power Pp.

The spontaneous Raman scattering rate in bulk when the pump
mode polarization is aligned along the 〈110〉 crystallographic axis
can be calculated via [65]

1

τR
=

2g B
Rc 2~ωp

3npnSV
M. (F3)

Here, g B
R denotes the bulk Raman gain and V the mode volume of

a hypothetical, large cavity. M characterizes the total number of
Raman modes into which the system can radiate for a cavity with
mode volume V and frequency bandwidth δωR [102]:
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M =
Vω2

Sn3
S

2πc 3
δωR. (F4)

δωR describes the FWHM linewidth of the gain profile of the
Raman scattering process. Hence,

1

τR
= 0R =

ω2
Sn2

Sg B
R~ωpδωR

3npπc
. (F5)

The cavity enhancement is given by a Lorentzian with ampli-
tude FP [44]. We approximate the Raman gain profile with a
normalized Lorentzian [65]. We assume that the cavity is resonant
with the Raman scattered lightωS =ωR:

1

τ cav
R

=
ω2

Sn2
Sg B

R~ωpδωR

3npπc

∫
∞

0
dω×

2

π

δωR

4(ω−ωS)2 + δω
2
R

× FP
δω2

S

4(ω−ωS)2 + δω
2
S

.

(F6)

ForωS� δωS, δωR, the integrand is close to zero forω= 0, so the
lower limit of the integral can be extended to negative infinity to
obtain an analytical solution:

1

τ cav
R

= 0cav
R =

ω2
Sn2

Sg B
R~ωpδωR

3npπc
FPδωS

δωR + δωS
. (F7)

The Purcell enhancement of the system is given by

0cav
R

0R
= FP

δωS

δωR + δωS
. (F8)

This equation resembles the expression for Purcell enhancement of
a two-level emitter in a regime in which the linewidth of the cavity
and the coupled emitter are comparable [103–106]:

0cav
R

0R
=

3

4π2

(
λcav

S

nS

)3 1

VR

QS QR

QS + QR
. (F9)

The lasing threshold power Pth in the steady state can be calcu-
lated from

0cav
R Np(NS + 1)=

NS

τS
. (F10)

Using Eqs. (F1) and (F2),

κin Pth =
NS

τS

(
1

0cav
R (NS + 1)

(
1

τp
+
γ

τR

)
+ 1

)
. (F11)

Taking into account NS� 1 and 1
τp
�

1
τR

,

κin Pth =
1

τSτp0
cav
R

, (F12)

with κin = η/(~ωp):

η

~ωp
Pth =

ωSωp

QS Qp

nSnpVR

2~ωpc 2g B
R

QS + QR

QS
. (F13)

We obtain the result for the lasing threshold:

Pth =
1

η

2nSnpπ
2

λcav
S λ

cav
p g B

R

VR(QS + QR)

Q2
S Qp

. (F14)

Table 1. Summary of Experimental Parameters

ta 1.80 µm td 755 nm
λcav

p 634.57 nm λcav
S 693.15 nm

np 2.4 nS 2.4
τ−1

p 10.0× 109s−1 τ−1
R 2.38× 105s−1

Qp 296900± 600 QS 6650± 50
QR 8960± 290 g B

R ∼40cm/GW [66]
η 0.45 VR 108.3 µm3

We calculate the threshold power for the cavity used in the
experiment. The parameters are listed in Table 1. The calculation
yields Pth = 189.3 mW as stated in the main text.

APPENDIX G: FUTURE DIRECTIONS

We now turn to discuss some limiting factors and further possible
improvements to this experiment. The double-resonance con-
dition is satisfied for the combination of ta and td for which both
pump and Stokes modes are resonant simultaneously. With the
current top mirror design (depth of curved mirror, d = 1.65 µm)
and diamond thickness td = 755 nm, a relatively large air gap of
ta = 4.18 µm is required to meet this condition for the range of
λpump available. The large air gap results in a large VR, and conse-
quently a large lasing threshold. Establishing the double-resonance
condition for a shorter air gap will reduce VR and consequently Pth.

We simulate the cavity for a wide range of ta and td using
λcav

p = 634.57 nm and λcav
S = 693.15 nm as before [Fig. 12(a)].

Reducing the diamond thickness to td = 723 nm satisfies the
double-resonance condition for ta = 1.80 µm. For this air gap, we
calculate VR = 20.7 µm3.

An additional benefit of reducing ta becomes apparent on
simulating the behavior of the Q-factor with increased cavity
length [Fig. 12(b)]. The Q-factor and the cavity round-trip loss
Lcav are linked via Q = 4πLcav

λLcav
, where L cav = ta + L0. Here, the

term L0 describes the diamond thickness and the field penetration
into the DBR mirror coatings [33,60]. For short cavity lengths,
the Q-factor increases linearly with ta. However, for large cavity
lengths, the mode waist at the top mirror,wI, becomes larger than
the spherical extent of the mirror leading to beam clipping and a
subsequent drop in the Q-factor [33,42,107]. For a spherical mir-
ror with diameter D, the clipping losses are calculated according
to Lclip = e−D2/2w2

I , where the beam waist wI evolves according
to [33]

wI =

√
λRcav

π
×

(
Rcav

(ta +
td
nd
)
− 1

)− 1
4

. (G1)

In Fig. 12(b), a drop in Q-factor is expected for ta & 3.5 µm,
a consequence of clipping losses. Therefore, a shorter ta will have
the added benefit of preserving a high Q-factor. Here, the values
of Rcav = 11 µm and D= 6 µm are extracted from a scanning
confocal microscope (Keyence Corporation).

Using this model for td = 723 nm and ta = 1.80 µm [dark
blue circle in Fig. 12(a)], we find a theoretical Qp = 401,300,
QS = 11,600,η= 0.81, and consequently, Pth = 6.32 mW.

The diamond surface introduces scattering losses that should
be taken into account. Surface scattering can be incorporated
in the transfer-matrix simulations according to Refs. [33,108].
Motivated by typical roughness measurements reported by
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(a)

(b)

≈≈

Fig. 12. (a) Simulated cavity mode structure for λcav
p = 634.57 nm

(blue) and λcav
S = 693.15 nm (red) as a function of ta and td. The double-

resonance condition is satisfied for the pair of ta and td where the two
respective modes cross. The gray shaded areas indicate combinations of
ta and td for which the double-resonance condition cannot be satisfied
for the particular combination of λcav

p and λcav
S . The green circle high-

lights the combination ta = 4.18 µm and td = 755 nm (horizontal black
dashed line) used in this experiment. The vertical burgundy dashed line
represents the depth of the curved mirror, d = 1.65 µm, setting the
lower limit on the accessible ta in the current cavity geometry. The red
shaded area represents possible combinations of ta and td that would be
accessible with a shallower curved mirror. The blue and green shaded
regions show combinations of ta and td where the double-resonance
condition is satisfied for adjacent, i.e., 1qeff = 1, and second-adjacent,
i.e., 1qeff = 2, cavity modes, respectively. Reducing the diamond thick-
ness by 32 nm to td = 723 nm satisfies the double-resonance condition for
ta = 1.80 µm (blue circle). For details, see text. (b) Simulated dependence
of the Q-factor with air-gap thickness for fixed λcav

p = 634.57 nm (blue)
and λcav

S = 693.15 nm (red). The solid lines represent the Q-factor in
the absence of any losses, while the dashed lines represent the Q-factor
in the presence of surface scattering with surface roughness σq = 0.3 nm.
The drop in Q-factor at large air-gap thicknesses is attributed to clipping
losses at the top mirror. The experimentally measured Q-factors are
indicated by the stars. The Q-factor at λp agrees well with the simulations
including surface scattering. At λS, the measured Q-factor is substantially
lower than the simulated Q-factor. This arises because λS is close to the
edge of the stopband and therefore depends sensitively on the exact layer
thicknesses in the DBRs, which are not known precisely.

Refs. [33,55], including a scattering layer with surface rough-
ness σq = 0.3 nm reduces the Q-factors to Qscat

p = 258,070 and
Qscat

S = 11,540. The additional loss channel results inηscat
= 0.60.

The reduction in the Q-factor increases the lasing threshold to
P scat

th = 13.4 mW. Finally, increasing the thickness of the diamond
membrane provides a way to reduce further the lasing threshold on
account of the larger Q-factor offered by the longer effective cavity
length. Applying the same method as in Fig. 12(a), we find that the
double-resonance condition is established for td = 3.37 µm and
ta = 1.73 µm. Using these values and simulating a loss-less cavity
yields Pth = 1.00 mW. Including surface scattering (σq = 0.3 nm)
increases the threshold to Pth = 2.37 mW.
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